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Abstract

This study evaluates the impact of dietary supplementation of the blue-green alga Arthros-

pira platensis NIOF17/003 nanoparticles (AN) on the growth performance, whole-body bio-

chemical compositions, blood biochemistry, steroid hormonal, and fry production efficiency

of Nile tilapia (Oreochromis niloticus) broodstock, during the spawning season. After a 21-

day preparation period to equip the females and ensure that their ovaries were filled with

eggs, mating between the mature females and males took place in a 3:1 ratio during a 14-

day spawning cycle. A total of 384 tilapia broodstock 288 females and 96 males with an ini-

tial body weight of 450.53±0.75, were divided into four groups; AN0: a basal diet as a control

group with no supplementation of Arthrospira platensis, and the other three groups (AN2,

AN4, and AN6) were diets supplemented with nanoparticles of A. platensis at levels of 2, 4,

and 6 g kg─1 diet, respectively. The results found that fish-fed group AN6 showed the highest

significant differences in weight gain (WG), final weight (FW), feed conversion ratio (FCR),

protein efficiency ratio (PER), and feed efficiency ratio (FER). Females fed the AN6 diet

showed the highest significant fat content. Compared to the AN0 group, fish fed on the sup-

plemented diets showed significant improvement (p < 0.05) in triglyceride, glucose, and

aspartate aminotransferase (AST). A gradual increase in AN inclusion level resulted in a

gradual increase in the concentrations of luteinizing hormone (LH), and follicle-stimulating

hormone (FSH), testosterone, progesterone, and prolactin. The rates (%) of increase in fry

production for females fed supplemented diets were 10.5, 18.6, and 32.2% for AN2, AN4,

and AN6, respectively, compared to the control group. This work concluded that the inclu-

sion levels of 6 g kg─1 of A. platensis nanoparticles in the diet of Nile tilapia broodstock
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significantly improved the growth performances, steroid hormone concentrations, and

increased the fry production efficiency by 32.2%, respectively. These findings revealed that

A. platensis nanoparticles resulted in a significantly enhanced female’ reproductive produc-

tivity of Nile tilapia broodstock.

1. Introduction

Aquaculture development and sustainability are directly influenced by several factors as global

environmental, economic, and political issues such as feed ingredient availability, diet cost

production, wars, pandemics, water quality, climate change, ocean productivity, plankton

communities, productivity, and nutritional values [1,2]. Globally, tilapia culture has experi-

enced a sharp expansion over the past two decades and is farmed in more than 130 countries

worldwide [3]. Tilapia is currently the second most important farmed finfish species in the

world [4]. Global production of farmed tilapia grew by 3.3% in 2020 to top 6 million tons for

the first time, despite the impact of COVID-19. The expansion of tilapia production all over

the world is due to its ability to be produced in various aquatic environments, selective breed-

ing, and its potential to replace marine fish products [1,5,6].

Although several factors limit aquaculture development, such as feeding costs, diseases, bad

water quality, the low performance of broodstock, and the high mortality rate in seeds [7,8],

several strategic approaches have been recently adopted in aquaculture to sustain tilapia pro-

duction [9]. One such approach is the production of functional feed that contains health pro-

moters and immune stimulants. Functional feed additives have become the main component

of any strategy to control disease outbreaks in aquaculture, particularly when opportunistic

bacteria are suspected to be a major cause of mortality [10]. Several functional feed additives

have been utilized such as binders, algae derivatives, antimicrobials, seaweed extracts, antioxi-

dants, and enzymes, which improve feed and water quality [11–16]. Other feed additives

improve animal performance and health such as immunostimulants probiotics, photogenic,

and prebiotics [17–21].

Microalgae recognized with its high amount of bioactive materials, which is significantly

higher than any other organisms, microalgae are still utilized in many industries such as

human food supplements [22,23], aquaculture feed-additives, water-conditioners [8], phytore-

mediation [24–28], antimicrobial activities [29,30], cosmetics substances [31–33], pharmaceu-

ticals [34], and biodiesel [28,35–37]. Commonly, Arthrospira (Spirulina), the blue-green algae,

have high protein (50–70% of DW), lipids (5–11%), essential fatty acids (AA, EPA, and DHA),

pigments (carotenoid and phycocyanin), minerals (Fe and Ca), vitamins (B12 and pro-vitamin

A), antioxidant activities, and several molecules which have positively stimulate the attractive-

ness of a fish diets [38–40]. Therefore, Arthrospira is the most family produced around the

world due to many reasons [13].

