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Abstract

The mapping of metabolite-specific data to pathways within cellular metabolism is a major

data analysis step needed for biochemical interpretation. A variety of machine learning

approaches, particularly deep learning approaches, have been used to predict these metab-

olite-to-pathway mappings, utilizing a training dataset of known metabolite-to-pathway map-

pings. A few such training datasets have been derived from the Kyoto Encyclopedia of

Genes and Genomes (KEGG). However, several prior published machine learning

approaches utilized an erroneous KEGG-derived training dataset that used SMILES molec-

ular representations strings (KEGG-SMILES dataset) and contained a sizable proportion

(~26%) duplicate entries. The presence of so many duplicates taint the training and testing

sets generated from k-fold cross-validation of the KEGG-SMILES dataset. Therefore, the k-

fold cross-validation performance of the resulting machine learning models was grossly

inflated by the erroneous presence of these duplicate entries. Here we describe and evalu-

ate the KEGG-SMILES dataset so that others may avoid using it. We also identify the prior

publications that utilized this erroneous KEGG-SMILES dataset so their machine learning

results can be properly and critically evaluated. In addition, we demonstrate the reduction of

model k-fold cross-validation (CV) performance after de-duplicating the KEGG-SMILES

dataset. This is a cautionary tale about properly vetting prior published benchmark datasets

before using them in machine learning approaches. We hope others will avoid similar

mistakes.

Introduction

(Cellular) metabolism is the collection of biochemical transformations, i.e. chemical reactions

involving reactant and product metabolites, that take place in and around cells. Metabolism is

often described as a large network of reactions, which are classically subdivided into sections

often referred to as pathways. Pathway implies a sequence of chemical reactions, but is better

described as an interconnected local network of chemical reactions often with an implied
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directionality across the local network. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) is a major scientific repository with a relatively comprehensive (but not complete)

description of cellular metabolism in terms of a metabolic network of known reactions and

associated metabolites in separate REACTION and COMPOUND database tables, respectively

[1] [2, 3]. In the BRITE database entry br08901 (https://www.genome.jp/brite/br08901),

KEGG describes a set of 12 high-level metabolism “pathways” that cover a majority of their

reactions and associated metabolites. These 12 KEGG pathways are listed in Table 1.

Several research groups have downloaded the entries in the KEGG COMPOUND database

associated with these pathways for the purpose of developing machine learning methods for

predicting metabolic pathway based on compound chemical graph representation.

The first of these machine learning applications was Hu et al. [4] which used a random for-

est (RF) model [5] to predict metabolic pathway involvement, training a model to assign com-

pounds to one or more of eleven KEGG pathways (see the ‘Included As A Label In The

KEGG-SMILES Dataset’ column in Table 1). The 12th label was not included in these publica-

tions, likely because it resulted in poor machine learning performance as compared to the

other labels [6].

Later publications introduced deep neural networks in an attempt to improve model per-

formance for this machine learning task, including Baranwal et al. [7] who reports higher

model performance scores using a graph convolutional network (GCN) [8] combined with an

RF as well as a GCN by itself. While the model used by Hu et al. [4] and the dataset used to

train it are not provided in their publication or supplemental material (at least we could not

find it), Baranwal et al. provides the code they used as well as the dataset they created, as seen

in Table 2. This dataset is a text file, with each line containing the associated KEGG pathway

labels used for supervised learning preceded by a simplified-molecular-input-line-entry-sys-

tem (SMILES) [9] representation of the metabolic compound, and is available in their GitHub

repository [10]. We will refer to this dataset as the KEGG-SMILES dataset (Table 1). See Fig 1

for a preview of the dataset’s contents. Yang et al. [11] claims to further improve on the perfor-

mance of the model proposed by Baranwal et al. [7] using an attention-based [12] graph net-

work. While the authors don’t appear to provide code or data, they evidently used the same

dataset to train their model considering the number of instances is the same and they also

Table 1. Pathway categories and their inclusion.

