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Abstract

This work explores diverse novel soliton solutions due to fractional derivative, dispersive,

and nonlinearity effects for the nonlinear time M-fractional paraxial wave equation. The

advanced exp [-φ(ξ)] expansion method integrates the nonlinear M-fractional Paraxial wave

equation for achieving creative solitonic and traveling wave envelopes to reconnoiter such

dynamics. As a result, trigonometric and hyperbolic solutions have been found via the pro-

posed method. Under the conditions of the constraint, fruitful solutions are gained and veri-

fied with the use of the symbolic software Maple 18. For any chosen set of the allowed

parameters 3D, 2D and density plots illustrate, this inquisition achieved kink shape, the colli-

sion of kink type and rogue wave, periodic rogue wave, some distinct singular periodic soli-

ton waves for time M-fractional Paraxial wave equation. As certain nonlinear effects cancel

out dispersion effects, optical solitons typically can travel great distances without dissipat-

ing. We have constructed reasonable soliton solutions and managed the actual meaning of

the acquired solutions of action by characterizing the particular advantages of the summa-

rized parameters by the portrayal of figures and by interpreting the physical occurrences.

New precise voyaging wave configurations are obtained using symbolic computation and

the previously described methodologies. However, the movement role of the waves is

explored, and the modulation instability analysis is used to describe the stability of waves in

a dispersive fashion of the obtained solutions, confirming that all created solutions are pre-

cise and stable.

1 Introduction

Nonlinear partial differential equations are the governing equations for a wide range of biolog-

ical, chemical, and physical phenomena. Authors may gain a deeper understanding of the pro-

cess being described thanks to the solution of nonlinear equations, and they may also learn

facts that are not simply apparent from common observations. Exact solutions of nonlinear

partial differential equations are crucial in physics and mathematics.

Now, nonlinearity is a powerful research field, and its strength is thought of through a

swear-amplitude wave oscillation examined in abundant fields from optics and laser
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technology, shallow water waves, electrical and electronics, quantum physics, plasma physics,

natural science, and biological phenomena. Different nonlinear phenomena occurring in the

real world can be conveyed by way of NPDEs, and their real properties are thought of through

solitonic solutions observed in several fields such as nonlinear science and engineering [1,2],

bio-science [3], dual-power law [4], optics and laser technology [5], plasma physics [6], biolog-

ical science [7], and etc.. Most of such phenomena in real life can be represented as nonlinear

PDEs. To investigate various exact and explicit solutions there are many schemes established,

such as bilinear Bäcklund transformation [8], transformed rational function method [9], tanh

method [10], Bifurcation analysis [11], tanh-coth method [12], extended tanh–coth expansion

method [13], multiple exp-function algorithm [14], the Kudryashov-expansion method [15],

the extended Kudryashov method [16], Advanced exp (-ϕ(ξ))-Expansion Scheme [17], modi-

fied extended tanh scheme [18,19], MSE scheme [20], constraint and complexification method

[21], Hirota bilinear [22–25], Darboux transformation [26], MEAEM [27], Generalized Dar-

boux transformation [28], the extended direct algebraic method [29,30], Square operator

method [31,32], the extended unified method [33], new auxiliary equation method [34,35],

Sardar sub-equation method [36,37], Evans function method [38], a new adaptive numerical

method [39], sine-Gordon expansion method [40], advanced generalized (G0/G)–expansion

scheme [41], the double variable expansion method [42], the double G0
G ;

1

G

� �
expansion method

[43], exp (−ϕ(η))-expansion method [44], etc.

Nowadays, the fractional derivatives field is concerned in many engineering research fields.

Recently, fractional order derivatives have been used in diverse real-life models of science and

technology. Consequently, many researchers in fractional calculus have dedicated their devo-

tion to recommending new fractional order derivatives, such as time fractional derivative

[45,46], conformable space-time fractional [47], Riemann–Liouville fractional derivative[48],

modified Riemann–Liouville fractional derivative [49], linear functional arguments using Che-

byshev series [50], space–time fractional [51,52], Caputo derivative [53,54], etc.