Currently, Arthrospira species has been significantly utilized as a feed additive resulting in

improved growth performance, feed digestibility, body composition, reduced oxidative dam-

age, and enhanced immune system [8,41,42] for many aquatic animals such as Nile tilapia

[6,43,44], hybrid red tilapia (Oreochromis mossambicus× O. niloticus) [45,46], common carp

(Cyprinus carpio) [47], Indian major carps, catla and rohu [48], grass carp (Ctenopharyngodon
idella) [49], rainbow trout (Oncorhynchus mykiss) [50], Yellow river carp (Cyprinus carpio)

[51], Asian seabass (Lates calcarifer) [52], European seabass (Dicentrarchus labrax) [53], red

sea bream (Pagrus major) [54], Pacific whiteleg shrimp (Penaeus vannamei) [55], shrimp (Fen-
neropenaeus chinensisv) [56], black tiger shrimp (Penaeus monodon) [57], and green tiger
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shrimp (Penaeus semisulcatus) [55]. There is a positive relationship between dietary microal-

gae inclusion, especially Arthrospira, and the reproductive performance of aquatic animals. As

indicated by several studies [58–60], Arthrospira sp. supplementation has notable impacts on

reproductive performance through its involvement in hormonal regulation, specifically con-

cerning the reproductive system. It enhances fertility, restores the antioxidant status of the

ovary, and contributes to ovary signaling. Beresto [61] found that supplementing female

minks with Spirulina at doses of 200 and 400 mg/animal resulted in a decrease in the percent-

age of abortive females, while simultaneously increasing litter size. This finding is consistent

with previous research conducted on nanny goats and doe rabbits, which also demonstrated

improved litter size with Spirulina supplementation [60]. In another study, Iatrou et al. [62]

reported that Arthrospira-treated female mink tended to an increased whelping rate.

Besides its applications as aqua feed additives, Arthrospira or its derivatives have many bio-

technological applications. The lipid-free dry weight (biodiesel byproduct) of A. platensis
NIOF17/003 was successively utilized as dry feed for rotifer (Brachiounus plicatilis), in the

same line to remove ammonia and organic dye from aquaculture wastewater effluents and

industrial textile effluents, respectively [63,64]. The growth of aquaculture has raised the

demand for better diets and aqua-feed additives. Recently, several studies have documented

different forms of aqua-feed additives in aquaculture feed. The form of feed-additive inclusion

is of high importance to maximize the utilization of added materials [65]. Recently, interest in

using nanoparticles of several materials as animal feed additives has been expanded attributed

to the higher bioavailability and efficiency [57].

Nanotechnology applications have been successfully increased [66–68]. Algae nanoparticle

applications in aqua feed diets also increased due to their high of their high surface area of

nanoparticles [69] which enhances growth performance, feed utilization, body composition,

stress tolerance, and enhanced immune system for many species such as Nile tilapia [42,70],

Pacific white shrimp [42], black tiger shrimp [57], and Zebrafish [71]. The current study aims

to evaluate the effect of the cyanobacterium species, Arthrospira platensis NIOF17/003 nano-

particles, as a functional feed additive on growth performances, whole-body biochemical com-

position, blood biochemistry, steroid hormonal status, and seeds production efficiency for the

Nile tilapia broodstock during the spawning cycle.

2. Materials and methods

2.1. Arthrospira platensis NIOF17/003 nanoparticles

As previously described [8], Arthrospira (Spirulina) platensis NIOF17/003 was isolated from a

saline-alkaline lake named El-Khadra Lake located in Wadi El-Natrun, north-west of Egypt,

genetically identified, and deposited in the GenBank database with accession number:

MW396472. The biomass productivity (143.82 mg L─1 day─1), lipid productivity (14.37 mg

L─1 day─1), total protein (52.03% of dry weight base), total carbohydrates (14%), total lipids

(8.52%), and fatty acid profiles of saturated (42.27%), monounsaturated (26.71%), polyunsatu-

rated (31.04%), and ω-3 (3.16%) fatty acids of A. platensis NIOF17/003 are determined by [63].

The nanoparticles preparation of A. platensis was performed, at the Egyptian Petroleum

Research Institute (EPRI), Nasr City, Cairo, Egypt, using Ball grinding (Planetary Ball Mill PM

400 “4 grinding stations”) as described in a previous study [8]. Compared to the normal parti-

cle size of A. platensis (with an average of 100 μmL─1), the nanoparticle size of A. platensis
(averaged of 87.6%) revealed a nanoparticle average of 183.9 nm, as reported in our previous

studies [8,42]. Moreover, the GC-mass phytochemical analysis was determined as described by

our previous studies [8,41]. It was reported that the bioactive compounds found in A. platensis
nanoparticles, which are used in the current study, were found to contain three main bioactive
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compounds, namely: (1) milbemycin b (C33H46ClNO7), which accounted for 66% of the total

peak areas (PAs), (2) Docosanoic acid 1,2,3-propanetriyl ester (C69H134O6), accounting for

22% of the total PAs, and (3) Copper etioporphyrin II (C32H36CuN4), accounting for 11% of

the total PAs. These three bioactive compounds belong to different categories (macrocyclic lac-

tones, fatty acid propanetriyl ester, and metal Porphyrin Complex, respectively) and exhibit

antioxidant, antimicrobial, and biomedical activities [72].

