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Abstract

Abiotic stresses occur more often in combination than alone under regular field conditions

limiting in more severe way crop production. Stress recognition in plants primarily occurs in

the plasma membrane, modification of which is necessary to maintain homeostasis in

response to it. It is known that lipid transport proteins (ns-LTPs) participate in modification of

the lipidome of cell membranes. Representative of this group, ns-LTP2.8, may be involved

in the reaction to abiotic stress of germinating barley plants by mediating the intracellular

transport of hydrophobic particles, such as lipids, helping to maintain homeostasis. The ns-

LTP2.8 protein was selected for analysis due to its ability to transport not only linear hydro-

phobic molecules but also compounds with a more complex spatial structure. Moreover, ns-

LTP2.8 has been qualified as a member of pathogenesis-related proteins, which makes it

particularly important in relation to its high allergenic potential. This paper demonstrates for

the first time the influence of various abiotic stresses acting separately as well as in their

combinations on the change in the ns-LTP2.8 transcript, ns-LTP2.8 protein and total soluble

protein content in the embryonal axes of germinating spring barley genotypes with different

ns-LTP2.8 allelic forms and stress tolerance. Tissue localization of ns-LTP2.8 transcript as

well as ns-LTP2.8 protein were also examined. Although the impact of abiotic stresses on

the regulation of gene transcription and translation processes remains not fully recognized,

in this work we managed to demonstrate different impact on applied stresses on the funda-

mental cellular processes in very little studied tissue of the embryonal axis of barley.

1. Introduction

Adverse environmental factors limit cereal production, restricting food supply to the growing

human population. Unfortunately, cereal production is highly vulnerable to abiotic stresses.

Drought, temperature, and salinity are the primary abiotic stresses that limit growth, yield,

and grain quality [1]. Furthermore, these stresses act predominantly together, which further

limits plant growth [2].
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The stage of plant lifecycle which is the most susceptible to abiotic stress is germination.

An undeveloped root cannot absorb water and nutrients from deeper parts of the soil.

Moreover, the surface of arable land is exposed to strong desiccation (water evaporation);

therefore, the salinity of the top layer of the ground increases. Temperature is also felt to a

greater extent on the soil surface. Germinating embryos do not perform photosynthesis,

thus plant survival under unfavorable conditions relies on the use of storage materials and

results in the longest achievable root possible, if the intensity of stress permits grain to ger-

minate at all [3,4].

Primary site for receiving stress signals in cells is the plasma membrane [5]. Abiotic stresses

cause significant changes in lipid fluidity, which in turn, initiates stress signaling by affecting

membrane-bound proteins and altering membrane lipids. This chain of events results in the

expression of specific genes responsible for triggering adaptive mechanisms [6]. An increase in

membrane permeability is caused by the degradation of lipids and proteins resulting from

increased level of reactive oxygen species and oxidative stress [7]. Depending on the severity of

stress, the degree of lipid peroxidation also increases [7,8]. Therefore, keeping membranes

organized and functional is essential for coping with environmental cues.

Non-specific lipid transfer proteins (ns-LTPs) participate in maintaining homeostasis

within cell membranes [9,10]. The ns-LTPs show lack of specificity for various phospholipids

and other hydrophobic particles or even divalent cations [11]. In addition, ns-LTP2 are char-

acterized by a higher lipid transfer activity, because they can bind not only molecules of linear

lipids (as ns-LTP1), but also sterols making them particularly important transporters of cell

membrane components which are exchanged under abiotic stress conditions [12,13].

Plant genomes contain different numbers of ns-LTP genes; for example, wheat has 156

identified sequences, A. thaliana has 49, rice contains 52, and barley has 70 [14,15]. Despite

the differences in their sequences, they all exhibit similarity in spatial conformation and the

presence of an eight cysteine motif (8CM) [16,17]. Because of their number and common fea-

tures, a division into five groups was proposed based on gene and protein sequences, glycosyl-

phosphatidylinositol (GPI) anchor attachment sites, the 8CM pattern, and intron presence

and position [18]. However, they are often also divided into two main subgroups based on

their molecular mass—ns-LTP1 and ns-LTP2 [19].

The proteome of mature barley seed is rich in pathogenesis-related (PR) proteins [20,21].

PR gene expression is regulated during plant development and in response to environmental

stress [22,23]. PR proteins have increased resistance to proteolysis, high temperature, and

maintain stability under low pH, in which most plant proteins are denatured [24]. These prop-

erties make PRs advantageous with respect to plant defense against stress; however, their high

stability may contribute to induce allergenicity [25]. The ns-LTPs have been identified as a

major human allergen, particularly ns-LTP2.8, which was predicted to be specific only to the

aleurone layer of barley kernels [26]. To date, 17 PR families have been identified, group 14

includes ns-LTPs [26,27].

Currently, there is very limited experimental information regarding the ns-LTP2 protein

family and their coding sequences in barley. Therefore, this study examined whether long-

term abiotic stress conditions acting alone or in various their combinations could induce or

influence the ns-LTP2.8 gene expression level and its protein synthesis in vegetative tissues and

the embryonal axis of selected barley genotypes. We also examined whether variability within

the ns-LTP2.8 sequence had an impact on the ns-LTP2.8 protein amino acid sequence. We

examined the impact of different stress conditions on the change in the total soluble protein

accumulation level in the barley embryonal axis, which is one of the ways of osmotic adjust-

ment in plants growing in unfavorable environmental conditions.
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2. Materials and methods

2. 1. Plant material

Two groups of spring barley genotypes (12 in total) were used.

i. A set of six homozygous spring barley (H. vulgare L.) lines and their parental genotypes with

distinct allelic forms of the ns-LTP2.8 gene characterized by Mikołajczak [28] were used.