Pathway Category Name Included As A Label In The KEGG-SMILES Dataset

Carbohydrate Metabolism Yes

Energy Metabolism Yes

Lipid Metabolism Yes

Nucleotide Metabolism Yes

Amino Acid Metabolism Yes

Metabolism of Other Amino Acids Yes

Glycan Biosynthesis and Metabolism Yes

Metabolism of Cofactors and Vitamins Yes

Metabolism of Terpenoids and Polyketides Yes

Biosynthesis of Other Secondary Metabolites Yes

Xenobiotics Biodegradation and Metabolism Yes

Chemical structure transformation maps No

While the KEGG Brite hierarchy includes 12 pathway categories, past publications on this machine learning task only

used 11 of the 12. This includes the ‘KEGG-SMILES’ dataset introduced by Baranwal et al.

https://doi.org/10.1371/journal.pone.0299583.t001
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describe it as containing SMILES data in their manuscript. Finally, Du et al. [13] presents the

most recent machine learning models generated from this KEGG-SMILES dataset (as of Octo-

ber 3rd 2023), with the same text file available in their GitHub repository [14]. Their dataset

size is slightly smaller than previous publications, because feature vectors could not be gener-

ated from all chemical compound structures in the KEGG-SMILES dataset, causing these

unconvertable entries to be dropped.

As detailed in Table 3, Baranwal et al. [7] reports on the accuracy, precision, and recall of

Hu’s RF method [4] and we provide the F1 score of Hu’s method by calculating it based on the

provided precision and recall. Baranwal et al. [7] additionally provides the accuracy, precision,

recall, and F1 score of their own RF-GCN combination method as well as their GCN-only

method. Yang et al. [11] reports the same four metrics though they state, “the F1-score takes

into account the accuracy and recall to measure our model” (i.e. they calculated their F1 score

using accuracy and recall rather than precision and recall). However, for consistency, we pro-

vide the F1 score calculated from their provided precision and recall using the standard F1

score formula.

The results from these past publications suggest a machine learning task that originates

with Hu et al. and is improved upon by later publications, specifically improving the perfor-

mance of models trained on the KEGG-SMILES dataset provided by Baranwal et al. However,

the validity of the results presented by Baranwal et al. [7, 10] as well as Yang et al. [11] and Du

et al. [13, 14] are highly questionable, particularly following our discovery of large numbers of

exact duplicate entries in the KEGG-SMILES dataset, representing over 26% of the total

dataset.

Materials and methods

We began our analysis by forking the GitHub repository provided by Du et al. [14] and run-

ning their scripts in order to reproduce their results, initially with minor changes to their code

to account for package-dependency issues. The scripts provided in the original repository are

designed to only process and train / test their graph neural network model on a single train-

Table 2. Availability of code and data for past publications.

Model / Feature Set Data available Code available Dataset Size Publication Date

Hu et al. RF [4] No No 3,137 December 2011

Baranwal et al. GCN/RF [7] Yes [10] Yes [10] 6,669 April 2020

Baranwal et al. GCN [7] Yes [10] Yes [10] 6,669 April 2020

Yang et al. GAT [11] No No 6,669 December 2020

Du et al. MLGL-MP [13] Yes [14] Yes [14] 6,648 June 2022

While Hu et al. and Yang et al. do not appear to provide data nor code, Baranwal et al. and Du et al. provide both. Hu et al. used an initial dataset that totaled to 3,137

instances while later publications used the dataset originating with Baranwal et al.

https://doi.org/10.1371/journal.pone.0299583.t002

Fig 1. The first 3 lines of the KEGG-SMILES dataset. The KEGG-SMILES dataset, as created by Baranwal et al, was a tab-separated text file with

the first column containing the SMILES representation of each metabolite and the second column containing the numeric identifier (0 to 10

inclusive) of each pathway category, the category identifiers being comma-separated.

https://doi.org/10.1371/journal.pone.0299583.g001
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test split, despite the manuscript reporting to have trained and tested the model across ten CV

folds. Fortunately, the original repo did contain the ten CV folds as CSV files (i.e. a train.csv

and test.csv for each fold), so we modified the scripts further in order to process and train/eval-

uate the model across all ten folds rather than only one. Since these methods are stochastic and

the model training was not seeded, we were not able to exactly reproduce the published results.