In studying the parametric wave equation in Kerr medium, Baronio [55] utilized the one-

dimensional scattering limit while considering group velocity dispersion and time-dependent

space-time that lacked dimensions. The ray equation, also known as the paraxial wave equa-

tion, provides a simplified depiction of the complete wave equation and is utilized for model-

ing light propagation through a medium [56]. Within this context, we examine truncated time

M-fractional derivative using the solution advanced exp[−φ(ξ)] expansion method [57] to

explore some optical solutions of truncate time M-fractional paraxial wave equation [58]:

i
@P
@z
þ

a1

2
Dk M;t

2w;cP þ
a2

2

@2P
@y2
þ a3jPj

2P ¼ 0: ð1Þ

Where a1, a2 and a3 are real constants and a1 is dispersal effect, a3 is Kerr nonlinearity effect,

and a2 is the diffraction effect. The M-fractional derivative is kD
kM; t2w;cP, and the longitudi-

nal, transverse, and temporal propagation are denoted by variables z, y, and t, respectively.

Mainly as per we know we use very first time of advanced exp[−φ(ξ)] expansion method to

explore truncated M-fractional paraxial wave equation. The fact that the majority of the time

the solution is rejected due to its predefined condition is one of the limitations of our proposed

method, which does not typically yield any multi-soliton solutions. The truncated M-fractional

derivative is a widely recognized technique. The importance of truncated M-fractional deriva-

tive is that it fulfills the both properties of integer and fractional order derivatives. The effect of

fractional order derivative on the obtained solutions is also explained by graphically. Including

a fractional order term in the paraxial wave equation leads to the emergence of new optical
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solutions, making it a more appealing alternative to the conventional integer-order paraxial

wave equation.

This work is assembled as follows: In section 2, The M-truncated fractional derivatives are

described. In section 3, the working procedure of the advanced exp[−φ(ξ)] expansion method

is enlightened; in section 4, we implemented the advanced expansion exp[−φ(ξ)] method into

the M-truncated fractional paraxial wave equation. Section 5, describes the numerical simula-

tions and graphical representations of some of the obtained results. In section 6, by utilizing

modulation instability analysis we obtain the stability of the system. Finally, the paper con-

cludes with a summary of its findings.

2 M-truncated fractional derivatives

Oliveira and Sousa proposed the M-truncated fractional derivative as a new variant of the M-

fractional derivative [59]. By elimi6nating the limitations of conventional derivatives, the M-

truncated fractional derivative offers a more versatile alternative.

Definition: Given a function u : 0;1½ Þ ! < and order χ, the M-truncated fractional

derivative is defined as follows:

kD
w;c

M;t u tð Þ ¼ lim
�!0

u tkEc �t� wð Þ
� �

� u tð Þ
�

; t > 0; c > 0:

Here, Eψ(x) is a truncated Mittag-Leffler function of one parameter, defined as [60], and

taking values in the interval (0,1):

Ec xð Þ ¼ Sk
n¼0

xn

G cnþ 1ð Þ
:

Characteristics: Suppose that 0< χ� 1, and l;m! <. Let u, v be functions that are χ dif-

ferentiable at a point t> 0

1. kD
w;c
M;t luþmvð Þ ¼ lkD

w;c
M;t uð Þ þmkD

w;c
M;t vð Þ: Distribution law½ �

2. kD
w;c
M;t uvð Þ ¼ ukD

w;c
M;t vð Þ þ vkD

w;c
M;t uð Þ: Multiplication law½ �

3.
kD

w;c
M;t

u
v

� �
¼

vkD
w;c
M;t uð Þ � ukD

w;c
M;t vð Þ

v2
: Divided law½ �

4. kD
w;c
M;t t$ð Þ ¼ $t$� w; $�<: Power law½ �

5. kD
w;c
M;t cð Þ ¼ 0; c �<: Constant law½ �

If u, is differentiable at v

6. kD
w;c
M;t u � vð Þ ¼ u0 vð ÞkD

w;c
M;tv tð Þ.

If u, is differentiable

7. kD
w;c
M;tu tð Þ ¼ t1� w

G cþ1ð Þ

du
dt .

Remarks. Assuming that u is a χ–differentiable in the interval (0, p), where p> 0, then the

following holds.

kD
w;c

M;tu 0ð Þ ¼ limt!0þ kD
w;c

M;tu tð Þ
� �

:
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3 A brief description of advanced exp(−φ(ξ))-expansion method

The nonlinear equation is expressed in terms of the M-truncated fractional derivative as fol-

lows.