Briefly, the parental genotypes of the backcross lines, MPS37 (erect growth habit) and

MPS106 (prostrate growth habit), were obtained by the single seed descent technique (SSD)

[29] from the hybrids of cv. Maresi (two-rowed, semi-dwarf, German brewing cultivar) and

Pomo (six-rowed, fodder cultivar). MPS37 (donor)×MPS106 (recurrent) were backcrossed

up to BC6 generation supported by single nucleotide polymorphism (SNP) genotyping of

the among others, ns-LTP2.8 allele variation. Based on this BC6 lines MPW14/7, MPW14/9,

MPW14/19, and MPW15/14 were selected. SNP genotyping indicated that MPW14/9 and

MPW14/19 carry the allelic form of ns-LTP2.8 gene as MPS37 (here referred as ns-LTP2.8.a
allele) and the MPW14/7 allelic form of the ns-LTP2.8 gene as MPS106 (here referred as ns-
LTP2.8.b allele). Interestingly, MPW15/4 carries allelic form of the ns-LTP2.8 gene as

MPS106, but it is similar to MPS37 in terms of genetic background [28,30] (Table 1).

ii. A set of six recombinant inbred lines (RIL, F10) were obtained by crossing the cv. Maresi

(drought susceptible) and Syrian Cam/B1/CI08887/CI05761 breeding line (here referred as

CamB1). CamB1 parental genotype was supplied to Dr A. Górny (Institute of Plant Genet-

ics Polish Academy of Sciences, IPG PAS) by Drs S. Grando and S. Ceccarelli from

ICARDA in Aleppo and selected for the analyses on the basis of multiple previous studies

that examined well its physiological and genetic characteristics and confirmed its increased

tolerance to reduced water and nutrient supply [31–35]. Moreover, recent analyses done by

Kuczyńska [36] showed a different response at the lipidome level of the CamB1 line, which

is associated with the accumulation of certain lipids classes under abiotic stresses. Stability

analysis allowed us to select lines with inherited advantageous traits, such as earliness

(CamB1) and semi-dwarfness (cv. Maresi) with stable grain yield during drought. Based on

this, genotypes described by Mikołajczak [30]: MCam53, MCam75, MCam87 (stable yield),

and MCam71 (extensive line, better grain yield under stress conditions) were selected to be

used in this study (Table 1).

Table 1. Analyzed plant material.

plant material characteristics

Maresi European brewing variety with reduced plant height, carrying the semi-dwarf sdw1.d (denso)

gene, parental form for the BC and RIL lines

CamB1 Syrian breeding line, parental form for RIL

MCam53 RIL, a stable line in terms of yield under various environmental conditions

MCam71 RIL, an extensive line yielding better under drought stress conditions compared to control

conditions

MCam75 RIL, a stable line in terms of yield under various environmental conditions

MCam87 RIL, a stable line in terms of yield under various environmental conditions

MPS37 DH line, donor form in backcrossing allelic form of the ns-LTP2 gene ns-LTP2.a
MPS106 DH line, recurrent form in backcrossing ns-LTP2.b
MPW14/9 BC6 line ns-LTP2.a
MPW14/19 BC6 line ns-LTP2.a
MPW14/7 BC6 line, the least similar to MPS37 ns-LTP2.b
MPW15/4 BC6 line, the most similar to MPS37 ns-LTP2.b

https://doi.org/10.1371/journal.pone.0299400.t001
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2. 2. Stress application

To estimate the impact of abiotic stress conditions on the induction or change of the ns-LTP2.8
expression level and translation of its mRNA in vegetative tissues as well as in those forming

barley caryopsis, experiments were carried out both on mature plant tissues and on germinating

grain tissues of the same genotypes under similar abiotic stresses in in-vitro conditions.

I. Abiotic stress in germinating barley grains: undamaged caryopses without signs of fungal

infection were selected and sterilized [37]. Experiment was carried out using sterile Petri

dishes (10 cm diameter, 10 barley kernels per dish, six dishes per each condition and geno-

type) padded with Whatman paper [38]. Firstly, all caryopses were incubated at 22˚C on the

dishes with sterile water (5 ml per dish) to unify the imbibition, thus germination process

under stress conditions. After 24 h, appropriate stress factors were applied to the each set of

the dishes as follow:

1. control (C) application of 10 ml sterile water per dish;

2. drought (D) application of 10 ml polyethylene glycol 6000 (PEG6000) solution to a final

concentration of 20% per dish. These conditions, as reported by Hellal [39], significantly

reduces percentage of sprouted grains while increasing content of soluble proteins in

them to the greatest extent. Higher PEG concentrations inhibits germination of barley

grain;

3. salinity (S) addition of 10 ml NaCl solution to a final concentration of 100 mM per dish.

As reported by Kanbar and lEl Drussi [40] these conditions significantly limited germi-

nation and development of barley at the juvenile stage. Effect of 200 mM salt concentra-

tion was also analyzed here, but it inhibited the germination process of barley;

4. temperature (T) was applied as 30˚C (day) and 10˚C (night);

5. simultaneous application of each stress made it possible to obtain all combinations of

them (drought with temperature (DT), salinity with temperature (ST), drought with

salinity l(DS), and drought combined with salinity and temperature (DST)).