However, we were able to closely approximate the original results by running each of the ten

folds ten times (to account for differences in random seed and the stochastic nature of model

initialization and training) for a total of 100 runs. This enabled us to take the standard devia-

tions of the performance scores across the 100 runs, which provides better estimates of the

standard deviations than what was previously published.

In the training/model evaluation script of Du et al. [14], the model is trained via stochastic

gradient decent over 200 epochs (batch size of 256), specifically using the Adam optimizer

[15]. The graph neural network was trained with a dropout layer of probability 0.2. The ReLu

activation function was used for all but the final activation, in which a LeakyReLu was used

with a negative slope of 0.2. A learning rate of 0.0005 was used for the Adam optimizer along

with betas of 0.9 and 0.999, epsilon of 10^-8, and a weight decay of 0.

For every CV fold, the test set is evaluated in each epoch and the scores reported are those

from the epoch where the model performed best on the test set. In other words, the test set is

evaluated multiple times and the highest scores are chosen from the multiple evaluations.

After re-running their scripts and observing the performance scores of their model trained

on the original KEGG-SMILES dataset, we wrote an additional script that removed exact

duplicate entries to generate a de-duplicated dataset, i.e. keeping the first occurrence of a

duplicated entry and removing any recurring duplicates (note that we define a duplicate as

both the features being exactly the same and the labels being exactly the same). The purpose of

the deduplication is to allow a valid evaluation of model performance. But this dataset dedupli-

cation analysis necessitated further minor modification of the original scripts provided by Du

et al. [14] in order to optionally take in either the KEGG-SMILES dataset containing duplicates

or the de-duplicated version. That enabled us to produce model performance results on both

the original dataset and de-duplicated dataset.

Finally, we wrote additional scripts to collect statistics on both the original dataset and the

de-duplicated version. From the results generated from these scripts, we derived summary sta-

tistics as well as results from statistical analyses.

All scripts were written in the Python programming language [16] and the model was cre-

ated using the PyTorch Geometric library [17] for creating deep neural network models spe-

cialized to handle irregularly shaped data such as graphs. PyTorch geometric is built on top of

the deep learning library known as PyTorch [18]. Statistical analyses were performed using

methods from the SciPy package [19]. All code and data for replicating these findings along

Table 3. Reported model performance of past publications.

Model / Feature Set Accuracy (%) Precision (%) Recall (%) F1

Hu et al. RF [4] 94.64 77.97 67.83 0.7254

Baranwal et al. GCN/RF [7] 97.58 ± .12 83.69 ± .78 83.63 ± .68 0.8366

Baranwal et al. GCN [7] 97.61 ± .12 91.61 ± .52 92.50 ± .44 0.9205

Yang et al. GAT [11] 97.50 ± .06 93.04 ± .28 93.22 ± .16 0.9313

Du et al. MLGL-MP [13] 98.64±0.47 95.26±2.25 94.21±1.94 0.9473

If available in the corresponding publication, we report on the standard deviation of the model performance metric across CV folds, as indicated by the ± symbol.

https://doi.org/10.1371/journal.pone.0299583.t003
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with instructions on doing so can be found in a Figshare item as supplemental material (see

below). We also include copies of the GitHub repositories of Baranwal et al. [10] and Du et al.

[14] in this Figshare item. If running the model training script, we recommend using a graph-

ics processing unit (GPU) of up to 12 gigabytes memory to significantly reduce the runtime.

However, it can be run very slowly on the central processing unit (CPU) alone.

Figshare DOI: https://doi.org/10.6084/m9.figshare.22661185

Results

Table 4 shows three examples of duplicate entries in the KEGG-SMILES dataset, including the

SMILES representation (features), the numeric pathway labels, and the line number that they

appear in the file provided in the Baranwal et al. GitHub repository [14]. The lower line num-

ber of each duplicate is the first occurrence followed by recurrences on later line numbers.

Notice that not only is the SMILES representation identical but also the labels. This is the case

for all duplicates.

Table 5 shows both the number of compounds that correspond to each pathway category as

well as the proportion of the compounds in the dataset that have a given pathway label. Note

the fractions do not add up to one, since some entries are associated with more than one path-

way label. Thus, these entries are counted more than once with respect to pathway inclusion.

