
RESEARCH ARTICLE

Automated code development based on

genetic programming in graphical

programming language: A pilot study

Pavel Kodytek, Alexandra BodzasID*, Jan Zidek

Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, Ostrava,

Czech Republic

* alexandra.bodzas@vsb.cz

Abstract

Continual technological advances associated with the recent automation revolution have

tremendously increased the impact of computer technology in the industry. Software devel-

opment and testing are time-consuming processes, and the current market faces a lack of

specialized experts. Introducing automation to this field could, therefore, improve software

engineers’ common workflow and decrease the time to market. Even though many code-

generating algorithms have been proposed in textual-based programming languages, to the

best of the authors’ knowledge, none of the studies deals with the implementation of such

algorithms in graphical programming environments, especially LabVIEW. Due to this fact,

the main goal of this study is to conduct a proof-of-concept for a requirement-based auto-

mated code-developing system within the graphical programming environment LabVIEW.

The proposed framework was evaluated on four basic benchmark problems, encompassing

a string model, a numeric model, a boolean model and a mixed-type problem model, which

covers fundamental programming scenarios. In all tested cases, the algorithm demon-

strated an ability to create satisfying functional and errorless solutions that met all user-

defined requirements. Even though the generated programs were burdened with redundant

objects and were much more complex compared to programmer-developed codes, this fact

has no effect on the code’s execution speed or accuracy. Based on the achieved results, we

can conclude that this pilot study not only proved the feasibility and viability of the proposed

concept, but also showed promising results in solving linear and binary programming tasks.

Furthermore, the results revealed that with further research, this poorly explored field could

become a powerful tool not only for application developers but also for non-programmers

and low-skilled users.

Introduction

Graphical programming refers to a category of programming languages that use visual repre-

sentations, such as icons, symbols, diagrams, or other graphical elements, to facilitate the

design and creation of software applications. Unlike traditional text-based programming

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kodytek P, Bodzas A, Zidek J (2024)

Automated code development based on genetic

programming in graphical programming language:

A pilot study. PLoS ONE 19(3): e0299456. https://

doi.org/10.1371/journal.pone.0299456

Editor: Govind Vashishtha, Wroclaw University of

Science and Technology: Politechnika Wroclawska,

POLAND

Received: December 15, 2023

Accepted: February 10, 2024

Published: March 7, 2024

Copyright: © 2024 Kodytek et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code supporting

this study is available from https://zenodo.org/

records/10542753.

Funding: This work was supported by the “Student

Grant System” of VSB-TU Ostrava, project number

SP2022/88. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-4173-7300
https://doi.org/10.1371/journal.pone.0299456
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299456&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299456&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299456&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299456&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299456&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299456&domain=pdf&date_stamp=2024-03-07
https://doi.org/10.1371/journal.pone.0299456
https://doi.org/10.1371/journal.pone.0299456
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/records/10542753
https://zenodo.org/records/10542753


languages, where the code, i.e., textual commands, are written in text editors or integrated

development environments, graphical programming allows users to interactively create pro-

grams by manipulating and connecting graphical elements. Since graphical programming

does not require a strong understanding of the language and its syntax, these languages are

often designed to make programming more intuitive and accessible to non-programmers.

Automated code development in LabVIEW or any other graphical programming environ-

ment is inspired by reversing a standard software development model. This engineering design

process can be perceived as a methodical series of steps that allow programmers to create func-

tional products and processes [1]. This process can be highly repetitive, and certain stages

often require multiple iterations before proceeding to the next step. Since requirements-based

testing and validation, also known as test-driven development, is a common and essential part

of software development [2] and a standard procedure for programmers who must verify the

code’s functionality, by reversing this process, we can automatically generate code instead of

developing programs or unit testing frameworks. In this reverse scenario, we can automatically

create programs based on the predefined input requirements, and by backpropagating the

input- output differences, we can modify the generated code until all requirements are satis-

fied. By transforming this task into a fully automated process, we can therefore fundamentally

reshape the development principles for basic programs, and instead of employing human

experts for code development and test report validation, we can utilize computers to generate

programs and evaluate test reports.

Automated code generation in textual-based environments has been used in the software

industry for decades [3], and especially in recent years, many novel program generation

approaches have been proposed and evaluated on common benchmark problems [4]. These

approaches to code generation employ various techniques, including artificial intelligence,

machine learning, or genetic evolution methods, to repair or generate efficient and error-free

codes. A significant research direction in this field involves the use of machine learning, espe-

cially neural network models. Most of these studies employed recurrent neural networks [5–

7], transformer models [8,9], or convolutional neural networks [10,11], which are able to learn

patterns and structures from given code samples. By training these models on large code

repositories, they can capture syntax, semantics, and even higher-level programming con-

structs, which enables them to generate usable code [12].

Another popular direction for automated code generation includes evolutionary algo-

rithms, particularly genetic algorithms [13] and genetic programming. Genetic programming

(GP) is technically regarded as a special evolutionary algorithm inspired by Darwin’s evolu-

tionary theory, where algorithms are characterized by the existence of a population of individ-

uals exposed to various environmental circumstances that lead to natural selection. [14]

Unlike genetic algorithms, in genetic programming, the individuals in the population are

computational programs, which are typically represented as sequences of instructions or

expression trees. [15] These populations are iteratively transformed and evolved over genera-

tions into other populations by applying genetic operations to aproximate or find a solution to

a specific problem. [16] To measure the degree of adaptation of individuals to the environ-

ment, usually a fitness function is employed [16]. However, also other alternative measures

could be utilized, for example, Wasserstein distance [17] for probability distribution outputs,

or Single-valued Neutrosophic Cross-Entropy [18], which measures the dissimilarity in cases

of uncertain or incomplete information. This approach to code generation is primarily useful

for optimizing codes for specific tasks or constraints and usually require user-defined input/

output examples. However, studies using combinations of input/output examples with natural

language descriptions can also be found [19]. One of the biggest advantages of using genetic

algorithms based on user-defined requirements, which is the primary focus of this study, is the

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 2 / 20

https://doi.org/10.1371/journal.pone.0299456


potential usage of such a system by non-programmers. A well-known case of such a program

is, for example, Flash Fill, which is one of the most used data tools integrated into Microsoft

Excel that is able to automatically fill out the data in sheets by using predictive technology. [20]

According to the comprehensive survey on program synthesis with evolutionary algorithms

conducted by Sobania et al., the most frequently used approaches for code generation involve

stack-based GP, using mostly Push as a representation language, grammar-guided GP (includ-

ing tree-based and linearized grammar-based approaches), and linear GP [21] Although the

stack-based GP approach makes up the largest proportion of the identified studies (37 in-

scope papers), due to its most common language representation (Forth, Push, or Postscript

programming language), it is not considered relevant in real-world software projects, espe-

cially from the perspective of software development [21]. Other meta-heuristic algorithms

introduced in specific fields of automated programming, especially regarding optimization

tasks, may include the particle swarm optimizer, gravitational search algorithm, artificial bee

colony algorithm, grey wolf optimizer [22], or differential evolution [23] and slime mould

algorithm [24,25].