P;k D
w;c

M;tP;k D
2w;c

M;t P;k D
3w;c

M;t P; . . .
� �

¼ 0: ð2Þ

Suppose the following transformation

x ¼ l1yþ l2z þ
G Dþ 1ð Þ

w
otwð Þ; N ¼ v1yþ v2z þ

G Dþ 1ð Þ

w
ttwð Þ þ d;

P y; z; tð Þ ¼ Q xð Þ eiN:
ð3Þ

The ordinary differential equation is derived from the given equation by utilizing the above

transformation in Eq (2):

H Q;oQ0; a1Q
0 þ a1

2Q00; a1
3Q000; . . .ð Þ ¼ 0: ð4Þ

Step-2. According to the advanced exp(−ϕ(ξ)-expanssion method, the exact solution of Eq

(4) is assumed to be

Q ¼
Xm

i¼0
Di ∗ eð� � xð ÞÞ

i
: ð5Þ

Where Δ1, Δ2, Δ3. . .. . ., Δm; Δm 6¼ 0, are constants that to be evaluated later. The derivative of ϕ
(ξ) satisfies the ODE in the succeeding system

�
0
xð Þ ¼ � Se � � xð Þð Þ þ Re � xð Þð Þ

� �
: ð6Þ

Where Δi are arbitrary constant. If we inject Eq (5) with Eq (6) into Eq (4), the polynomial of

e(ϕ(ξ)) is obtained.

Finally, if we set the co-efficient of each term of the obtained polynomial then we achieve a

system of equation. To get Δi we solve the system of equation. Now we substituted the obtained

values of Δi and Q then we get the required solution.

The solution of the considering differential equation is given below:

Case I: Trigonometric function solution (when S> 0 and R> 0)

� xð Þ ¼ ln
ffiffiffi
S
R

r

tanð
ffiffiffiffiffiffi
SR
p

xþ Cð ÞÞ

 !

:

and

� xð Þ ¼ ln �
ffiffiffi
S
R

r

cotð
ffiffiffiffiffiffi
SR
p

xþ Cð ÞÞ

 !

:

Case II: Hyperbolic function solution (when R< 0 and S> 0)

� xð Þ ¼ ln
ffiffiffiffiffiffiffi
S
� R

r

tanhð
ffiffiffiffiffiffiffiffiffi
� SR
p

xþ Cð ÞÞ

 !

:
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and

� xð Þ ¼ ln
ffiffiffiffiffiffiffi
S
� R

r

cothð
ffiffiffiffiffiffiffiffiffi
� SR
p

xþ Cð ÞÞ

 !

:

Case III: When R> 0 and S = 0

� xð Þ ¼ ln
1

� R xþ Cð Þ

� �

:

Case IV: When R = 0 and S 2 R

� xð Þ ¼ ln S xþ Cð Þð Þ:

Where, C is assimilating constant.

4 Formation of optical solitons of Paraxial wave equation

The fractional part of the paraxial wave equation has a significant effect on the shape of the

pulse, as illustrated by the following. P(y, z, t) = Q(ξ) eiN in Eq (1) becomes

x ¼ l1yþ l2z þ
G Dþ 1ð Þ

w
otwð Þ; N ¼ v1yþ v2z þ

G Dþ 1ð Þ

w
ttwð Þ þ d: ð7Þ

Where l1, l2, v1, v2, τ and ω defined as the frequencies of wave and wave numbers, N is a real

function.

By applying the transformation given in Eqs (7) to (1) and then separating the resulting

expression into its imaginary and real parts, we arrive at the following.

a1o
2 þ a2l

2

1

� �
Q00 xð Þ � a1t

2 þ a2v
2

1
þ 2v2

� �
Q xð Þ � 2a3Q

3 xð Þ ¼ 0: ð8Þ

And

2a1toþ 2a2l1v1 þ 2l2ð ÞQ0 xð Þ ¼ 0: ð9Þ

As Q 0 (ξ) 6¼ 0

l2 ¼ � a1toþ a2l1v1ð Þ: ð10Þ

Apply the homogeneous balancing rule on Eq (8), we get m = 1.