2.2. Water quality indices

Following the guidelines of APHA [73], water quality parameters of ammonia (NH3, mg L─1),

nitrate (NO3, mg L─1), nitrite (NO2, mg L─1), and dissolved oxygen (DO, mg L─1) were deter-

mined three times a week. Furthermore, pH, salinity (ppt), and temperature (˚C) were deter-

mined daily (1.00 pm) during the experimental period and Table 1 shows the water quality

parameter during the experimental period. During the 14-days spawning cycle and the 21-day

equipping period, all remarkable water qualities were within the recommended range of pro-

duction requirements of Nile tilapia broodstock during the spawning season.

2.3. Nile tilapia (Oreochromis niloticus) broodstock

2.3.1. Experimental fish and design. The current experiment was carried out in a private

Tilapia hatchery located in Port Said Governorate, Egypt. Nile tilapia broodstock (males and

females) was obtained from a commercial farm of Nile tilapia located in Port Said Governor-

ate, Egypt. The fish were given a control-based diet for 21 days before starting the feeding trial

to initiate the spawning cycle. After 21 days of acclimation, during which the females’ ovaries

were investigated to be ready for spawning, mating took place between males and females in a

3:1 ratio for 14 days. In the current experiment, the main source of water was the irrigation

water of the El-Slam Canal, and the rate of daily freshwater change was 30%. Daily, fish faeces,

unconsumed feed, and wastes were removed by siphoning. The tanks were aerated using an

air blower. The experiment was conducted with four groups, in a greenhouse with 12 concrete

tanks of 8 m3 (2 m x 4 m x 1 m) each. A total 384 of Nile tilapia broodstock (288 females and

96 males) were divided into four groups, each having three replicates.

2.3.2. Experimental diet. As presented in Table 2, four diets were used in this study: AN0:

a basal diet as a control group, while the other three groups (AN2, AN4, and AN6) were basal

diet supplemented with nanoparticles of A. platensis at levels of 2, 4, and 6 g kg─1 diet, respec-

tively. The addition of respective levels of A. platensis nanoparticles to diets was performed as

previously described by Mabrouk et al. [8]. Briefly, The prepared nanoparticle powder of A.

Table 1. Water quality parameters during the spawning cycle experiment.

Water quality

parameters

Experimental diets

AN0 AN0 AN0 AN0

pH 7.30±0.09 7.42±0.01 7.38±0.13 7.53±0.28

Salinity (ppt) 0.98±0.02a 0.90±0.02b 0.99±0.02a 0.97±0.01a

Temperature (˚C) 25.84±0.90a 26.25±0.87a 25.46±0.84ab 26.65±0.75a

DO (mg L─1) 6.62±0.09ab 6.57±0.01b 6.91±0.13a 6.83±0.08a

NO2 (mg L─1) 0.181±0.015a 0.183±0.042a 0.171±0.042b 0.182±0.011a

NH3, (mg L─1) 0.110±0.001 0.107±0.016 0.111±0.015 0.109±0.007

(NO3, mg L─1) 0.202±0.023 0.203±0.018 0.202±0.005 0.224±0.003

*AN0, AN2, AN4, and AN6: Diets supplemented with A. platensis nanoparticles at levels of 0, 2, 4, and 6 g kg─1 diet, respectively. The presented data are Means ± SD

(n = 3). Different letters in the same raw are significantly different (p< 0.05). The absence of letters in the same row means no significant differences.

https://doi.org/10.1371/journal.pone.0299480.t001
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platensis nanoparticle was dissolved in an adequate volume of distilled water and set aside to

be mixed with the remaining diet ingredients. The diet ingredients were formulated by thor-

oughly combining and the A. platensis nanoparticles were sprayed on four sets of the experi-

mental diets at the rates of 0, 2, 4, and 6 g/kg diet. Following this, the oil and water were mixed

extensively with the ingredients, and the mixture was pelleted using the Sprout-Waldron Labo-

ratory Pellet Mill (CPM, California Pellet Mill Co., USA) to create 2 mm pellets. The pellets

were then dried in ovens at 40˚C until the moisture level dropped below 10% [8]. The bio-

chemical composition of basal diet, based on the % of dry matter bases, of crude protein

(29.9%), ether extract (9.2%), crude fiber (4.7%), nitrogen-free extract (48.7%), ash (7.5%),

gross energy (4963 kj kg─1 diet), and digestible energy (3520 kj kg─1 diet) were calculated

according to the reported guideline of AOAC [74]. Fish were hand-fed three times daily, at 9

am, 12 pm, and 4 pm, at a rate equivalent to 3% of their wet body weight.