Even though numerous code generation methods have been proposed for textual-based lan-

guages in the last few decades [26,27], to the best of the authors’ knowledge, none of these

methods have been implemented in graphical-based programming languages, especially Lab-

VIEW. Moreover, the implementation of the actual state-of-the-art methods in a graphical lan-

guage is rather inefficient and almost impossible without using text-to-object converters since

all existing algorithms are primarily designed for text-based languages. Due to the fact that

most of the graphical programming environments, including LabVIEW, do not even have

such converters or do not support textual compilers, the main aim of this study is to create a

proof of concept for a yet unexplored automated GP-based framework for code generation in

the graphical programming environment LabVIEW. The proposed code generation frame-

work fully depends on the input requirements, which can be defined even by users without

any prior programming knowledge. The entire framework was tested on four basic benchmark

problems encompassing fundamental data types, such as string, boolean, numeric, and their

combinations. The achieved evaluation results not only demonstrated the algorithm’s ability

to generate functional programs in string, numeric and boolean domains, but also proved that

the algorithm is able to work in a solution space that isn’t strongly typed, and therefore, can

lead to universal solutions. Although the generated solutions showed a significant degree of

complexity in comparison to programs written by SW developers, the outcomes of this study

prove the feasibility of this idea, where even non-programmers and low-skilled users could

efficiently generate programs. The proposed approach in this study is, therefore, the first of its

kind in this research field and may serve as a good starting point and inspiration for research-

ers and programmers working with graphical programming languages. Since graphically ori-

ented programming is recently on the rise with the growing industry 4.0, where PLC-based

systems and fast test-developing environments such as LabVIEW or Teststand play a signifi-

cant role, introducing such algorithms to these environments would help to solve many

human-restricted problems.

Materials and methods

LabVIEW, as a graphical development environment, utilizes a different code representation in

comparison to traditional text-based programming languages. This representation involves

indexing functions, which cannot be translated directly into human-readable and understand-

able text as in typical text-based environments. This difference in representation complicates

the usage of text-based language prediction models like GPT-3 [28] or other commonly used

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 3 / 20

https://doi.org/10.1371/journal.pone.0299456


models for generating code. Hence, in this scenario, genetic programming appears to be the

most suitable approach, which evolves and optimizes graphical structures toward user-defined

requirements. The following chapters are devoted to the LabVIEW programming environ-

ment and its language syntax and provide a detailed description of the proposed code genera-

tion framework.

Labview development environment language syntax

LabVIEW, short for Laboratory Virtual Instrument Engineering Workbench, is a visual pro-

gramming environment commonly used in measurement, automation, or control applica-

tions. Unlike traditional text-based programming languages, LabVIEW utilizes a graphical

data flow programming paradigm where the code is represented in the form of interconnected

graphical elements called virtual instruments, denoted as VIs, that can be perceived as func-

tions or subroutines in conventional programming languages. The abstract syntax is typically

represented as a data flow graph or a block diagram, where each VI or block is a self-contained

unit of code or a native function. The execution of the program is then conceptualized as a

flow of data, where variables are propagated via the wires through a sequential series of con-

nected functions, which execute as soon as all data is available on the inputs.

The core of each VI is divided into two interdependent parts: the front panel, which repre-

sents the user interface, and the block diagram, i.e., the code, responsible for the program’s

logic and functionality. The visual representation of both parts of a simple part of a code is

demonstrated in Fig 1.

If we analyze this part of the code from the programmer’s viewpoint, the created method in

LabVIEW carries the name add_pi and has one numeric input as a parameter. The output of

this function is then an input value increased by the value of π. However, in a much deeper

sense of the language, the created program contains four basic objects (two input objects, a

function, and an output), where each object is represented by a specific icon in the block dia-

gram. These objects can be considered instances of objects in object-oriented programming,

and therefore each of the four elements contains its own private data and methods (such as

Fig 1. The created front panel and block diagram for a virtual device called "add_pi".

https://doi.org/10.1371/journal.pone.0299456.g001

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 4 / 20

https://doi.org/10.1371/journal.pone.0299456.g001
https://doi.org/10.1371/journal.pone.0299456


captions, labels, or set-value methods). Since every single object inserted in the block diagram

is a child of a prime class called LabVIEW Object, each element created in the block diagram

and also on the front panel is a child of this class. Hence, if we are able to refer to any object by

using a pointer, we can also programmatically change its publicly accessible data or invoke its

publicly accessible methods. It is also possible to get this reference through all objects con-

tained in the data of our "main" object, which is our program. Through the reference, we are

therefore able to obtain references to all front panel or block diagram objects.

Additionally, apart from the four main objects, there are three secondary objects in the

given diagram that are presented as connections or wires between the functions, which ensure

the data flow of the program. The main difference between a main object and a secondary

object is that a secondary object reference can only be obtained from the main object reference

to which the secondary object is assigned (connected). Even though for most LabVIEW pro-

grammers, this object is just a simple wire connecting two blocks or functions, it is a sophisti-

cated class that, in its private parameters, stores information about its description, the

connected terminals, state, program pauses, connection points, or references to the main

objects. Moreover, this class allows navigating the program from one place to another by using

a set of obtained references to various block diagrams or front panel objects.

Although most programmers do not use this information and do not need to understand

these concepts, it is important knowledge that allows performing automated program develop-

ment tasks in the LabVIEW programming environment.

LabVIEW scripting. An essential LabVIEW feature that was used in this work is a Lab-

VIEW VI Scripting software add-on, which provides a set of functions used to access advanced

private methods and information that is normally not available to the user. This includes func-

tions that are used to perform code analysis, editing, or even code creation. Nowadays, many

leading developers use these features to create templates or automatically generate frameworks

for other developers; however, this work deals only with methods allowing to programmati-

cally insert and connect objects within the block diagram. The particular LabVIEW scripting

processes employed in this work are depicted in Table 1.

As it might be seen, scripting is a diverse and powerful tool for modifying the final program,

and by combining these functions with built-in LabVIEW functions responsible for the run of

the program, assignment of the values to inputs, and their reading or evaluation, we can obtain

a tool that is an essential part of automatic program development, and which enables us to cre-

ate or modify the particular programs.