Duration of stress ended when the seeds were considered germinated that is, when radicle

reached length of approximately 2 mm [41,42]. Caryopses were transferred to a new sterile

Petri dish lined with dry Whatman paper, the embryonal axes and aleurone layers (positive

control) were dissected with sterile scalpel and placed in a sterile 0.5 ml Eppendorf tube. Sam-

ples were immediately placed in liquid nitrogen. No aleurone or storage material was collected

with the embryonal axes. Samples of approximately 60 mg (± 5 mg), were stored at -70˚C for

further analyses.

II. Application of abiotic stress conditions on mature plants was conducted in controlled

greenhouse and phytotron conditions. Soil taken from a field at the IPG PAS was used as a

substrate. Soil was sifted through a sieve with a mesh diameter 0.8 mm and then mixed

with sand in a weight ratio of 7:2. 20 seeds per pot were sown, and after germination, the

number of plants was reduced to 10. Before sowing, seeds were treated with a systemic fun-

gicide Funaben (Synthos Agro). During the experiment, spraying against diseases was

applied as necessary, mainly against powdery mildew (Amistar (Syngenta)) and aphids

(Decis (Bayer)) according to the manufacturer’s doses. All abiotic stresses were applied

from the tillering stage (21 BBCH) for 14 days. BBCH scale is widely used to identify the

phenological development stages of a plant [43]. Material for testing was collected at the

14th day of stress exposure. To set-up stress conditions, following procedures were used:
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1. control (C) (greenhouse)—before filling the pots with substrate, its initial weight was

determined in order to determine the humidity of the pot with substrate during the

experiment. For control conditions optimal for barley growth 70% FWC (field water

capacity) was maintained [44];

2. drought (D) (greenhouse) - 20% FWC was used as stress condition [44]. To maintain

appropriate substrate moisture, measurements were carried out using the traditional

weighing method and a hand-held FOM/mts device based on the reflectometric method.

Using the FOM/mts device, three measurements were made within the experimental

vase, and then the volume humidity results were averaged and converted into weight

humidity. The methodology was developed as part of projects conducted at the Cereal

Phenomics Department of the IPG PAS [36,45];

3. salinity (S)—(greenhouse)—tested genotypes were watered once with an aqueous solu-

tion of sodium chloride (NaCl) from above to obtain a final concentration of 250

mM�dm-3 in the substrate [36];

4. temperature (T)—(phytotron): control conditions were characterized by a temperature

of 22˚C during the day and 18˚C at night, air humidity of 50–60% and a photoperiod of

16/8 h, and in stress conditions—temperature of 30˚C during the day and 10˚C at night

[36,46];

5. simultaneous application of each stress factor made it possible to obtain all combinations

of analyzed stresses (DT, ST, DS and DST).

Samples (mature root (separated from the soil by intensive rinsing with distilled water for 5

seconds), mature leaf (three best-developed leaves from each plant), crown tissue, mature

shoot, aleurone layer and embryonal axes) from both types of experiments were collected dur-

ing the day time and immediately frozen in liquid nitrogen after sampling. Aleurone layers

and embryonal axes were collected according to the modified protocol of Daneri-Castro and

Roberts [47].

2. 3. Analysis of ns-LTP2.8 coding sequence

In order to estimate the sequence variability of the ns-LTP2.8 gene allelic forms described by

Mikołajczak [28], coding sequence of ns-LTP2.8 (Ensembl Plants ID: HORVU.MOREX.

r3.4HG0417270 (HORVU4Hr1G089500.1); GenBank ID X15257.1) of each analyzed genotype

was multiplied and sequenced (LGC Genomics, Berlin, Germany). DNA samples were isolated

from leaves of all analyzed genotypes using Wizard1 Genomic DNA Purification Kit (100 mg/

isolation) according to the manufacturers protocol. DNA fragment was multiplied by PCR

reaction (95˚C/3 min; [95˚C/20 s; 58˚C/20 s; 72˚C/30 s] × 30 cycles; 72˚C/7 min; 4˚C/1)

using Phusion™ High-Fidelity DNA Polymerase (Thermo Fisher Scientific) according to the

manufacturers protocol (primers listed in S1a Table).

2. 4. Analysis of ns-LTP2.8 transcript level

To screen the ns-LTP2.8 expression level, total RNA was isolated from all collected samples (60

mg of tissue/isolation) according to Ogrodowicz [48]. RNA was extracted using the RNeasy

Mini Kit (QIAGEN, Germany) according to the manufacturer’s protocol with on-column

DNase treatment (QIAGEN, Germany). Additionally, isolates were treated with TURBO

DNase (Thermo Fisher Scientific, Lithuania) according to the manufacturer’s instructions to

exclude trace contamination of samples with genomic DNA.
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Single-stranded cDNA was synthesized from total RNA (150 ng/μl) using the iTaq Univer-

sal SYBR Green One-Step Kit (Bio-Rad) according to the manufacturer’s protocol. Primer

specificity was confirmed by sequencing the product of RT-qPCR reaction (S1 Fig) (Adam

Mickiewicz University, Poznań, Poland). The first step in RT-qPCR reaction was reverse tran-

scription (50˚C/10 min). Then, thermal cycling was performed with an initial step at 95˚C (60

s), followed by 39 cycles of denaturation at 95˚C (10 s) and primer annealing (30 s) (primers

listed in S1b Table). Each run was followed by a melting curve analysis. The data were normal-

ized using reference genes, and their stability was confirmed using a geNorm algorithm with

CFX Maestro v2.0 software (Bio-Rad) [49,50]. The most stable reference genes, EF1α (Gen-

Bank ID: Z50789.1,) and UBI (GenBank ID: M60175.1,) were used (S2 Fig). The Hvns-LTP2.8
primers were designed using BLASTN (plants.ensembl.org). Primer3 [51] was used to estimate

physical properties of the primers and their potential to form homo- and/or heterodimers was

evaluated using IDT OligoAnalyzer (Integrated DNA Technologies, USA). Oligos were syn-

thesized by Merck (sigmaaldrich.com). For each RT-qPCR run, isolates from the negative

(leaf), positive (aleurone layer), and no template controls (NTCs) were included. Changes in

gene expression were calculated by CFX Maestro software [52]. To evaluate performance of

each primer set, standard curves using 2-fold serial dilutions of the whole RNA isolates mix-

ture (based on six technical replicates) were prepared (S3 Fig).