2.4. Tested parameters

2.4.1. Growth indices. At the end of the rearing trial, fish were starved for 24 h to empty

the digestive tract [75]. After that, the total body weight and the total number of each replicate

were investigated to calculate weight gain (WG), specific growth rate (SGR), feed conversion

ratio (FCR), protein efficiency ratio (PER), and survival rate (SR) using the given formulas.

To calculate weight gain (WG), the initial weight (IW, 450.53 ± 0.75) and final weight (FW)

of mothers were determined before and after the 14-days spawning cycle experiment. No mor-

tality was observed during the experiment. Moreover, the indices of feed conversion ratio

(FCR), protein intake (PI), protein efficiency ratio (PER), and feed efficiency ratio (FER) were

calculated as described below.

WG ðgÞ ¼ FBW � IBW

where; FBW and IBW are the final and initial body weight ðgÞ; respectively:
ð1Þ

Table 2. Composition analysis (%) of the experimental diets.

Diets Composition and analysis Experimental diets

AN0 AN2 AN4 AN6

Composition (% of dry weight)*
Fish meal 14 14 14 14

Soybean meal 20 20 20 20

Yellow corn 25 25 25 25

Rice bran 15 15 15 15

Wheat bran 15 15 15 15

Corn gluten 7 7 7 7

Soya oil 3 3 3 3

Dicalcium phosphate 0.7 0.7 0.7 0.7

Premix Mixer 0.3 0.3 0.3 0.3

Total 100 100 100 100

Arthrospira platensis nanoparticles supplementation levels (g kg─1) 0 2 4 6

*AN0, AN2, AN4, and AN6: Diets supplemented with Arthrospira platensis nanoparticles at levels of 0, 2, 4, and 6 g

kg─1 diet, respectively. Each 1 kg premix contains (mg kg─1): P-amino benzoic acid (9.48), D-biotin (0.38), inositol

(379.20), niacin (37.92); Ca-pantothenate (56.88), Pyridoxine-HCl (11.38), riboflavin (7.58), Thiamine-HCl (3.79), L-

ascorbyl-2-phosphate Mg (296.00), folic acid (0.76), cyanocobalamin (0.08), menadione (3.80), vitamin A-palmitate

(17.85), a-tocopherol (18.96), calciferol (1.14), K2PO4 (2.011), Ca3 (PO4)2 (2.736), Mg SO4.7H2O (3.058), and

NaH2PO4.2H2O (0.795).

https://doi.org/10.1371/journal.pone.0299480.t002
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SGR ð%; dayÞ ¼ 100� ðIn FBW � In IBWÞ=t

where; ln ¼ natural logarithmic; and t ¼ time in days:
ð2Þ

Feed conversion ratio ðFCRÞ ¼ Dry weight of feed consumed ðgÞ = weight gain ðgÞ ð3Þ

Protein efficiency ratio ðPERÞ ¼Weight gain ðgÞ = Protein fed ðgÞ ð4Þ

SR ð%Þ ¼ 100� ðFinal Number = Initial NumberÞ ð5Þ

2.4.2. Biochemical analysis. At the end of a 14-day spawning cycle experiment, fish in all

dietary treatments were starved for 24 h, and five fish (three females and two males) were ran-

domly collected, homogenized, dried, ground, and stored under -20˚C for whole-body analysis

as described elsewhere [41]. The whole-body biochemical composition of fish and diets were

determined, and moisture, dry matter (DM), crude protein (CP), ether extract (EE), crude

fiber (CF), nitrogen-free extract (NFE), gross energy (GE), and digestible energy (DE) were

determined and calculated according to the guideline of AOAC [74].

2.4.3. Blood serum analysis. At the end of the experiment, six fish samples (three males

and three females) from each replicate were anesthetized using TMS buffered (Tricaine Metha-

nesulfonate at the dose of 30 mg L─1) to collect blood serum for blood biochemistry analysis

protocol as previously described by Ferguson et al. [76]. Blood samples were extracted using a

sterilized hypodermic syringe (3 mL with a 22-gauge needle and a heparinized tube) and

stored at room temperature for 30 minutes and then centrifuged at 3.000 RPM for 15 m. The

collected serum was stored at -20˚C for further analysis. The concentration of total protein (g

dL─1) [77] and albumin (g dL─1) [78] were measured, and the globulin level (g dL─1) was cal-

culated as the difference between the values of total protein and albumin. The levels of glucose

(mg dL─1) [79] and triglyceride (TAG) (mg dL─1) [80] levels were measured using kits from

El-Nasr Pharmaceutical Chemicals Co., Egypt, following the provided instructions. Moreover,

using the calorimetric techniques, the activities of serum glutamic pyruvate transaminase

(GPT, U mL─1) [81]. Aspartate aminotransferase (AST, U mL─1), and alanine (ALT, U mL─1)

were determined according to [82] using commercial kits from Biodiagnostic in Egypt, as per

the manufacturer’s guidelines.