The proposed framework

In this study, we approach the problem of automated code development in a similar way as

human evolution works. Each generated VI, which is a final representation of a program, can

Table 1. Basic types of LabVIEW scripting functions used for the purpose of automated code generation.

Process

Type

Detail Function

Navigation Between function and

wire

Trace dependencies and connections from the function to the wire

Between wire and

function

Trace dependencies and connections from the wire to the function

New VI Creates (insert) new method/function

Creation Object on a

front panel/block diagram

Creates (insert) new objects (native LV functions, controls) in the

program

Wire Creates (insert) connections between functions

Object positioning Changes the position of objects inside a block diagram

https://doi.org/10.1371/journal.pone.0299456.t001

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 5 / 20

https://doi.org/10.1371/journal.pone.0299456.t001
https://doi.org/10.1371/journal.pone.0299456


be seen as a human phenotype that represents the complete characteristics of an individual from

the generation. Since only the creation and navigation scripting methods are utilized for the code

generation, the whole code information can be obtained in two sets, the Wirer and the Creator,

which are thoroughly described in the chapter Genetic structure of the program. The process of

the proposed code generation approach, from requirement definition to the formation of a new

generation is depicted in Fig 2 and described step by step in the subsequent chapters.

Fig 2. The entire sequence of the proposed code generation framework.

https://doi.org/10.1371/journal.pone.0299456.g002

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 6 / 20

https://doi.org/10.1371/journal.pone.0299456.g002
https://doi.org/10.1371/journal.pone.0299456


Genetic structure of the program. The Wirer and the Creator can be perceived as chro-

mosomes in human cells, and just as human chromosomes, the Wirer and the Creator set con-

tain a collection of genes, where each gene, in our case, carries specific information about the

structure (the created functions or other objects such as constants) or binding (connections

between the program building blocks). Therefore, whereas the creator is responsible for the

insertion of functions on the block diagram by using the creation scripting method, the Wir-

erer is responsible for tracing the functions’ inputs and outputs and for creating connections

between the particular functions on the block diagram (performed by utilizing the navigation

and creation LV scripting methods). The proposed complete genetic structure is demonstrated

in Fig 3.

Similarly, as the individual genes create cell characteristics by using sub-alleles, the genes

contained in the Creator and the Wirer create the final form and the behavior of the generated

code. Each gene in both sets, therefore, contains an identifier in the form of an unsigned 8-bit

integer that is used to assign the gene a specific function (such as a mathematical operation,

equal function, or string function) and data in the form of a byte array, which contains all nec-

essary information about the particular element defined by the identifier. For instance, if the

gene is mapped as a string constant (defined by the identifier number 0), then the

Fig 3. The proposed genetic structure of programs.

https://doi.org/10.1371/journal.pone.0299456.g003

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 7 / 20

https://doi.org/10.1371/journal.pone.0299456.g003
https://doi.org/10.1371/journal.pone.0299456


corresponding data within the gene is converted from a byte array back to a string. On the

other hand, in the case of a mathematical function (identifier 3), only the first byte of the data

carries information about the pointer to a specific numeric function, such as addition (value

0), subtraction (value 1), etc. A detailed explanation of how genetic identifiers are mapped into

specific functions is provided in Chapter Initialization process, Table 4. By employing byte

array data representation for the data within the Wirer and the Creator, we can furthermore

meet the possible requirements for the infinite number of genes in both sets, which ensures no

limitations by unnecessary conditions during the program development.

Although the Wirerer contains the same genetic structure as a creator, its only function is

to create connections between the existing functions. To connect an output of one function

with an unconnected input of another function, the navigation LabVIEW scripting method

only requires references to the corresponding input and output terminals of the involved func-

tions. Due to this fact, the Wirer does not use the information obtained in the identifier, and

only the connector’s information is extracted from the data, where the first and second ele-

ments of a byte array are converted to an integer value representing the indexes of the corre-

sponding output and input terminals.

Definition of system requirements. To ensure that the system functions in accordance

with the abovementioned goals, it is necessary for the user to have the possibility of defining

the input and output variables of the system. According to the requirement definition, a funda-

mental requirement for our system was to maintain human readability and be easy to under-

stand so that even non-programmers could generate codes. The proposed system in this work

supports four basic data types, namely boolean (Bool), string (Str), double (Dbl), and integer

(Int). All the user’s functionality requirements are stored in the form of an array of elements,

where each element is, like each gene, represented by a control name and an array of values for

a given parameter. These parameters are then, at the beginning, loaded into the system and

stored in a functional global variable (a frequently used LabVIEW design pattern allowing con-

trolled access to data) so they can be reused in the evaluation process. Since we used a byte

array for storing the data within the genes, there is no need to address the issue of different

functions’ data type compatibility requirements at this program level. The evaluation function

then accepts an array of inputs and outputs.

The input interface for a common user is realized by using the freely accessible library

CLAUDIE_XLSX (Compact Library and Universal Data Import Export xlsx), which allows

writing and reading data from Microsoft Excel [29]. The file structure was selected in a way

that facilitates the user’s ability to enter his requests in the form of input combinations and

their required outputs. An example of an implemented structure for a specific task is demon-

strated in Table 2.

The first file line defines whether the element is an input (control) or an output (indica-

tor), the second line defines its data type (bool, dbl, int, str), the third line declares the name

Table 2. Input values example for a numerical problem.

in in out

dbl dbl Dbl

Num_1 Num_2 Num_Ind

5 10 15

6 11 7

15 42 57

17 43 60

36 44 80

https://doi.org/10.1371/journal.pone.0299456.t002

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 8 / 20

https://doi.org/10.1371/journal.pone.0299456.t002
https://doi.org/10.1371/journal.pone.0299456


of the element and the following lines create the inputs together with the desired output

values.

Initialization process. The initialization of default parameters is a critical and challenging

problem in evolutionary algorithms. Within this step, the algorithm creates the initial popula-

tion by generating individuals with constrained random parameters for the subsequent evolu-

tionary process. All population parameters with particular value ranges are depicted in Table 3.

Since it is usually not very common to control the size of the population [30], this parame-

ter is in this work set to be optional for the users, and for all performed tests, it was set to a con-

stant value, usually 1000. The second adjustable population parameter used in this study is the

complexity parameter (set in the range from 3 to 20, depending on the problem’s complexity).