2. 5. Preparation of total soluble protein (TSP) extracts

Approximately 60 mg of isolated tissues was added to a chilled mortar filled with liquid nitro-

gen. After disruption, whole powder was transferred into a 1.5 ml Eppendorf tube and extrac-

tion buffer (PBS with 0,1% Tween120) was added in 1:2 [mg:μl] ratio. The samples were

vortexed thoroughly, incubated on ice for 10 min, and centrifuged (10 min., 4˚C, 14000 rpm).

Protein concentration was determined using Quick Start™ Bradford Dye (Bio-Rad) according

to the manufacturer protocol [53]. The absorbance was measured at 595 nm (Shimadzu, UV-

1800) and converted to concentration using the calibration curve of bovine serum albumin

(BSA) dilutions. The supernatants were transferred to fresh tubes, frozen in liquid nitrogen,

and stored at -80˚C for further analysis [54,55].

2. 6. Detection of ns-LTP2.8 by western blot

Extracted proteins were used to screen presence of mature ns-LTP2.8 protein across all the

tested barley tissues. Protein extracts (30 μg TSP/well) were denatured and separated by

SDS-PAGE using a 6% stacking gel and 17% separating gel [47] in a Mini-PROTEAN Vertical

Electrophoresis Cell (Bio-Rad). Proteins were transferred to a PVDF membrane (Immobi-

lon1PSQ, Merck) by semidry protein transfer (55 min, 76 mA–parameters determined experi-

mentally). Membrane was blocked for 1 h at RT in 5% skim milk in TBST (50 mM Tris, 150

mM NaCl, 0.05% Tween120, pH 7.5). Primary polyclonal antibody specific for the antigen (16

amino acid fragment of the ns-LTP2.8 protein [GHYVSSPHARDTLNLC] according to Uni-

Prot ID: P20145) was custom designed (Agrisera, Sweden) and produced in rabbit. Control

antibodies (i) anti-H3 (Agrisera, Cat. No. AS10 710) and (ii) anti-UBI (Agrisera, Cat. No.

AS08 307) were selected due to their recognition of protein with similar size to the tested pro-

tein (inter alia allowing to establish conditions for example of the quality and efficiency of the

electrotransfer). Membranes were incubated (1 h, RT) in 50 ml Falcon tubes with Tris-buffered

saline (TBS) diluted primary antibodies: anti-ns-LTP2.8 (1:850) and anti-H3 and anti-UBI

(1:20000). Membranes were incubated with secondary antibody, goat anti-rabbit IgG (H&L)

HRP-conjugated (Agrisera, Cat. No. AS09 602) for 45 min in RT (diluted 1:150 000 in TBS).

After each step, membranes were washed (3 × 5 min) in TBST (0.1% Tween120). The
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chemiluminescence-based reaction development was carried out in the darkroom using X-ray

film (Kodak MXB) and ETA C 2.0 (Cyanagen) as a HRP substrate for 8-min exposure time.

2. 7. ELISA assay of ns-LTP2.8

The ELISA test was used to accurately estimate ns-LTP2.8 protein content in barley embryonal

axes using the same antibodies as for the western blot analysis. Each assay step, except the first

coating was preceded by three washes with PBST buffer (PBS with 0,05% Tween120). Poly-

Sorb1 plates (Nunc-Immuno 96-well microplate) were coated overnight at 4˚C with the pro-

tein sample extracts 10 × diluted in PBS or with the control extract with the antigen starting

from 500 ng/ml and serially diluted to 7,81 ng/ml to make the calibration curve. Blocking of

nonspecific interactions was done by adding 5% skim milk in PBS for 1h at RT and 300 rpm.

Primary antibody, diluted 1:150 in PBS, 100 μl/well was incubated for 1 h at RT and 300 rpm,

followed by the secondary anti-rabbit polyclonal antibody HRP-conjugated (Agrisera, Cat. No.

AS09 602) diluted 1:45 000 in PBS (100 μl/well) for 1 h at RT and 300 rpm. TMB substrate was

added to each well (100 μl) and incubated for 20 min at RT and 300 rpm. The reaction was

stopped by adding 100 μl of 0.5 M H2SO4 and absorbance was measured at 450 nm using the

Model 680 microplate reader (Bio-Rad). The ns-LTP2.8 protein was quantified [μg/g FW

(fresh weight)] according to calibration curve using Microplate Manager Software v. 5.2.1

(Bio-Rad) preceded by subtraction of the values for negative control.

2. 8. Data analysis

Analysis of variance was carried out in a model containing fixed effects of genotype, stress vari-

ant, and interaction of them, on log transformed data. Multiple comparisons of means for

genotypes under control conditions were performed using Fisher’s Least Significant Difference

method (p< 0.05). Significance of contrasts between stress variants and control for individual

genotypes was tested by F test at p< 0.05 [56], with Bonferroni correction for the number of

contrasts. Statistical analyses and graphs were made in the Genstat 19 program [57].