Table 5 additionally lists the percentage of duplicate entries for each pathway category as well

as the total percentage of duplicates in the entire original dataset. In the de-duplicated dataset,

we kept the initial occurrence of an entry with duplicates and removed each repeating occur-

rence. The resulting de-duplicated dataset had 4,929 instances. As with the original dataset,

Table 5 provides the number of compounds per pathway label as well as their fraction in the

de-duplicated dataset.

Two things stand out in Table 5: 1) the percentage of duplicates in every pathway category

is higher than that of the overall dataset and 2) the proportion of the dataset in each pathway

category in the de-duplicated dataset is lower than every pathway category in the original data-

set. We suspected there was a relation between the number of times a unique entry occurs in

the original dataset (occurring once is a non-duplicate and occurring multiple times is a dupli-

cate) and the number of pathway labels said entry has. Table 6 provides the counts of the

unique entries (i.e. from the collection of unique SMILES representations, same as the de-

duplicated dataset) with a certain number of occurrences in the original dataset and a certain

number of pathway labels. Note that the counts do not add up to a total equal to the size of the

original dataset but rather that of the de-duplicated dataset since only unique entries are

counted.

Table 6 can be compressed along the rows into two categories: the top row representing the

unique entries that only occur once and the remaining rows representing the unique entries

that occurred more than once. The columns can be compressed into two categories with the

Table 4. Examples of duplicate instances.

Line Number SMILES Labels

468 C#CC (= O)O 0,5

2225 C#CC (= O)O 0,5

5774 C1 = CC2OC2c2ccccc21 10

5775 C1 = CC2OC2c2ccccc21 10

1845 C1 = NCCCC1 4,9

4437 C1 = NCCCC1 4,9

https://doi.org/10.1371/journal.pone.0299583.t004
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first column representing entries with just one pathway label and the remaining columns

being those with multiple labels. The resulting contingency table, i.e. Table 7, shows a non-ran-

dom dependent relationship between the number of occurrences versus the number of labels,

with the top left to bottom right diagonal weighted in the 2x2 table. This is mirrored in

Table 6, but not as obvious.

Table 5. Dataset statistics for the original dataset compared to the de-duplicated dataset.

Label

ID

Pathway Category Number Of Compounds In

Dataset (Original)

Fraction Of

Dataset (Original)

Percentage Of

Duplicates

Number Of Compounds In

Dataset (De-duplicated)

Fraction Of Dataset

(De-duplicated)

0 Carbohydrate metabolism 1126 0.169 67.05 371 0.075

1 Energy metabolism 750 0.113 72.80 204 0.041

2 Lipid metabolism 1066 0.16 38.93 651 0.132

3 Nucleotide metabolism 342 0.051 49.12 174 0.035

4 Amino acid metabolism 1440 0.217 54.37 657 0.133

5 Metabolism of other amino

acids

597 0.09 59.80 240 0.049

6 Glycan biosynthesis and

metabolism

325 0.049 64.00 117 0.024

7 Metabolism of cofactors

and vitamins

948 0.143 44.83 523 0.106

8 Metabolism of terpenoids

and polyketides

1483 0.223 35.13 962 0.195

9 Biosynthesis of other

secondary metabolites

1906 0.287 35.78 1224 0.248

10 Xenobiotics biodegradation

and metabolism

1452 0.218 32.58 979 0.199

N/A Total Dataset 6,648 N/A 25.86 4,929 N/A

The number of compounds in each pathway category in both the original and de-duplicated datasets along with the fraction of the dataset that each label occupies,

followed by the total number of compounds in both datasets. Note that the label fractions will not add up to one since some entries have more than one label. For the

original dataset, we provide the percentage of duplicate entries in each pathway category followed by the total percentage of duplicates in the entire dataset.

https://doi.org/10.1371/journal.pone.0299583.t005

Table 6. Counts Of unique entries according to number of occurrences and number of pathway labels.