Q Tð Þ ¼ D0 þ D1e
� � xð Þð Þ: ð11Þ

Substituting Eq (11) with (6) into Eq (8), we obtain polynomial of e(ϕ(ξ)) and setting the
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coefficients of this polynomial equal to zero leads to the following.

eF xð Þ
� �0

¼ D0a1t
2 � 2a3D

3

0
� D0a2v

2

1
� 2D0n2:

eF xð Þ
� �1

¼ 2D1Sa1o
2Rþ 2D1Sa2l

2

1
R � D1a1t

2 � 6a3D
2

0
D1 � D1a2v

2

1
� 2D1n2:

ðeF xð ÞÞ
2
¼ 6a3D0D

2

1
:

ðeF xð ÞÞ
3
¼ 2D1S

2a1o
2 þ 2D1S

2a2l
2

1
� 2a3D

3

1
:

Solving the aforementioned system of equations yields the following solution.

o ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2SRa2l21 � t2a1 � a2v2

1
� 2n2

2SRa1

s

;D0 ¼ 0;D1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
� St2a1 � Sa2v2

1
� 2Sn2

2Ra3

s

:

Case I: Trigonometric solutions (when SR> 0)

P1;2≔�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2 � St2a1 � Sa2v2

1
� 2Sn2ð Þ

Ra3

r

2
ffiffi
S
R

q
tan

ffiffiffiffiffiffi
SR
p

xþ Cð Þ
� � ∗ e

iN:

P3;4≔�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2 � St2a1 � Sa2v2

1
� 2Sn2ð Þ

Ra3

r

2
ffiffi
S
R

q
cot

ffiffiffiffiffiffi
SR
p

xþ Cð Þ
� � ∗ e

iN:

Where, x ¼ l1yþ l2z þ
G Dþ1ð Þ

w
otwð Þ andN ¼ v1yþ v2z þ

G Dþ1ð Þ

w
ttwð Þ þ d.

Case II: Hyperbolic solutions (when SR< 0)

P5;6≔�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2 � St2a1 � Sa2v2

1
� 2Sn2ð Þ

Ra3

r

2
ffiffiffiffiffiffiffi
� S

R

q
tanh

ffiffiffiffiffiffiffiffiffi
� SR
p

xþ Cð Þ
� � ∗ e

iN:

P7;8≔�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2 � St2a1 � Sa2v2

1
� 2Sn2ð Þ

Ra3

r

2
ffiffiffiffiffiffiffi
� S

R

q
coth

ffiffiffiffiffiffiffiffiffi
� SR
p

xþ Cð Þ
� � ∗ e

iN:

Where, x ¼ l1yþ l2z þ
G Dþ1ð Þ

w
otwð Þ andN ¼ v1yþ v2z þ

G Dþ1ð Þ

w
ttwð Þ þ d.

Case III & IV are rejected for the reason of their predefined condition.

5 Graphical explanations of the obtained result

In this section, we discuss the numerical form of the obtained solutions via the proposed

schemes and their behaviors for special values of the parameter. The numerical solutions are

explained graphically with 3D diagram, 2D diagram and density diagram. The diverse forms

of waves are accomplished such as dark, bright, periodic, rogue, kink, double periodic and sin-

gular solitary wave results of this dynamical model. The singularity of a solution explains some

properties of nonlinear media. In nonlinear optics, materials can exhibit a nonlinear response

to high-intensity light. This means that the relationship between the electric field of the light
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and the polarization of the material is not linear. When the intensity of the light becomes very

high, it can lead to phenomena like optical self-focusing, where the refractive index of the

material depends on the intensity of the light. This can result in the formation of spatial soli-

tons, which are localized, self-sustaining waves of light. The point where such effects become

extreme or localized is a singularity in the solution.

In Fig 1 illustrated wave structure of imaginary portion of solution P1 for suitable choice of

the parametric values that S = 0.5, R = 1, τ = 1, a1 = 1, a2 = −5, a3 = 1, v1 = 2, v2 = 1, l1 = 1,

C = 1, D = 0.6, δ = 1, χ = (01, 0.35, 0.55, 0.95) and y = 2 within interval −10� z, t� 10.