3. Results

3.1. ns-LTP2.8 transcript sequence and its level under optimal and stress

conditions

The sequenced fragments of ns-LTP2.8 protein coding sequences (> 91% sequence coverage)

do not differ between the tested genotypes (Fig 1).

Presence of the ns-LTP2.8 gene transcript has not been detected in any mature vegetative

tissue of any tested genotypes either under control as well as under any of applied stress condi-

tions. For aleurone and embryonal axis, significant changes in the level of ns-LTP2.8 mRNA

were identified in all tested genotypes (S4 Fig). The lowest ns-LTP2.8 transcript content under

optimal conditions was observed in MCam75, whereas the highest was found in MPW15/4

(ns-LTP2.8.b) (Fig 2).

On the other hand, MPS37 (ns-LTP2.8.a) exhibited much higher ns-LTP2.8 transcript level

compared with MPS106 (ns-LTP2.8.b), however, about half less than MPW15/4 (also ns-
LTP2.8.b). A varied tendency was observed within the MPW lines. Genotypes carrying the ns-
LTP2.8.a allele (MPW14/9, MPW14/19) showed reduced expression compared with its donor

genotype (MPS37), whereas genotypes carrying the ns-LTP2.8.b allele (MPW14/7, MPW15/4)

exhibited higher expression level compared with their donor genotype (MPS106) (Fig 2).

ANOVA for ns-LTP2.8 transcript level revealed statistically significant effects of genotype,

stress variant and of their interaction (p< 0.001). Analysis of contrasts showed that each of

PLOS ONE Impact of abiotic stresses on ns-LTP2.8 transcript and ns-LTP2.8 protein accumulation in barley embryos

PLOS ONE | https://doi.org/10.1371/journal.pone.0299400 March 19, 2024 7 / 23

https://doi.org/10.1371/journal.pone.0299400


the applied stress conditions resulted in statistically significant (F test, p< 0.001) increase of

ns-LTP2.8 transcript level compared with the control in barley embryonal axes (Fig 3) despite

of the genotype. The single abiotic stress generally caused a greater increase in ns-LTP2.8 tran-

script content compared with simultaneously applied stresses, except for combined drought

and salinity, which resulted in the highest accumulation of ns-LTP2.8 mRNA in all tested

genotypes. The highest increase in transcript content induced by combination of drought and

salinity stress was observed in MCam75 and MPS106 (ns-LTP2.8.b), whereas the lowest was in

MPS37 (ns-LTP2.8.a).

Fig 2. Mean ns-LTP2.8 expression level in all analyzed genotypes in control conditions. Error bars represent standard error of the mean. Letters represent

groups of similar genotypes (p< 0.05). EF1α and UBI served as a endogenous control for data normalization; six replicates were used for analysis, data points

are shown as dashes next to bars.

https://doi.org/10.1371/journal.pone.0299400.g002

Fig 1. ns-LTP2.8 protein coding sequence alignment (ClustalW, EMBL-EBI) of all tested barley genotypes and reference sequence

(GenBank ID: X15257.1), analysis done in triplicate.

https://doi.org/10.1371/journal.pone.0299400.g001
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Drought and salinity acting separately also significantly increased ns-LTP2.8 transcript

level, but this effect was much lower compared with exposure to their combination (Fig 3).

The exception is the MPS37 genotype, within which a similar effect of salinity on the ns-

Fig 3. ns-LTP2.8 expression (in log2 scale) under single and combined abiotic stresses in embryonal axis of

different barley genotypes. Error bars represent standard error of the mean values, stars denote mean values

significantly different from control mean (F test, p< 0.001). EF1α and UBI served as a endogenous control for data

normalization; six replicates were used for analysis, individual data points are shown as dashes next to bars.

https://doi.org/10.1371/journal.pone.0299400.g003
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LTP2.8 transcript level was demonstrated, similar to the effect of the drought and salinity com-

bination. In turn, CamB1 showed a similar level of ns-LTP2.8 expression under temperature

stress to that detected in drought and salinity combination (Fig 3). In general, smallest increase

was observed mainly in combined salinity and high temperature. Lines harboring monomor-

phic ns-LTP2.8.b allele exhibited similar pattern of change in ns-LTP2.8 transcript accumula-

tion, except for combined salinity and high temperature, in which they exhibited an increased

mRNA synthesis compared with MPS106. The genotypes carrying the ns-LTP2.8.a allele

exhibited more diverse relationship. The progeny lines did not show such a high impact of

drought or salinity stress on ns-LTP2.8 expression compared with the MPS37 parental line.

Overall, besides the influence of combined drought and salinity, the highest level of ns-LTP2.8
transcript level was observed under salinity stress in the most MCam lines and their parental

genotype Maresi.

3.2. The influence of abiotic stresses on ns-LTP2.8 accumulation

Presence of the ns-LTP2.8 protein was confirmed by western blot analysis only in aleurone layer

and barley embryonal axis both under control and all stress conditions and none of mature vege-

tative barley tissue showed its occurrence (S5 Fig). In general, increased TSP was noted after

application of individual stresses, primarily salinity regardless of the genotype (Fig 4).