This number represents the mean value of a Gaussian curve, which is formed by the number

of genes generated for each descendant in a population. In other words, the number of genes

in a generation likely corresponds to a Gaussian curve with a defined standard deviation of 0.1

and a mean equal to the selected complexity value. This "randomness" ensures a better distri-

bution of the generated code possibilities already in the first iteration and prevents the algo-

rithm from getting stuck at the local minimum [31].

To assign the gene a LabVIEW object (function, control, or a constant), we proposed a

mapping table (refer to Table 4), which takes a randomly generated number of an identifier in

a defined range and, based on its value, assigns the identifier a specific LabVIEW building

block represented by a native LabVIEW ID class number. These LabVIEW ID numbers can be

perceived as inner environment identifiers for particular parent classes, where each LabVIEW

building block belongs to a specific parent class. Even though the knowledge of the predefined

LabVIEW classes is not required for common programming tasks, it is part of the basic con-

cept of the environment.

The problem that we encountered with this LabVIEW inner categorization was a multiple

occurrence of the class with an identifier of 16400 for significantly different functions. Even

Table 3. The used population parameters with the corresponding parameter values.

Parameter Value

Population size Fixed value

Complexity Randomized with Gaussian distribution–mean selected and sigma 0.1

Identifier Randomized in a value range of 0–8 according to Table 4 with a uniform distribution

Data within the Creator Generated byte array of U8 values with uniform distribution.

Data within the Wirerer Two random U8 values with a uniform distribution in an array

https://doi.org/10.1371/journal.pone.0299456.t003

Table 4. An overview of the used identifiers and their relation to specific block diagram objects and data usage.

Gene identificator Num ID in LV Building block/Object Data usage

0 16392 String Constant Converts byte array to string

1 16395 Control Terminal Gene data not used

2 16476 Bundler Gene data not used

3 16400 Math. Function Maps the first byte of the data array to a mathematic function

4 16390 Digital Numeric Constant Converts byte array to a number

5 16422 Boolean constant Gene data not used

6 16400_1 Bool Function Maps the first byte of the data array to a boolean function

7 16429 Equal Function Gene data not used

8 16400_2 Select Function Gene data not used

https://doi.org/10.1371/journal.pone.0299456.t004

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 9 / 20

https://doi.org/10.1371/journal.pone.0299456.t003
https://doi.org/10.1371/journal.pone.0299456.t004
https://doi.org/10.1371/journal.pone.0299456


though the parent is identical for different descendants, such as mathematical functions, bool-

ean functions, and the function select, which is our case, these functions do not have the same

inputs, outputs, or meaning. To solve this problem, we divided these descendants into individ-

ual subclasses. This means that the gene identifier doesn’t contain the inner LabVIEW class

number but instead contains an extended unique identifier that differentiates the problematic

classes. The following Table 4 shows the relation between the identification numbers and the

corresponding LabVIEW functions and explains the usage of the gene data for the particular

identifiers.

Another concept that we employed during the initialization process in this work is strongly

typed genetic evolution. Unlike classical programming, where any function can be inserted

into the code, STGE limits the number of available functions. This means that only functions

with a corresponding data type to the selected data type are available. An exception is a bool-

ean data type, where, for instance, the "equal" function is a dynamic function that can be used

by all data types. It is important to note that since this approach reduces the available func-

tions, the mapping table (Table 4) dynamically changes according to the allowed data types.

Introducing this procedure directly affects the values that can be written into the gene’s identi-

fiers, and so by limiting these values, STGE helps speed up the evolution process and signifi-

cantly increases the chances for a successful evolution [32].

Wirer and Creator data generation. Simultaneously with the generation of the identifi-

ers for the Wirer and Creator sets, another parallel process produces, for each created iden-

tifier, gene data in the form of a U8-byte array. For the generation of the data within Wirer

genes, we applied an initialization rule where two numbers from the range of <0, Gauss

(complexity; 0,1)> were selected on the basis of the uniform probability. This rule ensures

that each element of the program has an equal chance of being joined with any other ele-

ment. These generated numbers are then inserted into a U8-byte array that represents the

particular gene data. On the other hand, for the data in the Creator, we had to consider all

the possibilities that may arise on a theoretical level. Since the Creator assigns information

(the generated data) to a created function on the basis of the function’s identifier, there is a

probability of assigning data to functions that do not need that information, such as select

or equal functions (refer to Table 4 for functions where gene data are not applicable). In a

practical application, this case doesn’t seem to be a big problem, but in a worst-case sce-

nario, the Creator might assign data to a string constant where the user is expecting a spe-

cific input (the infinite monkey theorem). To prevent this occurrence, the algorithm for

generating Creator data generates a sequence of numbers in a range of 0–255 based on an

even distribution of probabilities until the algorithm meets the defined stopping condition.

Unlike in the case of the Wirer, this process, therefore, continues to a potential infinity as

long as another randomly generated number from the interval <0; 1> is greater than 0.95i,
where i is the length of the currently generated string. This approach theoretically enables

infinitely large text and ensures maximal variability.

Creation of new child. The creation of a new child from the individual Creator and

Wirer genes is implemented in this work sequentially, where each gene is processed separately.

At first, all genes from the Creator are processed, which means that all program building

blocks, i.e., functions or constants, are created based on the gene identifier and data by calling

the LV scripting creation function. All created functions are, during this process, placed on a

block diagram at a random place, so the current code doesn’t have to meet the programming

standards yet (clean code without unnecessary bends in block diagram wires, top-down and

left-right data flow layout, and many more). In the case of block diagram constants, the algo-

rithm also handles empty gene data by generating a random constant value. Although this case

doesn’t apply to the initialization phase, during the evolution, the genes might lose the genetic

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 10 / 20

https://doi.org/10.1371/journal.pone.0299456


material within the data. After creating all the building blocks on the block diagram, the algo-

rithm processes the Wirer genes and creates links between the block diagram functions, i.e.,

between the output of the first object and the input of the second object. During this pro-

cess, the algorithm extracts all objects’ input and output terminals by using the LabVIEW

scripting navigation method, and from the extracted information (references to terminals),

it creates two arrays representing block diagram objects’ inputs and outputs. The final con-

nection of two functions or objects on the block diagram is then realized by creating wires

between the indexed elements from the above-mentioned arrays, where the array index

numbers are obtained from the gene data. To increase the chance of finding a suitable con-

nection, we complemented this process with a controlled selection, where the whole array

of input terminals is filtered based on the output terminal data type. Since in the LabVIEW

programming environment it is possible to connect two different terminals with different

data types, which results in a broken wire and non-executable programs, by employing this

filtration, only input terminals with a corresponding data type to a selected output terminal

are preserved.