Number Of Occurrences In The Dataset Number Of Pathway Labels

1 2 3 4 5 6 7 8 9 10 11

1 3983 66 24 12 11 6 1 - 3 - 7

2 327 168 10 7 1 1 4 1 1 1 2

3 46 52 27 3 1 1 1 - 1 - 2

4 13 14 15 7 3 1 2 - - - -

5 2 4 11 4 - 2 - 1 - - -

6 4 5 5 7 3 2 - - - - -

7 3 3 7 2 - 1 - - - - -

8 2 - - 1 1 1 - 1 - - -

9 - - - 1 - 1 - - 1 - 1

10 - 2 - 2 - 2 - - 1 - -

> = 11 - 2 - 3 7 2 3 2 1 - 1

The number of occurrences in the dataset is the number of times a unique entry (unique SMILES representation and corresponding labels) appears in the original

dataset. A few unique compounds appeared up to 30 times, though we compress occurrences greater than or equal to 11 into the final row to simplify the table. The

counts in each cell are the number of metabolites that have the specified number of occurrences and number of labels.

https://doi.org/10.1371/journal.pone.0299583.t006
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Table 8 quantifies the average number of labels and the percentage of entries with multiple

labels in the (original) KEGG-SMILES dataset, a subset with no duplicates in the original

KEGG-SMILES dataset (non-duplicates), and a subset (technically a sublist since it contains

duplicates) with duplicates in the original KEGG-SMILES dataset (duplicates). Unlike the met-

rics from Tables 6 and 7, we include all the entries as they are in the original dataset, i.e. instead

of unique entries being counted once, each recurrence of a duplicate is included as well. We

see in Table 8 that the non-duplicate subset had a significantly smaller average number of

labels and percentage of entries with multiple labels than the original dataset and the subset

containing the duplicates had significantly higher values of these same metrics. The ratio of the

average number of labels between duplicates and non-duplicates is over 2.5 and the ratio of the

percentage of entries with multiple labels between duplicates and non-duplicates is over 20.

These differences also explain why the pathway fractions in Table 5 were all lower in the dedu-

plicated dataset vs the original dataset.

Table 9 provides results of statistical tests corresponding to Tables 6–8. The Chi Square test

of the contingency table (Table 6) resulted in a p-value of 0. Since the compressed contingency

table (Table 7) had two rows and two columns, we used a Fisher’s Exact test resulting in a p-

value of 8.38x10^-254. Additionally, we performed a Mann-Whitney U test comparing the

number of labels of non-duplicate entries to the number of labels of duplicate entries (Table 8)

resulting in a p-value of 0. While the effect sizes of the chi-squared (Cramer V = 0.2995) and

Mann Whitney U (common language effect size = 0.1952) statistical tests are considered weak

(small), the Fisher exact test effect size (phi coefficient = 0.5693) is considered strong (moder-

ately high). But no matter which method you prefer, the chance that the entries were randomly

duplicated is pragmatically zero.

Table 10 shows a significant reduction in model performance after removing duplicate

entries from the dataset. In particular, the precision drops by over 13%, the recall by over 12%

and the F1 score by over 11%. Note that the results we produced by re-running the scripts of

Table 7. Unique entry occurrence compared to label count.

Unique Entry Occurrence Only One Label Multiple Labels

Occurs Once 3983 130

Occurs More Than Once 397 419

https://doi.org/10.1371/journal.pone.0299583.t007

Table 8. Label quantities of the non-duplicate entries and duplicate entries compared to the original dataset.

Subset Average Number Of Labels Percentage Of Entries With Multiple Labels Size

Original 1.72 26.32 6,648

Non-duplicates 1.08 3.16 4,113

Duplicates 2.76 63.90 2,535

The average number of labels and percentage of entries with multiple labels are provided for the original dataset and

compared to the subsets of non-duplicate entries and duplicate entries. Note that the size of the non-duplicates plus

that of the duplicates is equal to the size of the total dataset since they are directly derived from the original dataset

without any overlap (an entry is either a duplicate or it isn’t) and all occurrences of duplicates are counted (e.g. if a

unique entry occurs 3 times, it’s counted 3 times in the size). So the above are the values calculated from all entries as

they are in the original dataset. We see the non-duplicate subset had much lower values than those of the original and

the duplicates subset had much higher values. The difference is even more extreme when comparing the non-

duplicates directly to the duplicates.