2.4.4. Steroid hormones (SHs). At the end of the spawning trial, from each replicate, six

mothers’ samples (three males and three females) were randomly selected to determine SHs.

For both males and females, luteinizing hormone (LH), and follicle-stimulating hormone

(FSH) were determined. For males only, total testosterone (TT) and free testosterone (FT)

were determined. For females only, prolactin and progesterone hormones were determined.

The SHs were calorimetry determined using ELISA assay as described elsewhere [83], an

enzyme-linked immune sorbent, known as the Immulite/Immulite 1000 system [84]. The fish-

specific commercial kits of FSH (RAB0660-1KT), LH (SE120071), TT (SE120120), FT

(SE120120), PRO (RAB0408-1KT), and PRG (SE120087) were determined, following to the

manufacturer’s instructions.

2.4.5. Females reproductive productivity. After the 14-days spawning trial, the adult fish

were carefully gathered and transferred to different ponds, while lowering the water level. The

method described by El-Sayed et al. [85] was followed to collect the eggs. The number of
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offspring produced by each female was calculated using the following formula:

Number of fries per female ¼
Total number of seeds=pond
Total number of females=pond

ð6Þ

The average ratio (%) of the number of seeds from mothers fed the control diet to the supple-

mented diets was conducted as the following Eq.:

Number of seeds per female ¼
Sn � Sc
Sc

� 100 ð7Þ

Where Sn and Sc are the numbers of seeds that come from mothers fed the supplemented and

the control diets, respectively.

2.5. Statistical analysis

The data were assessed for homoscedasticity and normality before conducting statistical analy-

sis. The results were presented as mean ± standard deviation (n = 3). The statistical analysis

was performed using the SPSS computer software package. To determine significant differ-

ences among means at a p-value of less than 0.05, a one-way ANOVA was performed followed

by Duncan’s multiple-range tests. The graphical representation of the steroid hormone levels

and broodstock seed production figures was created using GraphPad Prism version 9.

3. Results

3.1. Growth indices

The growth performances of Nile tilapia, during the spawning cycle, are presented in Table 3.

Significant differences (p< 0.05) were revealed in FW, WG, FCR, PER, and FER between the

control group (AN0) and the groups supplemented with A. platensis nanoparticles (AN2, AN4,

and AN6). However, fish-fed group AN6 showed the highest significant differences (p< 0.05)

in FW, WG, FCR, PER, and FER.

3.2. Whole-body proximate composition

Fig 1 shows the approximate whole-body compositions (protein, lipid, ash, and moisture) of

Nile tilapia fed the control diets and the diets supplemented with A. platensis nanoparticles.

Compared to the control group, both males and females fed with supplemented diets (AN2,

Table 3. Growth performance indices of O. niloticus broodstock during the spawning season.

Growth performance indices Experimental diets

AN0 AN2 AN4 AN6

IW (g) 450.53±0.75 450.47±0.80 450.07±0.42 450.03±0.21

FW (g) 456.00±0.36b 455.87±0.35b 456.10±0.87b 458.69±0.42a

WG (g) 5.47±0.58b 5.41±1.06b 6.80±1.01ab 8.65±1.30a

FCR 1.97±0.05a 1.99±0.02a 1.78±0.06a 1.41±0.21b

PI (g) 3.29±0.34 3.28±0.65 3.58±0.69 3.58±0.08

PER 0.51±0.012b 0.50±0.006b 0.56±0.021b 0.72±0.101a

FER 1.66±0.042b 1.65±0.015b 1.84±0.057b 2.35±0.321a

* AN0, AN2, AN4, and AN6: Diets supplemented with A. platensis nanoparticles at levels of 0, 2, 4, and 6 g kg─1 diet, respectively. The presented data are Means ± SD

(n = 3). Different letters in the same raw are significantly different (p< 0.05). The absence of letters in the same row means no significant differences (p< 0.05). WG:

Weight gain, FW: Final weight, IW: Initial weight, FCR: Feed conversion ratio, PI: Protein intake, PER: efficiency ratio, and FER: Feed efficiency ratio.

https://doi.org/10.1371/journal.pone.0299480.t003
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AN4, and AN6) achieved the highest protein content (Fig 1A). The highest significant

(p< 0.05) lipid content was observed by fish fed the group of AN6, followed by AN2, AN4, and

AN0 (Fig 1B). Among the dietary groups, no significant differences (p< 0.05) were observed

in ash content (Fig 1C), and the lowest moisture content was observed by mothers fed the con-

trol group (AN0) (Fig 1D).