Fig 1 represent the periodic wave we also observe that after increase the value of fractional

order χ we find out periodic wave goes interesting when χ = 0.35 & 0.55 rogue wave interac-

tion occur with periodic wave and when χ = 0.95 the solution give look like double periodic

wave. In Fig 2 illustrated wave structure of real portion of solution P4 for suitable choice of the

Fig 1. Periodic wave feature of complex part of P1. (a), (b), (c) and (d) represent three dimensional plot and (e), (f), (g) and (h) represent their

corresponding density plot. And also (i) represent two dimensional plot for z = 0 with interval −5� t� 5.

https://doi.org/10.1371/journal.pone.0299573.g001
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parametric values that S = 0.5, R = 1, τ = 1, a1 = 0.001, a2 = −0.0005, a3 = 1, v1 = 2, v2 = 1, l1 = 1,

C = 1, D = 0.6, δ = 0.5, χ = (01, 0.35, 0.55, 0.95) and y = 1 within interval −10� z, t� 10. Fig 2

represent the periodic wave for the product of trigonometric function (cot) and exponential

function we also observe that after increase the value of fractional order χ we find out single

periodic wave goes to double periodic wave. In Fig 3 illustrated wave structure of absolute por-

tion of solution P5 for suitable choice of the parametric values that S = 2, R = −1, τ = 1, a1 = −5,

a2 = −0.005, a3 = −1, v1 = 2, v2 = 1, l1 = 1, C = 1, D = 2.6, δ = 2, χ = (01, 0.35, 0.55, 0.95) and

y = 1 within interval −10� z, t� 10. Fig 3 represent the kink wave for the product of hyper-

bolic function and exponential function we also observe that after increase the value of frac-

tional order χ we find out dark kink wave goes to bright kink wave. In Fig 4 illustrated wave

structure of absolute portion of solution P5 for suitable choice of the parametric values that

S = .5, R = −1, τ = 1, a1 = −3, a2 = 6, a3 = 1, v1 = 2, v2 = 1, l1 = 1, C = 1, D = 0.6, δ = 0.5, χ = (01,

0.35, 0.55, 0.95) and y = 1 within interval −10� z, t� 10. And In Fig 5 illustrated wave

Fig 2. Periodic wave feature of real part of P4. (a), (b), (c) and (d) represent three dimensional plot and (e), (f), (g) and (h) represent their

corresponding density plot. And also (i) represent two dimensional plot for z = 0 with interval −5� t� 5.

https://doi.org/10.1371/journal.pone.0299573.g002
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structure of absolute portion of solution P7 for suitable choice of the parametric values that

S = 5, R = −1, τ = 1, a1 = −4, a2 = 6, a3 = 1, v1 = 2, v2 = 1, l1 = 1, C = 1, D = 0.6, δ = 0.5, χ = (01,

0.35, 0.55, 0.95) and y = 1 within interval −10� z, t� 10. Figs 4 and 5 represent the kink wave

for the product of hyperbolic function and exponential function we also observe that after

increase the value of fractional order χ their 3D, 2D and density plot visualize that there has

been acquire interaction with soliton solution.

6 Modulation instability analysis

A common occurrence in nonlinear partial differential equations of high order is instability,

which arises from modulating the stable state due to the interplay between nonlinear and

Fig 3. Kink wave feature of absolute part of P5. (a), (b), (c) and (d) represent three dimensional plot and (e), (f), (g) and (h) represent their

corresponding density plot. And also (i) represent two dimensional plot for z = 0 with interval −5� t� 5.

https://doi.org/10.1371/journal.pone.0299573.g003
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dispersive effects. In the following section, we will employ stability analysis techniques [61–63]

to derive the modulation instability of the paraxial wave equation.

Let us consider the steady-state solution of the paraxial wave equation in the form:

P y; z; tð Þ ¼ G y; z; tð Þ þ
ffiffiffi
R
p� �

eIRt: ð12Þ

where R is the incident power. Placing Eq (12) into Eq (1) and linearizing, we get the form as

below.