https://doi.org/10.1371/journal.pone.0299583.t008
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Du et al. slightly differ from those reported in their manuscript [13] (Table 3) as seen in

Table 10. This is a result of the stochastic nature of neural network initialization and training

algorithms. However, they fall well within a single standard deviation for precision, recall, and

F1 score. Accuracy is with one standard deviation provided by Du et al, but not within the new

standard deviation we calculated. In fact, all of the standard deviations we estimated from 100

folds of results were lower than the standard deviations we believed were estimated from just

10-folds worth of performance. Now, the drop in model performance between original and

de-duplicated datasets is quite dramatic and fall well outside 5 standard deviations on all four

metrics. Therefore, we can confidently conclude it’s a result of the de-duplication rather than

stochastic variation. Also, notice the dramatic increase in standard deviations for these 4 per-

formance metrics from the reanalyzed original dataset and the de-duplicated dataset, typically

by double or more. This demonstrates a dramatic drop in the robustness of the model

training.

Discussion

Machine learning researchers such as Zhao et al. [20] and Allamanis [21] have touched on the

issues in validity that arise when machine learning datasets contain exact duplicates. Their

results complement ours (Table 10), showing that machine learning datasets containing dupli-

cates inflate model performance compared to the de-duplicated counterparts. The bias intro-

duced by entry duplicates represents a non-random sampling and can result in overestimating

the performance when evaluating machine learning models, considering duplicates occur both

in the training and testing sets across CV folds. More generally, the presence of exact dupli-

cates in a dataset is a type of data leakage, where data used in training is leaked into the testing

[22, 23]. Therefore, the results from Baranwal et al. [7, 10], Yang et al. [11], and Du et al. [13,

14] have inflated model performances. Based on our results in Table 10. These model perfor-

mances are most likely inflated by roughly 10% in precision, recall, and F1 score. In the case of

the MLGL-MP in particular, we can see in the training/evaluation script of the model that the

Table 9. Results of statistical tests.

Test Data Statistical Test Test Statistic p-value Effect Size Method Effect Size

Complete Contingency Table Chi-Squared 4422.49 0 Cramer’s V 0.2995

Compressed Contingency Table Fisher’s Exact 32.34 8.38x10^-254 Phi Coefficient 0.5693

Number Of Labels Mann-Whitney U 2035425.5 0 Common Language Effect Size 0.1952

The Chi Square statistic is the result of the contingency table of Table 6 and the Fisher’s exact test statistic is the result of the two-by-two contingency table of Table 7

(compressed version of the initial contingency table). The Mann-Whitney U test statistic results from comparing the number of labels of the non-duplicate entries to

that of the duplicate entries (Table 8). The corresponding p-values of each test is displayed, where values of 0 are a result of the precision limitations of the implemented

method. In addition to the statistical significance, the effect size is reported along with each method.

https://doi.org/10.1371/journal.pone.0299583.t009

Table 10. Model performance per dataset.

Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) Dataset size

As Reported In Du et al. Manuscript 98.64±0.47 95.26±2.25 94.21±1.94 94.73 6,648

Original Dataset 98.21±0.16 94.07±1.00 94.54±0.62 94.30±0.52 6,648

Deduplicated Dataset 96.58±0.32 83.50±2.28 81.07±2.38 82.24±1.76 4,929

The means are followed by ± followed by the standard deviation.

https://doi.org/10.1371/journal.pone.0299583.t010
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test set is evaluated in each training epoch: https://github.com/dubingxue/MLGL-MP/blob/

main/MLGL-MP-%28fold-1%29/Training.py. The scores reported are those from the epoch

that evaluated best, therefore using the test set for model selection. While best practice for

machine learning is to fully train the model and evaluate the test set only once per CV itera-

tion, we retained the evaluation methods of Du et al. in order to make a maximally accurate

comparison.

The standard deviation also increases significantly in the de-duplicated version of the

KEGG-SMILES dataset (Table 10), which is expected since the presence of duplicates was arti-

ficially increasing performance. However, the standard deviation was calculated from the same

10 CV folds used in each run, which does not provide a reliable estimate of the performance

variance since the training and test sets do not change. In fact, it grossly underestimates the

real performance variance, since only the stochastic model training process is changing over

the 10 iterations per CV fold. But to make an apples-to-apples comparison, we were forced to

use the same protocol.