In the last phase of the process of creating a new child, the generated section of code is eval-

uated for its functionality. During this evaluation, the program might not pass for several rea-

sons. The main reason for failure is a poor logical interconnection between the functions. This

can be caused by unconnected terminals, broken wires, introduced feedback loops (where a

function input is linked to the same function output, causing a delay in the output of the exe-

cution), or by connecting multiple outputs to one input (which is a problem specific to graphi-

cal programming, unlike text-based languages). To eliminate this problem, we implemented

an additional sequential algorithm that traces all wires in a block diagram by using a built-in

LabVIEW method and then deletes all the incorrectly connected wires. Afterward, for all

unconnected user-defined inputs, the algorithm establishes a random connection between a

particular input and an existing output with a corresponding data type. Additionally, in the

case of any missing required function input, the algorithm creates an appropriate constant

with a corresponding data type and connects the constant to a desired input. This process

ensures a higher success rate for creating valid and executable code and improves the chances

of algorithm convergence.

Evaluation of child. A key component that significantly improved the algorithm’s results

was the implementation of a back-analysis of the created child. Due to the fact that the above-

mentioned process generates random connections and possible constants, it was essential to

store this information in a gene pool of the Wirerer and the Creator. Storing this information

in the form of newly created genes primarily prevented the descendants with the best results

from the development deterioration. The proposed back-analysis algorithm validates the func-

tionality of the particular code samples against the user-defined requirements and is based on

the following formula:

Err ¼
Xinf

i¼0

Pð�xiÞ � Sð�xi ;W;CÞ ð1Þ

where the resulting error value Err is the sum of all partial differences between the desired

value (output) P for the selected combination of inputs and the obtained values S (actual out-

puts), dependent on the values of W and C representing the sets Wirer and Creator.

Although this task is not challenging according to the development, the performance of this

process is the most time-consuming. Since the program’s user-defined inputs and outputs are

in the form of arrays, the evaluation process has to be repeated for each child as many times as

many input combinations the user defined. Within the evaluation, we implemented a different

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 11 / 20

https://doi.org/10.1371/journal.pone.0299456


evaluation logic for each data type in the program. Operations working with a boolean data

type result in a "binary" value of a deviation, where 0 stands for a case of a match (T = T,

F = F), and the value of 1 indicates a mismatch. On the other hand, the resulting deviation in

numeric data type is equal to the absolute value of the difference between the input and output

values. Text strings use an equivalent logic, but the deviation is calculated as the sum of all par-

tial results for each ASCII character converted to a U8 data type. All error results for each

descendant are then stored in an array for further processing.

Creation of a new generation. At the beginning of the evolutionary process, we have to

select suitable parents for the new descendants. This task is achieved by sorting the evaluation

results by the smallest number and selecting the best available results with the lowest score, i.e.,

the lowest difference between the achieved and the desired output. Descendants with the best

results then become parents. The number of selected descendants for the next evolution was

determined by the trial-and-error process and, for the majority of the experiments, was set to

6. To avoid generating similar local maxima due to identical evaluation results, only the first

occurrence of the duplicate values is selected. In this study, one-to-one inheritance was

employed, so each child has exactly one parent [33].

After selecting the best parents, the algorithms finally proceed to mutation-based evolution

by applying mutation to the Creator and Wirer genes. In the case of the mutation of Creator

genes, a random value from a range of<0, 100> is generated for each gene in the set. The indi-

vidual genes are then modified only if the generated value is less than 25. This modification

applies to the identifier, which affects the change of the function, as well as to partial values in

the gene data (every single element in the byte array). In the case of the gene modification with

a 1/4 probability, there is an additional 25% chance that the current identifier or data element

value is decreased by a randomly generated number in a range of 1–3, a 25% chance that the

current value is increased by the same number, and a 50% chance that the particular gene

value is not changed. The overall probability of changing the gene within the Creator set is,

therefore, 12.5%. A similar logic applies also to the evolution of the Wirerer genes, only with

different modification probability values. The Wirer genes, in case of a mutation (also a 25%

probability), are in one-third of cases incremented by a number from 1 to 100% of their origi-

nal value; in 1/3 of cases, the genes are decreased by this number, and there is the same proba-

bility that the genes are not changed. The total probability of the mutation of Wirer genes then

amounts to approximately 16.6%. This approach to mutation within the Wirer genes ensured

higher variability and induced sufficiently large changes in values. Since the Wirer does not

use the information obtained in the identifier, this operation affects only the gene data ele-

ments, specifically the output and input indexes. The whole process of evolution is depicted in

a diagram in Fig 4.

The mutation of genes within the Wirer and Creator is followed by the potential creation

and elimination of individual genes, which turned out to be a key feature of a functional code-

generating system. While the above-mentioned steps completely imitate the human process of

mutation (the shrink mutation operator), the creation and elimination of genes slightly deviate

from human evolution. Even though we can observe this process in humans, its manifestation

is rather physiological (the creation of a new phenotype by combining the changed alleles). On

the other hand, the process of code creation is about creating or destroying an existing gene,

which prevents future generations from degradation. The elimination process is performed

with a probability of 15% for each gene and results in the removal of a particular gene from the

gene pool of the specific set. The same probability is also assigned to the process of creating a

new gene, in which a full new gene is added to the gene pool of existing genes. This step is per-

formed for both the Wirerer and Creator genes.

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 12 / 20

https://doi.org/10.1371/journal.pone.0299456


Experimental evaluation

To verify the proposed framework, we formulated some basic tasks and benchmark problems.

Since the proposed study is designed as a pilot study mainly focused on the feasibility of code

generation in a graphical programming environment, the proposed evaluation consists of only

simple benchmark problems, dealing mostly with linear and binary tasks. Although there are

many benchmark problems available for this purpose, all of them introduce loops and cycles

that are not included in this pilot study. Due to this reason, we have chosen simple benchmark

problems that do not require more complex loops or cycles. The employment of simpler tasks

furthermore allowed us to focus more on the performance evaluation of our algorithms instead

of analyzing problems arising from the code’s complexity. Within the evaluation procedure,

we defined three main prototype problems, including a string model, a numeric model, and a

boolean model.

The string prototype problem verification was performed by selecting a function with one

input and one output. The particular values for this task are given in Table 5. The desired result

of the algorithm is then the addition of a string "ms" to the input value in a numeric format

Fig 4. The sequence of processing genes during the evolution.

https://doi.org/10.1371/journal.pone.0299456.g004

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 13 / 20

https://doi.org/10.1371/journal.pone.0299456.g004
https://doi.org/10.1371/journal.pone.0299456


(string formatting). This task is relatively challenging from the perspective of genetic evolution

and model testing since the function for concatenating strings has to be evolved, and a string

constant with an expected value has to be created at the same time. As we mentioned in previ-

ous chapters, the user-defined string can be of any size, and thus it is necessary to mutate and

evolve the creation, as well as the destruction of the genes within the data.