3.4. Blood biochemistry

Table 4 shows the blood serum biochemical analysis of Nile tilapia fed different inclusion levels

of A. platensis nanoparticles. Among the dietary groups, no significant differences (p< 0.05)

were observed in the total protein, albumin, globulin, GPT, and ALT contents. Compared to

the control group, fish feed A. platensis nanoparticles (AN2, AN4, and AN6) showed significant

differences (p< 0.05) in TAG, glucose, and AST. The highest significant (p< 0.05) TAG was

observed in fish fed the AN4 diet, followed by AN6, and AN2, while the lowest TAG content

was observed in control fish. The highest significant (p< 0.05) glucose was observed in fish

fed with AN6, followed by AN4, and AN2, while the lowest glucose was revealed in fish fed the

Fig 1. Whole body analysis contents of protein (A), lipid (B), ash (C), and moisture (D) of O. niloticus (males and females) fed

different inclusion levels of A. platensis nanoparticles. AN0, AN 2, AN4, and AN6 are diets supplemented with A. platensis
nanoparticles at levels of 0, 2, 4, and 6 g kg─1 diet, respectively. The presented data are Means ± SD (n = 3). Different letters in each

column are significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0299480.g001
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control diet. On the other hand, compared to the A. platensis nanoparticles groups, control-

fed fish showed significantly (p< 0.05) the highest AST content, followed by AN2, AN4, and

AN6.

3.5. Steroid hormones

Figs 2–4 show the influence of different inclusion levels of A. platensis nanoparticles on steroid

hormone concentrations in Nile tilapia males and females. Fig 2 displayed that fish-fed supple-

mented diets revealed a significant (p< 0.05) improvement in FSH and LH concentrations in

both females and males, compared to control-fed fish. Moreover, a gradual increase in incor-

poration levels of A. platensis nanoparticles resulted in a gradual increase in LH and FSH con-

centrations. Furthermore, the females showed a positive response to the gradual increase in

inclusion levels higher than males (Fig 2). Fig 3 shows that the gradual increase in inclusion

levels of A. platensis nanoparticles resulted in a gradual increase in the concentrations of tes-

tosterone (total and free). Compared to the control group, significant (p< 0.05) improvements

in total and free testosterone concentrations were obtained by males fed diets supplemented

Table 4. Blood biochemical parameters of O. niloticus broodstock fed different inclusion levels of A. platensis nanoparticles.

Blood parameters Experimental diets

AN0 AN0 AN0 AN0

Total Protein (g dL─1) 6.20 ± 0.36 6.03 ± 0.57 5.93 ± 0.93 6.07 ± 0.15

Albumin (g dL─1) 4.47 ± 0.67 4.27 ± 0.15 3.93 ± 0.67 4.20 ± 0.46

Globulin (g dL─1) 1.73 ± 0.35 1.77 ± 0.65 2.00 ± 0.26 1.87 ± 0.31

Triglyceride (mg dL─1) 191.33 ± 7.57b 203.37 ± 5.51ab 211.33 ± 14.57a 203.67 ± 6.03ab

Glucose (mg dL─1) 104.33 ± 5.03 b 109.33 ± 5.51ab 116.00 ± 7.00ab 119.67 ± 7.51a

GPT (U mL─1) 27.33 ± 5.86 28.67 ± 5.69 25.67 ± 2.52 29.00 ± 5.29

AST (U mL─1) 68.6 ± 2.08a 64.30 ± 2.23b 58.61 ± 3.46b 56.43 ± 2.31b

ALT (U mL─1) 27.32 ± 3.38 28.71 ± 3.28 25.72 ± 1.45 29.17 ± 3.05

AN0, AN2, AN4, and AN6 are diets supplemented with A. platensis nanoparticles at levels of 0, 2, 4, and 6 g kg─1 diet, respectively. GPT: Glutamic pyruvate transaminase

(U mL─1), AST: Aspartate aminotransferase (U mL─1), ALT Alanine (U mL─1). The presented data are Means ± SD (n = 3). Different letters in the same row are

significantly different (p < 0.05), while the absence of letters means no significant differences.