I
@G
@z

� �

þ I
@G
@t

� �

Ra1 �
1

2
GR2a1 �

1

2
R5

2a1 þ
1

2

@2G
@t2

� �

a1 þ
1

2
a2

@2G
@y2

� �� �

þ a3R Gþ
ffiffiffi
R
p� �

: ð13Þ

Fig 4. Singular kink with interaction wave feature of absolute part of P5. (a), (b), (c) and (d) represent three dimensional plot and (e), (f), (g) and (h)

represent their corresponding density plot. And also (i) represent two dimensional plot for z = 0 with interval −5� t� 5.

https://doi.org/10.1371/journal.pone.0299573.g004
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Take the solution of the Eq (13) is as form

G y; z; tð Þ ¼ a1e
I l1yþl2zþotð Þ þ a2e

� I l1yþl2zþotð Þ: ð14Þ

Substituting Eq (14) into Eq (13) and collecting the coefficient of eIðl1yþl2zþotÞ and

e� Iðl1yþl2zþotÞ and by solving the determinant of the coefficient matrix, we can obtain the disper-

sion relation as follow:

l1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� R2a1 þ 2Roa1 � o

2a1 þ 2Ra3 þ 2l2
p

:

If −R2a1 + 2Rωa1 − ω2a1 + 2Ra3 + 2l2� 0, the value of τ obtained from the dispersion rela-

tion is real, then the steady state is considered stable against small perturbations. On the other

Fig 5. Singular kink with interaction wave feature of absolute part of P7. (a), (b), (c) and (d) represent three dimensional plot and (e), (f), (g) and (h)

represent their corresponding density plot. And also (i) represent two dimensional plot for z = 0 with interval −5� t� 5.

https://doi.org/10.1371/journal.pone.0299573.g005
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hand, if −R2a1 + 2Rωa1 − ω2a1 + 2Ra3 + 2l2 < 0, τ turns out to be imaginary, it indicates that

the perturbation grows exponentially, and the steady state becomes unstable against small per-

turbations. According to this condition, the modulation stability gain spectrum is obtained as:

H spec:ð Þ ¼ 2Im l1ð Þ ¼ 2Im �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� R2a1 þ 2Roa1 � o

2a1 þ 2Ra3 þ 2l2
p� �

:

Fig 6 depicts the MI gain spectrum for various values of a1, a3, R and l2.

7. Conclusion

In this article, we have further developed some new exact soliton Solutions for addressing the

time M-fractional paraxial wave. By executing this plan, the obtained solutions are communi-

cated as the trigonometric and hyperbolic functions for certain free parameters. For the excep-

tional value of the free parameters, the obtained numerical solution provided some novel exact

solutions. These solutions are illustrated in Figs 1 to 5 with three dimensional and correspond-

ing density diagrams. We successfully shown the effect of truncated M-fractional derivative

with values of the derivative parameters at χ = 0.1, χ = 0.35, χ = 0.55, χ = 0.95. This work inves-

tigates different wave design elements due to fractional derivative, dispersive, and nonlinearity

Fig 6. Gain spectrum of MI for different values of a1 = {−0.3, −0.6, −0.9}, a3 = {0.2, 0.5, 0.8}, R = {−0.2, −0.5, −0.8}

and l2 = {−0.7, −1.0, −1.3}.

https://doi.org/10.1371/journal.pone.0299573.g006
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effects for the nonlinear time M-fractional paraxial wave equation. By selecting various values

for these parameters of the obtained solution functions, we have specifically introduced waves

such as singular periodic waves, double periodic waves, kink waves and iconic solitonic waves

to describe the dispersal effect, the Kerr non-linearity effect, and the diffraction effect. We

used the 3D plot for better visualization, the contour plot for magnifying the direction of the

wave’s velocity, and the 2D plot, which aligns the corresponding wave due to time-dependent

position, to explain the nature of the wave profile of the desired solutions. It is to be noticed

that these sorts of wave examination in view of the dispersal impact, the Kerr non-linearity

impact and the diffraction impact may be compelling in making sense of the paraxial model

related with genuine peculiarities in additional exploration. To reconnoiter such dynamics,

the advanced exp[−φ(ξ)] expansion techniques execute to integrate the nonlinear paraxial

wave model for achieving diverse solitonic and traveling wave envelops. Even though the

offered method was used for the first time on the model under investigation and distinct soli-

tons were formed, we can still achieve comparable results by selecting the same wave transfor-

mation and assigning different constant values. Therefore, the obtained outcomes expose that

the projected schemes are very operative, easier and more efficient in realizing the nature of

waves and such solutions of paraxial wave models are more abundant than those from other

approaches. In the future, we’ll look into the non-autonomous solitons that different NLEEs

might produce if their coefficients were variables also we can use spatio-temporal fractional

derivation for this model.
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