The second prototype problem refers to a numeric problem and represents a multi-input

task where the required output is the creation of a mathematical function between the two

inputs. Both the selected input values and the expected output values are listed in Table 6. The

most interesting task was the addition of the inputs; hence, this problem was chosen as a typi-

cal task of the system.

The last prototype problem we defined in this study is the boolean model with two boolean

input variables and one boolean output. Within this model, we employed two boolean tasks,

including a logical function OR and an EQUAL function. The assignment for the selected task

is depicted in Table 7. In this case, the main point was to examine the evolution with a limited

ability to verify the outcomes.

Results

The first problem, which was evaluated to confirm the algorithm’s functionality, was a string

problem. The proposed test model involves two problematic key points, which are related to

the conversion of the values inside a data element. This process requires size adjustments as

well as the evolution of the values within the data. The results of multiple algorithm runs are

shown in Fig 5.

Table 5. Input and output values for a string prototype problem.

Input Value Required (Output) Values

100 100 ms

10 10 ms

1 1 ms

500 500 ms

https://doi.org/10.1371/journal.pone.0299456.t005

Table 6. Input and output values for the numeric prototype problem.

Input Value 1 Input Value 2 Required output

5 10 15

6 11 17

15 42 57

17 43 60

36 44 80

https://doi.org/10.1371/journal.pone.0299456.t006

Table 7. Input and output values for the boolean prototype problem.

Input Value 1 Input Value

2

Required output (Task OR) Required output

(Task EQUAL)

F F F T

T F T F

F T T F

T T T T

https://doi.org/10.1371/journal.pone.0299456.t007

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 14 / 20

https://doi.org/10.1371/journal.pone.0299456.t005
https://doi.org/10.1371/journal.pone.0299456.t006
https://doi.org/10.1371/journal.pone.0299456.t007
https://doi.org/10.1371/journal.pone.0299456


From these results, we can deduce that we can achieve repeatable solutions even with

changes in input parameters. The generated results clearly show the ability of the algorithm to

find the "optimal" program. In solution (A), the generated code is burdened with an extra

function. Nonetheless, this doesn’t influence the code functionality, and the unused parts are

removed during the program compilation. In the case of solution (C), we changed the maxi-

mum complexity input parameter. This parameter was set for the basic operations in a range

of<0; 10> due to higher computational complexity, but in the case of C, we set this parameter

to a value of 30. It is apparent that the resulting solution is already out of the optimal and read-

able code; however, the solution still meets the user’s requirements.

A key element during the evaluation of the program’s evolution was the verification of sim-

ple addition function behavior. Generated solutions, i.e., programs, during the experimental

verification led to clear conclusions and findings that weren’t revealed in more complex math-

ematical functions. The results of this process are demonstrated in Fig 6.

The first problem that can be observed in this solution is the occurrence of different data

types in the code, caused by the disabled usage of strict data types. In the first generation, the

program included many more objects that were related to the boolean or string data type, but

Fig 5. Final solutions of a string problem for multiple algorithms runs.

https://doi.org/10.1371/journal.pone.0299456.g005

Fig 6. Numeric problem solution. The original form of the generated code (A), the cleaned-up form of the result (B).

https://doi.org/10.1371/journal.pone.0299456.g006

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 15 / 20

https://doi.org/10.1371/journal.pone.0299456.g005
https://doi.org/10.1371/journal.pone.0299456.g006
https://doi.org/10.1371/journal.pone.0299456


with subsequent generations, the number of these elements decreased until only elements

related to the required data type remained. This was caused by the fact that redundant units of

code (creator genes) are strongly dominated by useful functions. Genetic evolution, therefore,

leads to a selection of genes that do not include these functions. This effect is not strictly domi-

nant, but a positive trend has been observed. Another curious behavior we noticed was the cre-

ation of a function Y = A + B by using three subtraction functions that resulted in an equation

Y = A—((A-B) -B). This result is considered the correct solution to a problem; however, the

solution seems to be extremely complex according to its purpose. This occurrence can be

restricted by limiting the complexity parameter.

In the case of the boolean model, the algorithm was able to achieve satisfying results accord-

ing to the program’s functionality. As can be seen in Fig 7, due to a higher complexity parame-

ter (a value of 10) and the disabled usage of strict data types, the result of the logical OR

function is burdened with a relatively large amount of useless function blocks. On the other

hand, for the second test case, including the EQUAL function, we enabled the usage of strict

data types while preserving the high complexity parameter. The final solution to this task (B)

contains multiple random connections of several equal functions. The result was created

within the first generation, where we set a high complexity (10) and enabled strict data types.

The additional last step of the evaluation comprises testing the usage of all basic data types.

The output of this task should be a function that converts the input numeric value to a logical

value on the basis of the required string output value. The proposed input and output values

are listed in Table 8.

These results (see Fig 8) proved that the proposed algorithm is able to work in a solution

space that isn’t strongly typed, and therefore, it can lead to universal solutions. To improve the

readability of some codes in this work, we additionally cleaned the code by using a built-in

tool that automatically reroutes wires and rearranges block diagram objects. As mentioned

Fig 7. Solution of OR (A) and EQUAL (B) functions of the boolean problem.

https://doi.org/10.1371/journal.pone.0299456.g007

Table 8. Input and output values for testing the combination of data types.

Input value Required output

0 Equal to zero

1 Not equal to zero

2 Not equal to zero

3 Not equal to zero

https://doi.org/10.1371/journal.pone.0299456.t008

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 16 / 20

https://doi.org/10.1371/journal.pone.0299456.g007
https://doi.org/10.1371/journal.pone.0299456.t008
https://doi.org/10.1371/journal.pone.0299456


before, graphical programming in LabVIEW is based on placing and connecting objects, such

as functions, constants, or terminals, on a program’s block diagram. Since during automatic

code generation, the user has no control over the functions’ positions or their connections

(bends in wires), such automatically generated code does not meet the best coding practices or

readability standards, which have to follow the top-to-bottom and left-to-right dataflow para-

digm. Therefore, by using the embedded automated cleanup functionality, which is able to

adjust the spacing, remove bends in wires, or logically rearrange block diagram objects, the

code can meet at least the essential requirements and programming standards.