While the results of their publications have been shown to be invalid, Baranwal et al. and

Du et al. follow many of the best practices in supporting computational scientific reproducibil-

ity by making the dataset, results, and code available to support their publications [24–26].

This practice made it possible to detect the presence of duplicates in the KEGG-SMILES data-

set and verify the inflated model performance. Unfortunately, Hu et al. and Yang et al. did not

follow these best practices and thus their results cannot be independently evaluated and

verified.

We see in Table 5 that the percentage of duplicates in every pathway category is significantly

higher than the percentage of duplicates in the entire dataset. We additionally see that the pro-

portions of the pathway categories in the original dataset are all higher than those in the dedu-

plicated dataset. These unexpected results can be explained by Tables 6–9. We observe a

statistically significant difference in the number of labels that non-duplicate entries have versus

that of duplicate entries. This suggests that the duplication of entries is not random with

respect to their number of pathway labels. The moderately strong phi coefficient of 0.5693

(Table 9), being positive, indicates the directionality of this non-random relationship: the

duplication of entries is correlated with a higher number of pathway labels. This explains why

individual pathway categories in the original dataset had much higher duplicate percentages

than that of the overall dataset and why the proportion of entries in every category was higher

in the original dataset than that of the de-duplicated version. The proportion of entries in each

pathway category also acts as the proportion of positives or the proportion of the entries that

map to that label as compared to not mapping to it (negative). When looking at each category

individually, we observe that this dataset suffers from a class imbalance problem [27] (in super-

vised machine learning classification tasks) i.e. there are many more negative entries than posi-

tive entries. With class imbalance, a model can attain decent accuracy by primarily predicting

the majority class. However, the number of true-positive predictions decreases when the

model develops this tendency after training, resulting in a decrease in precision and recall.

With the non-random duplication of entries that map to more pathway labels, we observe that

the fraction of positive entries increases for every pathway category. This likely explains why

both the original and de-duplicated datasets performed well in accuracy, but the de-duplicated

dataset dropped in performance with precision and recall and the resulting F1 score.

One may suppose that the de-duplicated version of the KEGG-SMILES dataset is sufficient

for a new benchmark dataset. However, there are other considerations, one of which is repro-

ducibility. The only description of the creation of the KEGG-SMILES dataset is, “A dataset of

6669 compounds belonging to one or more of these 11 constituent pathway classes was down-

loaded (February 2019) from the KEGG database.” This is without any description of the exact
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REST API operations used to download these compounds and pathway associations. KEGG

provides MOL file [28] representations but not SMILES [9] representations of their com-

pounds, suggesting further processing after downloading the raw MOL file data but without

any description of this processing. The code used to download and perform this data process-

ing are also absent from the GitHub repository [10] where only the text file itself is present.

The apparent lack of reproducibility obfuscates the exact methodology for constructing the

original KEGG-SMILES dataset and introduces the possibility of other potential issues with it

beyond entry duplication. Similar to the issue of reproducibility is the ability to update the

dataset. KEGG periodically modifies and adds to their databases, so the metabolite entries

available in KEGG and their associated pathways continue to be added and updated. Providing

code enables reconstruction of the most complete dataset. The lack of code for creating the

KEGG-SMILES dataset prevents updating the dataset as KEGG is updated.

We propose the need for a new benchmark dataset for this machine learning task that satis-

fies the requirements of reproducibility, completeness, and validity. Huckvale et al. [6] pro-

vides such a new benchmark dataset that contains all the known metabolite entries in KEGG

COMPOUND, as of July 23rd 2023, with associated pathway labels after careful filtering to

remove inappropriate entries (duplicates, non-metabolites, and entries with fewer than 7 non-

hydrogen atoms), a construction method to keep the dataset up-to-date, and a thorough

description of the construction method and rationale. This new dataset includes 5,683 unique

entries, far exceeding the 4,929 instances in the de-duplicated KEGG-SMILES dataset. There-

fore, we recommend this new dataset and construction method over the duplicate-containing

KEGG-SMILES dataset.
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