https://doi.org/10.1371/journal.pone.0299480.t004

Fig 2. Impact of different A. platensis nanoparticles inclusion levels on the (A) follicle-stimulating hormone, FSH, and (B)

luteinizing hormone, LH, of O. niloticus broodstock (males and females). AN0, AN2, AN4, and AN6 are diets

supplemented with A. platensis nanoparticles at levels of 0, 2, 4, and 6 g kg─1 diet, respectively. The presented data are

Means ± SD (n = 3). Different letters in each column are significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0299480.g002
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with A. platensis nanoparticles (AN2, AN4, and AN6) and (AN4 and AN6), respectively. Fig 4

shows that the gradual increase in inclusion levels of A. platensis nanoparticles led to a gradual

increase in the concentrations of progesterone prolactin hormones. Compared to the control

group, significant (p< 0.05) improvements in progesterone and prolactin concentration were

obtained by males who consumed the supplemented diets (AN4 and AN6) and (AN2, AN4, and

AN6), respectively.

3.6. Females’ reproductive productivity

Fig 5 shows the impact of different inclusion levels of A. platensis nanoparticles on the seed’s

production count. A gradual increase in incorporation levels resulted in a significant

(p< 0.05) gradual increase in seed production efficiency. Compared to control-fed fish,

increasing rates in seed production were noticed for AN2, AN4, and AN6 diets, 10.5, 18.6, and

32.2%, respectively.

Fig 4. Impact of different A. platensis nanoparticles inclusion levels on the (A) progesterone, and (B) prolactin of O.

niloticus (females only) of O. niloticus. AN0, AN2, AN4, and AN6 are diets supplemented with A. platensis nanoparticles

at levels of 0, 2, 4, and 6 g kg─1 diet, respectively. The presented data are Means ± SD (n = 3). Different letters are

significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0299480.g004

Fig 3. Impact of different A. platensis nanoparticles inclusion levels on the (A) total testosterone, and (B) free

testosterone of O. niloticus broodstock (males only) of O. niloticus. AN0, AN2, AN4, and AN6 are diets supplemented

with A. platensis nanoparticles at levels of 0, 2, 4, and 6 g kg─1 diet, respectively. The presented data are Means ± SD

(n = 3). Different letters are significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0299480.g003
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4. Discussion

According to the literature, algal cells (microalgae or seaweeds) and bioactive compounds

extracted from algal such as astaxanthin from A. platensis [41], and polysaccharides extracted

from brown seaweed (Sargassum dentifolium) [8,42,86] were included as feed additives in vari-

ous forms as dry powder, liquid extract [65]. The nanoparticle form is the newest technology

that can improve diet efficiency [70]. A study conducted by Nagarajan et al. [87] reported that

these positive effects of nanoparticle forms may be due to the novel properties of highly fine

particles and the high surface area of the molecules. These new properties can change, maxi-

mize, and create novel properties for the phytochemical compounds in the microalgae nano-

particle forms compared to the traditional microalgae form [88–91].

In previous studies, the bioactive compounds of A. platensis nanoparticles used in the pres-

ent study were reported [8,41]. Three peak areas (PAs) were found in A. platensis nanoparti-

cles. These three PAs were found to contain three main bioactive compounds, namely: (1)

milbemycin b (C33H46ClNO7), which accounted for 66% of the total peak areas (PAs), (2) Doc-

osanoic acid 1,2,3-propanetriyl ester (C69H134O6), accounting for 22% of the total PAs, and (3)

Copper etioporphyrin II (C32H36CuN4), accounting for 11% of the total PAs. These three bio-

active compounds belong to different categories (macrocyclic lactones, fatty acid propanetriyl

ester, and metal Porphyrin Complex, respectively) and exhibit antioxidant, antimicrobial, and

biomedical activities [72,92].

To the best of our knowledge, no study has investigated the effects of nanoparticles of

microalga A. platensis on Nile tilapia during the spawning period. The present study showed

improvement in growth performances, whole-body biochemical composition, physiological

aspects, steroid hormonal status, and fry production efficiency for the Nile tilapia during the

spawning cycle. The current study revealed that the AN6 group has achieved the highest signif-

icant differences (p< 0.05) in FW, WG, FCR, PER, and FER, compared to the control group

(AN0) and the other supplemented groups (AN2 and AN4). Elabd et al. [70] revealed that

inclusion levels of 2.5–5 g kg─1 of A. platensis nanoparticles into Nile tilapia diets significantly

Fig 5. Impact of different nanoparticles inclusion levels of A. platensis on the seed production efficiency of O.

niloticus. AN0%, AN2, AN4, and AN6 are diets supplemented with A. platensis nanoparticles at levels of 0, 2, 4, and 6 g

kg─1 diet, respectively. The presented data are Means ± SD (n = 3). Different letters are significantly different

(p< 0.05). The percentages in the bars are the increased percentage (%) in seed production for females fed

supplemented diets compared to the control diet.

https://doi.org/10.1371/journal.pone.0299480.g005
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improved growth performance indices. In a later study, Sharawy et al. [42] reported that the

inclusion of A. platensis nanoparticles (2.5, 5, and 10 g kg─1 diet) in a Pacific white shrimp diet

significantly (p< 0.05) improved the growth performances of shrimp fry. The findings

reported in the present study reported that the inclusion concentrations (6 g kg─1 diet)

achieved an economic advantages regarding the growth performance. However, this small

increase in FW and WF may be attributed to the fact that the broodstock at this age tends to

direct all its energy to the steroid hormonal aspects, ovulation, and egg production, not to the

growth and building tissues.