ANOVA for ns-LTP2.8 protein level revealed statistically significant effects of genotype,

stress variant and of their interaction (p< 0.001). Analysis of contrasts showed that ns-LTP2.8

content decreased under abiotic stress conditions, applied either individually or simulta-

neously, with the exception of combined salinity and high temperature and combination of all

three stresses (DST), which, regardless of a genotype, caused the greatest increase in ns-LTP2.8

concentration in relation to control conditions. In contrast, the lowest ns-LTP2.8 contents

were observed in embryonal axes under combined drought and high temperature stresses for

all genotypes. Similar effect was observed for TSP when a smaller effect on ns-LTP2.8 content

was observed compared with the same stresses applied individually. A similar effect was

observed under combined drought and salinity conditions for most MCam lines and their

parental forms, whereas in most MPW lines, combination of drought and salinity conditions

induced ns-LTP2.8 accumulation more than drought and less than salt stress. In addition,

combination of drought and salinity affected protein content to a greater extent compared

with the stresses applied individually in MPS37 (ns-LTP2.8.a), which is in contrast to MPS106

(ns-LTP2.8.b), where drought and salinity acting alone exhibited a greater effect than their

combination (Fig 5).

3.3. Relationship between ns-LTP2.8 gene mRNA and ns-LTP2.8 protein

content

Correlation analysis of contrast estimates for ns-LTP2.8 mRNA and ns-LTP2.8 protein content

in barley embryonal axis showed a considerable impact of abiotic stress or their combination

on those variables relationship. A statistically significant, negative correlation was identified

for salinity stress, while under the combination of all three stresses (DST) the correlation was

positive. Based on the obtained data, it was found that among single stresses, only salt stress

generated a negative correlation of ns-LTP2.8 mRNA and protein content, while drought and

temperature stresses generated positive ones, but not significant (Fig 6).

4. Discussion

According to the EMBL-EBI Expression Atlas, ns-LTP2.8 gene transcription in the vegetative

tissues of barley plants cultivated under optimal conditions has not been observed, however,
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Fig 4. TSP content (in log2 scale) in barley embryonal axes in different abiotic stresses [mg/g FW]. Error bars represent

standard error of the mean, stars denote mean values significantly different from control mean (F test, p< 0.001). Six

replicates were used in analysis, individual data points are shown as dashes next to bars.

https://doi.org/10.1371/journal.pone.0299400.g004
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Fig 5. ns-LTP2.8 protein content (in log2 scale) in barley embryonal axes in different abiotic stresses [ng/mg TSP]. Error

bars represent standard error of the mean, stars denote mean values significantly different from control mean (F test,

p< 0.001). Six replicates were used in analysis; individual data points are shown as dashes next to bars.

https://doi.org/10.1371/journal.pone.0299400.g005
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the effect of severe abiotic stresses on the induction of its expression remained unknown. Duo

[15] suggested that the expression of some genes encoding ns-LTPs may be induced by abiotic

stress action. As a result of the experiments, we found that none of the most common naturally

occurring abiotic stresses or their combinations induces its expression in vegetative tissues.

Barley ns-LTP2 group consists of eight members [18], but each of them appears to be

expressed in different tissues, for example Mikołajczak [58] identified three ns-LTP2-like

genes (ns-LTP2.4, ns-LTP2.5 and ns-LTP2.6) to be overexpressed in barley flag leaf exposed to

drought and combined drought and heat stresses and Duo [15] mentioned about two ns-LTP2
genes (ns-LTP2.1 and ns-LTP2.2) to be expressed in roots. In studies done by Kalla [59] and

Mayer [60], the presence of the ns-LTP2.8 transcript was detected in the aleurone layer of

developing barley kernels. The expression of ns-LTP2.8 encoding genes has been suggested to

be specific only to this tissue [61]. However, in the embryonal axis, the expression of this gene

and the change in its protein level induced by abiotic stresses has not been investigated so far.

Although the function of ns-LTP2 proteins has not been fully described, the results presented

in this work, combined with those obtained by others [15,58], may lead to the conclusion that

Fig 6. Correlations between stress effects (stress v. control contrast estimate) for ns-LTP2.8 mRNA content (x axis) and ns-LTP2.8 protein content (y

axis). Correlations significant at p< 0.05 are marked with stars.

https://doi.org/10.1371/journal.pone.0299400.g006
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the expression of barley ns-LTP2 genes is subject to tissue-specific regulation. Apart from the

genes belonging to ns-LTP2 expressed in the leaf or root, ns-LTP2.8 is expressed and its protein

synthesized not exclusively in the aleurone layer but also in embryonal axis of barley. This may

lead to the conclusion that this protein participates in the nutrition of the germinating embryo

by transporting hydrophobic molecules synthesized by the embryo or originating from the

decomposition of reserve material contained in the grain and does not participate in the trans-

port of hydrophobic ligands to any of the vegetative tissues. It was suggested that the presence

of the ns-LTP2.8 protein in mature aleurone resulted from its stability after seed desiccation

rather than its synthesis in mature tissue after inhibition [62,63]. Results of the present study

confirmed the expression of the ns-LTP2.8 gene in the aleurone of barley grain, but impor-

tantly, presence of ns-LTP2.8 mRNA was also observed in the embryonal axis of barley as well

as the effect of stress conditions was demonstrated for the first time. Based on our results, we

claimed that apart from the function of this protein in transport within the cells of the aleurone

layer the ns-LTP2.8 also participates in transport within cells of the developing embryo (or

between those two cellular structures) to protect developing embryo from combined stresses

(mainly combination of salinity and temperature). It is known that under constrained condi-

tions proteins required for the stress response accumulate, whereas those not involved may be

degraded [64] therefore, the role of the ns-LTP2.8 protein in abolishing the negative impact of

these stress conditions in the barley embryonal axis seems to be significant.