Another important aspect we analyzed during the technical evaluation was the algorithm’s

speed and efficiency. This estimation was realized by measuring the independent processing

times of the Creator, Wirer, as well as the evaluation process. To get a good estimation, the

processing time for each part was averaged over multiple generations with a population size of

1000 and a set complexity value of 10. The estimated processing times for all phases can be

seen in Table 9.

Discussion

The main goal of this pilot study was to create a proof-of-concept for an automated code gen-

eration approach within the graphical-based programming language LabVIEW. Since, to the

best of the authors’ knowledge, none of the automated code generation methods have been

implemented in graphical-based programming languages, especially LabVIEW, this study

aims to prove the feasibility and practical potential of this proposed concept. For this purpose,

we designed and developed a requirement-based automated code generation algorithm that is

Fig 8. Solution of a combinatory problem. (A) the original code of the solution, (B) cleaned-up solution of the task.

https://doi.org/10.1371/journal.pone.0299456.g008

Table 9. Average processing times for the individual processes within the evolution.

Tested benchmark model Creator process duration (ms) Wirer process duration (ms) Evaluation process duration (ms)

String 20.08 86.00 19.16

Numeric 19.40 63.28 28.86

Boolean 24.25 85.92 45.20

Mixed type 28.05 62.68 30.29

https://doi.org/10.1371/journal.pone.0299456.t009

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 17 / 20

https://doi.org/10.1371/journal.pone.0299456.g008
https://doi.org/10.1371/journal.pone.0299456.t009
https://doi.org/10.1371/journal.pone.0299456


able to provide functional solutions on the basis of user-defined requirements. These input

requirements can be defined by experienced software developers but also by non-program-

mers or users with little programming experience. The proposed framework in this study was

tested on four different benchmark problems that were designed to assess the framework’s

ability to generate error-free, functional, and efficient codes across various data types. The pro-

posed string problem model tested the framework’s capability in text manipulation and string

operation tasks, the numeric problem model focused on arithmetic operations and handling

numerical data, the boolean model dealt with logical conditions and provided insight into the

framework’s decision-making processes, and the last mixed-type problem model tested the

framework’s versatility in handling multiple data types. The performance of the proposed

framework was then evaluated by assessing the generated codes’ accuracy, complexity, execu-

tion speed, or adherence to user requirements.

During the experimental evaluation, the designed code generation system achieved success

not only in “hill-climbing” tasks, where we were able to find appropriate solutions with a gra-

dient ascent algorithm, but also in one-point search problems, such as the boolean problem.

Moreover, the mutation genetic operator, in combination with the proposed approach has

been identified as a proper strategy for creating connections in graphical programs. Based on

the achieved results, we have to point out that even though the algorithm was, in all tasks, able

to find a functional and errorless solution that met all input requirements, these solutions were

much more complex and were burdened with redundant objects in comparison to program-

mer-developed codes. The complexity of the code, in this case, can be interpreted as a higher

number of required connected objects that create the final solution. This is mainly caused by

the natural behavior of evolutionary algorithms and genetic programming, which focus more

on finding the best solution than the optimal solution. Due to this fact, the algorithm proposed

in this study might find multiple different solutions that are not optimal, even if they fully sat-

isfy the defined requirements. However, this level of complexity did not affect the accuracy or

execution speed of the generated code compared to manually written codes.

Although we are able to demonstrate the satisfactory functionality of the proposed method

and prove the feasibility of this concept, we cannot fully declare that the problem is solved.

Furthermore, additional research in this field has to be conducted, especially regarding the

optimization and finding optimal solutions. Another remarkable fact revealed by the experi-

ments is that a significant portion of the computation time for creating a single child is taken

by the Wirer, i.e., by creating interconnections. To optimize this process in the future, it would

be beneficial to develop a more sophisticated algorithm that better reflects the actual input and

output requirements of the created functions instead of only processing the genetic material in

genes and randomizing connections in cases of non-valid solutions. Future research should

also be devoted to the implementation of more complex structures, such as cycles or loops, so

we can fully exploit all the strengths of the proposed solution and test the methodology on

more complex benchmark problems. Moreover, this would allow researchers to compare the

proposed approach with existing methods. In addition, exploring multi-parental genetic pro-

gramming or some types of polygamy-based algorithms can become an important area for

future research. Future research should also consider the potential benefits of using cloud

computing since the search space could reach enormous dimensions. This would enable

researchers to create thousands or even millions of programs in a second, which could be vali-

dated and iterated over the best of the best results to find the final solution to much more com-

plex problems.Based on these findings, we can conclude that this pilot study not only proved

the feasibility of automated code development in graphically oriented programming languages

but also built a strong foundation for further research in this relatively unexplored domain.

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 18 / 20

https://doi.org/10.1371/journal.pone.0299456


Author Contributions

Conceptualization: Pavel Kodytek.

Formal analysis: Alexandra Bodzas.

Methodology: Pavel Kodytek.

Project administration: Jan Zidek.

Software: Pavel Kodytek.

Validation: Alexandra Bodzas, Jan Zidek.

Writing – original draft: Pavel Kodytek.

Writing – review & editing: Alexandra Bodzas.

References
1. Gurung G, Shah R, Jaiswal DP. Software Development Life Cycle Models-A Comparative Study. int. j.

sci. res. comput. sci. eng. inf. technol. 2020; 6: 30–37.

2. Ghafari M, Gross T, Fucci D, Felderer M. Why Research on Test-Driven Development is Inconclusive?

Proceedings of the 14th ACM / IEEE International Symposium on ESEM. 2020; 1–10.

3. Basin D, Deville Y, Flener P, Hamfelt A, Fischer Nilsson J. Synthesis of programs in computational

logic. In: Bruynooghe M, Lau K, editors. Program Development in Computational Logic: A Decade of

Research Advances in Logic-Based Program Development. Heidelberg: Springer Berlin; 2004. pp.

30–65.

4. Liu Y, Tantithamthavorn CK, Liu Y, Li L. On the reliability and explainability of automated code genera-

tion approaches. ACM Trans. Softw. Eng. Methodol.2024. https://doi.org/10.1145/3641540

5. Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation. Proceedings of the 26th ICPC. 2018;

200–210.

6. Zhu Z, Xue Z, Yuan Z. Automatic graphics program generation using attention-based hierarchical

decoder. ACCV. 2018; 181–196.

7. Watson C, Tufano M, Moran K, Bavota G, Poshyvanyk D. On learning meaningful assert statements for

unit test cases. Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng. 2020; 1398–1409.

8. Gemmell C, Rossetto F, Dalton J. Relevance transformer: Generating concise code snippets with rele-

vance feedback. Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. 2020; 2005–2008.