Aquafeeds are significantly affecting the carcass composition of aquatic animals, especially

in early growth stages [93,94]. In the current study, supplemented groups significantly affected

the protein and the lipid content of Nile tilapia mothers. These results are in accordance with

the previous studies which concluded that the nanoparticles form of A. platensis inclusion lev-

els to Nile tilapia significantly improves protein and lipid contents [8,42,70]. This finding may

be attributed to the fact that A. platensis is a rich source of protein (50–65%) and has a high-

quality fatty acid profile (AA, EPA, and DHA) with total lipid content of 4–8% [39].

Blood biochemistry indices (serum protein, albumin, TAG, glucose, GPT, AST, and ALT)

are major factors in improving blood aspects, immune system, and overall physiological status

of fish and act powerfully as adjuncts to assess the efficiency of feed additives [95–97]. The cur-

rent study reported that the only significant difference in blood biochemistry indices was

recorded in TAG, and glucose by the supplemented diets compared to the control diet. These

results are in accordance with previous results of Mabrouk et al. [8], Elabd et al. [70], and Shar-

awy et al. [42]. However, these results may be due to the high- lipid content of A. platensis
nanoparticles dietary supplementations [98].

To achieve successful and effective reproduction of aquatic animals, it’s essential to under-

stand the relationship between hormonal spawning and nutritional and environmental factors

such as diet development, photoperiod, and temperature which sequentially, affect seed pro-

duction efficiency [99,100]. In the current study, different nanoparticle inclusion levels of A.

platensis significantly (p< 0.05) affect hormonal spawning for Nile tilapia broodstock (males

and females). The current study observed that a gradual increase in incorporation nanoparticle

levels resulted in a gradual increase in hormonal spawning (FSH, LH, free testosterone, total

testosterone, progesterone, and prolactin). Compared to the control group (AN0), increasing

rates in fry production for the supplemented diets of AN2, AN4, and AN6 were 10.5, 18.6, and

32.2%, respectively were revealed. These findings were in accordance with the results of several

studies which concluded that Arthrospira (Spirulina) strains can improve the formation of

ovulation, prostaglandin, and steroidogenesis, improve maturation ability, optimize the levels

of sex hormones, enhance reproduction performance and hatching efficiency, and increase

seeds production in fish species such as Nile tilapia [101], catfish (Clarias gariepinus) [102],

zebrafish females [103], three-spot gourami (Trichopodus trichopterus) [104], yellow tail cichlid

(Pseudotropheus acei) [105], parrot fish (Oplegnathus fasciatus) [106], Pla Pho (Pangasius
bocourti) [107], and goldfish (Carassius auratus) [108]. Promya and Chitmanat [102] con-

cluded that Arthrospira is an alternative candidate to artificial hormones in the diet of fish

brooders. Interestingly, due to their novel physical properties and bioactive compounds, the

nanoparticle form of A. platensis maximizes the nutritional benefit for Nile tilapia.

Joshua and Zulperi [98] reported that the nutritional impact and bioactive material con-

tents of A. platensis and Chlorella vulgaris, they are algal species that can significantly enhance

the immune system, reduce disease infections, improve the hormonal spawning, and improve

reproduction aspects of fish and shrimp. Hassaan [109] concluded that the inclusion of 10–15

g kg─1 of microalgae Cyclotella spp. (dried form) in the diet of Nile tilapia broodstock
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significantly improved hormonal spawning, gonadosomatic index, condition factor, semen

quality, and relative absolute fecundity, which consequentially improved seed production.

5. Conclusions

Inclusion levels of 6 g kg─1 of A. platensis nanoparticles in the diet of Nile tilapia broodstock

significantly improved the growth performances (FW, WG, FCR, PER, and FER), steroid hor-

mones levels (FSH, LH, free testosterone, total testosterone, progesterone, and prolactin), and

increase fry production efficiency of 32.2%, respectively. These findings revealed that A. pla-
tensis nanoparticles resulted in a better enhancement of females’ reproductive productivity of

Nile tilapia.
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