The results obtained from SNP genotyping by Mikołajczak [28] suggested the existence of

different sequences that encode the ns-LTP2.8 protein. However, sequencing of the protein

coding sequence showed no differences between the sequences. The explanation for this might

be the fact that there are possible differences in the promoter sequence of this gene, but not in

the coding sequence. This statement is based on the fact that similar relationships have been

noted in relation to the transcript level of this gene within the lines carrying its allelic forms—

MPS37 and MPS106. Under control conditions, it was shown that the expression level between

parental genotypes carrying separate ns-LTP2.8 alleles is different. Moreover, genotypes carry-

ing the ns-LTP2.8.a allele showed more similar average content of the ns-LTP2.8 transcript

under abiotic stress conditions compared to those carrying the ns-LTP2.8.b allele. In turn, the

large difference in mRNA content of the ns-LTP2.8.b between the parental genotype (MPS106)

and the MPW15/4 line may result from the fact that, according to Mikołajczak [28], the

MPW15/4 genotype has the allelic form ns-LTP2.8.b consistent with the parental form

MPS106, but the genetic background of MPW15/4 is most similar to MPS37, a genotype show-

ing a higher expression level in control conditions. There are many papers stating about the

fundamental influence of promoter sequences on the expression of many genes under abiotic

stress conditions which affects binding of transcription factors and, therefore, modifying gene

transcription level [65,66], hence the existence of differences between the promoters of the

allelic forms analyzed in the study seems to explain the observed differences in the ns-LTP2.8
mRNA content under the conditions of various abiotic stresses noted in the study.

In our study, both parental forms possessing various ns-LTP2.8 gene allele exhibited differ-

ent mRNA levels compared with their progeny lines. These results indicate the significant

influence of mentioned genetic background of a given barley line on ns-LTP2.8 expression

which may additionally influence on the expression level of a given allelic forms of the ns-
LTP2.8 gene. SNP analyses revealed the presence of the ns-LTP2.8.a allele in the MPW14/9

line and the ns-LTP2.8.b allele in the MPW15/4 line, which showed greater deviations in the

expression of ns-LTP2.8 compared with their parental lines. This might also suggest the exis-

tence of differences in the promoter region of the allelic forms of this gene. Indeed, the vast

variation in the promoter sequences of the ns-LTP2 genes was documented by Duo [15],

which may affect the efficiency of transcription factor binding, reflecting differences in gene
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expression. Such a phenomenon is widely described in the literature for many transcription

factors and proteins involved in regulation and/or transcription initiation [67]. Moreover, the

existence of differences in the ns-LTP2.8 promoter sequence and not the protein-coding

sequence may be supported by the fact that a change in the coding sequence could contribute

to a frameshift mutation, causing the synthesis of an incorrect protein or block its translation

altogether. In the future, it would be necessary to sequence the promoter region of this gene in

lines carrying different allelic forms of ns-LTP2.8 and compare the results in search of differ-

ences in sequences that may contribute to different binding of transcription factors to it.

For an extended period of time, scientists have been analyzing the impact of single stress

conditions generating changes in the physiology, genetics, proteomics and metabolomics of

various plants. However, apart from knowing the impact of single stress, it is equally or even

more important to estimate the impact of combined stresses (most often occurring in natural

conditions) on the development and yielding of plants, especially in conditions of rapid popu-

lation growth in the world. Prasch and Sonnewald [68] identified four types of plant responses

to stress occurring simultaneously relative to those occurring individually, namely, a unique

response, an additive effect or synergy of individual stresses and the dominance of one of

them. They emphasized that the nature of this response depends on various factors, such as

the intensity of the given stress and its duration. Our results indicate that a single stress condi-

tion increases ns-LTP2.8 transcript level more significantly than combined stresses, with the

exception of combined drought and salinity, in which the highest increase in ns-LTP2.8
mRNA content was observed, regardless of genotype. This indicates an additive effect of these

stresses on ns-LTP2.8 expression level in barley embryos. In tobacco (Nicotiana glauca), at

least one gene belonging to ns-LTPs was overexpressed during combined drought and salinity,

which promoted the increased deposition of waxes on the outer side of the epidermis and is a

nonspecific mechanism of stress protection [69,70]. Meanwhile, temperature stress applied

simultaneously with salinity had the smallest mean effect on the ns-LTP2.8 gene transcript

level, suggesting a unique reaction in this stress variant on germinating barley plants. Correla-

tion analysis showed that salinity is presumably a dominant stress among examined single

stresses in relation to ns-LTP2.8 mRNA and ns-LTP2.8 protein content in barley embryonal

axis. This claim is supported by the fact that in DS and ST combination negative correlation

has occurred even though drought and temperature stresses acting separately generated posi-

tive correlation values. This allows us to conclude that the effect of salt stress dominated over

drought and temperature stress in relation to the ns-LTP2.8 mRNA:protein ratio and only the

interaction of drought and temperature with salinity was able to reverse this relationship.

Noteworthy, the highest ns-LTP2.8 expression under combined drought and salinity condi-

tions for all genotypes may suggest the existence of regulatory elements in its promoter that

are responsible for the initiation of transcription under these certain conditions. It is known

that co-occurrence of drought and salinity affects gene promoters that contain MYB family

transcription factor binding sites [71–73]. Duo [15] showed that the promoter of the barley ns-
LTPs genes contains multiple stress response elements, such as STRE, DRE, MBS, and TC

repeats as well as sites related to hormonal signaling, such as ARE, LTR, ABRE, ERE, which

are involved in stress response. The presence of so many regulatory motifs in the ns-LTPs pro-

moters may explain the fact that in addition to combined drought and salinity, each of the

stresses tested affected the expression of ns-LTP2.8 in the different genotypes in a slightly dif-

ferent manner.