9. Yang G, Chen X, Liu K, Chen Y. Fine-grained Pseudo-code Generation Method via Code Feature

Extraction and Transformer. 2021 28th APSEC. 2021; 213–222.

10. Asiroglu B, et al. Automatic HTML code generation from mock-up images using machine learning tech-

niques. 2019 Proc. Sci. Meeting Elect.-Electron. Biomed. Eng. Comput. Sci. (EBBT). 2019; 1–4.

11. LeClair A, Haque S, Wu L, McMillan C. Improved code summarization via a graph neural network. Proc.

28th Int. Conf. Program Comprehension. 2020; 184–195.

12. Priya R, Wang X, Hu Y, Sun Y. A deep dive into automatic code generation using character based

recurrent neural networks. 2017 International Conference CSCI. 2017; 369–374.

13. Vashishtha G, Kumar R. An effective health indicator for the Pelton wheel using a Levy flight mutated

genetic algorithm. Meas. Sci. Technol. 2021; 32: 094003.

14. Câmara D. Bio-inspired networking. 1st ed. London: Iste Press Elsevier; 2015.

15. Banzhaf W, Francon DF, Keller RE, Nordin P. Genetic programming: An introduction: on the automatic

evolution of computer programs and its applications. San Francisco: Morgan Kaufmann Publishers

Inc.; 1998.

16. Banzhaf W. Evolutionary Computation and Genetic Programming. In: Lakhtakia A, Martı́n-Palma RJ,

editors. Engineered Biomimicry. Amsterdam: Elsevier; 2013. pp. 429–447.

17. Vashishtha G, Kumar R. Unsupervised Learning Model of Sparse Filtering Enhanced Using Wasser-

stein Distance for Intelligent Fault Diagnosis. J. Vib. Eng. Technol. 2023; 11: 2985–3002.

18. Vashishtha G, Chauhan S, Yadav N, Kumar A, Kumar R. A two-level adaptive chirp mode decomposi-

tion and tangent entropy in estimation of single-valued neutrosophic cross-entropy for detecting impeller

defects in centrifugal pump. Appl. Acoust. 2022; 197: 108905.

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 19 / 20

https://doi.org/10.1145/3641540
https://doi.org/10.1371/journal.pone.0299456


19. Hemberg E, Kelly JW, O’Reilly Una-May. On domain knowledge and novelty to improve program syn-

thesis performance with grammatical evolution. Proceeding GECCO. 2019; 1039–1046.

20. Gulwani S, Hernández-Orallo J, Kitzelmann E, Muggleton SH, Schmid U, Zorn B. Inductive program-

ming meets the real world. Commun. ACM. 2015; 58: 90–99.

21. Sobania D, Schweim D, Rothlauf F. A comprehensive survey on program synthesis with evolutionary

algorithms. IEEE Trans. Evol. Comput. 2022; 27: 82–97.

22. Chauhan S, Vashishtha G. Mutation-based Arithmetic Optimization Algorithm for global optimization.

2021 CONIT. 2021; 1–6.

23. Chauhan S, Vashishtha G, Kumar A, Abualigah L. Conglomeration of Reptile Search Algorithm and Dif-

ferential Evolution Algorithm for Optimal Designing of FIR Filter. 2023; 42: 2986–3007.

24. Chauhan S, Vashishtha G, Kumar A. A symbiosis of arithmetic optimizer with slime mould algorithm for

improving global optimization and conventional design problem. J Supercomput. 2022; 78: 6234–6274.

25. Vashishtha G, Chauhan S, Singh M, Kumar R. Bearing defect identification by swarm decomposition

considering permutation entropy measure and opposition-based slime mould algorithm. Measurement.

2021; 178: 109389.

26. Ahmed A., Azab S, Abdelhamid Y. Source-Code Generation Using Deep Learning: A Survey. In: Moniz

N, Vale Z, Cascalho J, Silva C, Sebastião R, editors. Progress in Artificial Intelligence. Cham: Springer

Nature Switzerland; 2023. pp. 467–482.

27. Dehaerne E, Dey B, Halder S, De Gendt S, Meert W. Code generation using machine learning: A sys-

tematic review. IEEE Access. 2022; 10: 82434–82455.

28. Kalyan KS. A survey of GPT-3 family large language models including ChatGPT and GPT-4. J. Nat.

Lang. Process. 2024; 6: 100048.

29. ATE Systems. Compact Library and Universal Data Import Export Excel Files Toolkit Download. [cited

10 December 2023]. In: NI [Internet]. Available from: https://www.ni.com/cs-cz/support/downloads/

tools-network/download.compact-library-and-universal-data-import-export-excel-files-toolkit.html?

fbclid=IwAR1IqKGrYRokNFEQcRbhZielVC-6f4BV3R7JL9fwqNG98XQV92R05JovH1Y#374309

(2023).

30. Jassadapakorn C, Chongstitvatana P. Self-adaptation mechanism to control the diversity of the popula-

tion in genetic algorithm. Int. J. Comput. Sci. Inf. Technol. 2011; 3: 111–127.

31. Kazimipour B, Li X, Qin A. A review of population initialization techniques for evolutionary algorithms.

2014 IEEE Congress on Evol. Comput. 2014; 2585–2592.

32. Montana DJ. Strongly Typed Genetic Programming. Evol. Comput. 1995; 3: 199–230.

33. Ashlock W, Ashlock D. Single Parent Genetic Programming. 2005 IEEE Congress on Evol. Comput.

2005; 2: 1172–1179.

PLOS ONE A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0299456 March 7, 2024 20 / 20

https://www.ni.com/cs-cz/support/downloads/tools-network/download.compact-library-and-universal-data-import-export-excel-files-toolkit.html?fbclid=IwAR1IqKGrYRokNFEQcRbhZielVC-6f4BV3R7JL9fwqNG98XQV92R05JovH1Y#374309
https://www.ni.com/cs-cz/support/downloads/tools-network/download.compact-library-and-universal-data-import-export-excel-files-toolkit.html?fbclid=IwAR1IqKGrYRokNFEQcRbhZielVC-6f4BV3R7JL9fwqNG98XQV92R05JovH1Y#374309
https://www.ni.com/cs-cz/support/downloads/tools-network/download.compact-library-and-universal-data-import-export-excel-files-toolkit.html?fbclid=IwAR1IqKGrYRokNFEQcRbhZielVC-6f4BV3R7JL9fwqNG98XQV92R05JovH1Y#374309
https://doi.org/10.1371/journal.pone.0299456