Abiotic stress induces a cascade of events in plant cells and affects expression of specific

genes, which in turn, are responsible for the synthesis of specific proteins involved in adaptive

mechanisms [6]. In the present study, single stress (mainly S) primarily increased TSP regard-

less of the genotype. This may be explained by an increase in the synthesis of proteins involved
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in the response to abiotic stress, such as dehydrins, HSPs, transporters, or kinases in germinat-

ing barley embryos. In addition, a high cellular protein concentration represents a pathway of

osmotic adjustment [74,75]. Considering these results, this type of response to salt stress

appears to be a basic mechanism of protection in barley embryos germinating in high-salinity

environments. On the other hand, the simultaneous action of various stresses can inhibit the

course of energy-intensive cellular processes, such as translation [76–80], which may be basis

of the negative relationships observed between ns-LTP2.8 transcript and ns-LTP2.8 protein

contents. An opposite relationship was observed for the ns-LTP2.8 protein content under

combination of salinity and high temperature or combined all three stresses (DST) regardless

of the genotype. These were the only conditions in which a positive relationship between tran-

scription and translation of the ns-LTP2.8 gene was observed. Therefore, their effect on the

level of ns-LTP2.8 protein accumulation is additive. A similar relationship for combined salin-

ity and high temperature stress was observed for some heat shock proteins in Brassica juncea,

in which there was a significant increase in their expression and protein content compared

with conditions in which these stresses occurred independently [81]. The demonstration of a

higher ns-LTP2.8 accumulation level within the ST and DST conditions compared to the con-

trol may indicate an important role of ns-LTP2.8 in reaction to these factors in germinating

barley.

An increase in the mRNA level of a given gene does not always correlate with its corre-

sponding protein level [82]. Translational efficiency is affected by stress through activation

or repression, resulting in changes in the mRNA:protein ratio [83,84]. We found that the

highest increase in ns-LTP2.8 mRNA level was under combined drought and salinity condi-

tions, which did not concomitant with ns-LTP2.8 protein content. Presumably, translation

was inhibited under combined drought and salinity conditions. This phenomenon has been

described for other proteins, such as P5CDH and SRO5 in A. thaliana [85], ribosomal pro-

teins in oat [86], and other proteins in both monocots and dicots [87]. While interpreting

changes in the translation of ns-LTP2.8 mRNA, the participation of initiation sequences

within the 5’ UTR of the sequence should be considered. The presence of upstream open

reading frames (uORFs) in the 5’UTR mRNA may reduce translation of the main open

reading frame (mORF) depending on environmental conditions. In addition to uORFs,

other structures contained in the 5’ UTR may affect the level of mRNA translation by inter-

fering with it or acting preferentially on eukaryotic translation initiation factors (eIFs), ribo-

somal subunits, or other mRNA binding proteins. Involvement of this type of regulation

has been reported for the P5CR gene in A. thaliana [88–90]. Another feature of the tran-

script encoding the ns-LTP2.8 protein is the high proportion of nucleotides that form a

strong bond (~69%). In general, low G/C content characterizes highly translated mRNAs,

whereas high G/C content is associated with repressed transcripts [91,92]. The high G/C

content of the nucleotides in the 5’UTR as well as in the entire transcript may have a similar

effect because of their propensity to form higher-order structures that block translation. For

example, increased PDH45 mRNA was observed under abiotic stress without a change in

protein level [93–95]. In addition, ns-LTP2.8 mRNA is short and the translation efficiency

under abiotic stress is influenced by the length of the mRNA molecule. Under optimal con-

ditions, the translation of short mRNAs is favored, whereas under stress conditions, long

mRNAs (>2000 nt) are translated more efficiently [90,95–100]. The embryonal axis of bar-

ley is an intensively developing tissue that is rich in RNA. A significant amount of various

transcripts in the embryonal axis suggests that regulatory molecules (ncRNAs: sRNA,

siRNA, and miRNA) may be present in this pool in addition to coding sequences. Abiotic

stress can induce or inhibit the expression of specific ncRNAs, thereby regulating the trans-

lation of other mRNAs in cells [101–104].
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5. Conclusion

Presented work shows that none of the analyzed abiotic stresses or their combinations

induce ns-LTP2.8 gene expression in tissues other than aleurone and the embryonal axis in

barley. It has been shown that each of the abiotic stresses significantly increases the ns-
LTP2.8 expression level and the conditions that most significantly increase its expression

are the combination of drought and salinity regardless of the genotype. Conditions contrib-

uting most to increase the ns-LTP2.8 content in barley embryonal axis are conditions of

salinity and temperature acting together despite the genotype. Moreover, we observed that

the greatest increase in the total soluble protein content in barley, regardless of the geno-

type, was caused by salinity.

For future perspectives, we would recommend systematizing the names of the ns-LTP
genes and, consequently, proteins. Currently there are several publications describing dif-

ferent number of ns-LTPs encoded by barley genome. Many studies describing this proteins

base on in silico analyses of genomic sequences. In our opinion, this approach is not correct

and in order to avoid the existence of several naming patterns for the same molecule, action

should be taken. In addition, differences in the ns-LTP2.8 expression level and its protein

content in the embryonal axis could be more thoroughly investigated. It would be necessary

to analyze the possibility of binding various proteins to the promoter sequence of this gene

(for example by using EMSA technique), which would enable a better understanding of the

mechanism of its regulation. Moreover, it would be interesting to perform polysome profil-

ing in barley embryonal axes subjected to various types of abiotic stress in order to better

approximate the mechanism underlying the regulation of translation under stress in germi-

nating plants.
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