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Abstract

Monkeypox (MPXV) is one of the infectious viruses which caused morbidity and mortality
problems in these years. Despite its danger to public health, there is no approved drug to
stand and handle MPXV. On the other hand, drug repurposing is a promising screening
method for the low-cost introduction of approved drugs for emerging diseases and viruses
which utilizes computational methods. Therefore, drug repurposing is a promising approach
to suggesting approved drugs for the MPXV. This paper proposes a computational frame-
work for MPXV antiviral prediction. To do this, we have generated a new virus-antiviral data-
set. Moreover, we applied several machine learning and one deep learning method for
virus-antiviral prediction. The suggested drugs by the learning methods have been investi-
gated using docking studies. The target protein structure is modeled using homology model-
ing and, then, refined and validated. To the best of our knowledge, this work is the first work
to study deep learning methods for the prediction of MPXV antivirals. The screening results
confirm that Tilorone, Valacyclovir, Ribavirin, Favipiravir, and Baloxavir marboxil are effec-
tive drugs for MPXV treatment.

1 Introduction

Monkeypox (MPXV) is a viral zoonosis disease resulting from an enveloped double-stranded
DNA virus that belongs to the Poxviridae family and causes an international public health
emergency [1]. The initial occurrence of monkeypox in animals and humans was reported in
1958 and 1970, respectively [2]. A global epidemic of MPXV in May 2022 resulted in more
than 85,000 cases across regions with no history of transmission [3]. Also, over 30,000 cases of
MPXYV had been reported in the US as of March 2023 [4]. The virus transmits through contact
with skin lesions, respiratory droplets, body fluids, and fomites [2]. Although several antiviral
drugs are suggested for treatment against MPXV, the Food and Drug Administration (FDA)
has not approved any specific drugs for human monkeypox [5]. On the other hand, drug
repurposing is an efficient approach for accelerating the discovery of novel treatments by pro-
viding new indications for approved drugs [6]. Currently, modern computational methods are
making a significant impact on drug repurposing for the treatment of viral infectious diseases.
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For example, drug repurposing has played an important role in research and proposing novel
drugs for Covid 19. Tang et al. suggested a non-negative matrix factorization method for sug-
gesting antivirals against SARS-CoV-2 [7]. However, the matrix factorization methods suffer
from two problems, lack of generalizability and data leakage [8]. Beck et al. SARS-CoV-2 [9]
using deep model. Zeng et al. have the same mission to suggest new drugs for SARS-CoV-2
using deep models [10]. Other studies suggested and showed the use of machine learning and
a spectrum of deep learning methods have a higher performance and more trustful results for
drug-target prediction of proteins, SARS-CoV-2, and other viruses [9, 11-19]. It is worth men-
tioning that although deep learning algorithms are the winners in the field of drug repurpos-
ing, the machine learning methods can reach a similar performance in most cases with a lower
amount of resource consumption [20]. Therefore, this paper tends to check and propose meth-
ods from both machine learning and deep learning for monkeypox antiviral prediction.

This study is centered on using computational drug repurposing to identify a novel candi-
date for targeting monkeypox among approved antiviral drugs. To do this, we have created a
virus-antiviral dataset and gathered similar viruses to the MPXV. In addition to that, we apply
proper similarity measures to create effective features for viruses and antivirals. We, as men-
tioned above, utilize machine learning and deep learning methods for the prediction. Then,
based on the results of the learning methods, we chose the most promising drugs and per-
formed a docking study to approve the results of the machine learning methods. The docking
study confirms that the results of the learning methods are promising and proper voices for
MPXV treatment. To the best of our knowledge, this is the first work in applying results of
deep and machine learning for drug recommendation for the MPXYV virus.

The contribution of the paper is 5-fold.

 Generating a virus-antiviral dataset for MPXV prediction.

« Applying machine learning algorithms, i.e., decision tree, SVM, and random forest
algorithms.

« Proposing and applying a CNN model to train the prediction model.

« Proposing five approved drugs for MPXV treatment, i.e., Tilorone, Valacyclovir, Ribavirin,
Favipiravir, and Baloxavir marboxil.

« Validating the proposed drugs by docking study.

The results are promising and the docking study supports the proposed MPXV antivirals
with high scores. The structure of the paper is as follows. Section 2 explains the dataset
generation and the learning methods for the MPXV prediction. Additionally, it introduces the
homology modeling and docking studies applied to the proposed antivirals. Section 3
compares the performance of learning algorithms, introduces the proposed drugs, and
reports homology modeling and docking studies on the proposed drugs. Section 4 finalizes the

paper.

2 Materials and methods

This paper proposes a prediction framework for monkeypox virus-antiviral interaction that
uses computational learning methods and we call it MPXV-Pred. This section provides the
steps of MPXV-Pred. The whole process contains five main steps, i.e., data collection, dataset
generation, the learning phase using machine learning and deep learning methods, the voting
procedure to propose the most effective antiviral, and finally the docking step. Fig 1 shows the
pipeline of the proposed method. The following sections describe these steps.
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Fig 1. MPXV-Pred framework. It aims to predict novel antivirals for the MPXV. The pipeline contains five steps data
collection, dataset generation, machine and deep learning methods, the voting procedure to announce the promising
antiviral, and docking study. I) Data collection: the raw and primary information on viruses and antivirals have been
collected from the NIH. The approved virus-antiviral interactions have also been provided from DrugVirus.info 2 [21].
IT) Dataset generation: the output of this step is the generated dataset including the similarity matrix of viruses,
similarity matrices of antivirals, and virus-antiviral interaction matrix. The virus similarity matrix has been computed
using sequence alignment and calculating the similarity percent. Additionally, the Tanimoto score has been used to
compute the antiviral similarity matrix. IIT) The learning phase: this phase employs four different machine learning
methods, i.e. CNN, SVM, Decision tree, and Random forest. IV) The voting step uses the prediction results of the ML
methods of the previous step and votes among them to suggest the efficient antiviral for MPXV. V) The Docking study
investigates and approves the predicted antivirals for MPXV treatment.

https://doi.org/10.1371/journal.pone.0299342.g001

2.1 Data collection

There exists no proper dataset available to contain information on viruses and antivirals that
have common properties with the MPXV virus. Therefore, in the first step, it is necessary to
prepare a new corresponding dataset. To do that we collected raw data of viruses and antivi-
rals, e.g., smallpox from “The National Library of Medicine” databases [22]. The raw data
includes the Fasta format of virus sequences of 100 viruses, the simplified molecular-input
line-entry system (SMILES) format of 198 drugs, and the interaction between them. The
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collected dataset has 96 approved virus-antiviral interactions, therefore, its sparsity reaches
99.52%.

2.2 Similarity computation and generating the dataset

Using sequences and SMILES, the similarities between each pair of viruses in addition to each
pair of drugs were computed correspondingly. Tanimoto [23] is a popular approach to calcu-
lating the similarities between drugs. Thus, we applied this algorithm to the collected data to
create a similarity matrix of drugs. To calculate the similarity among the viruses we align them
in the first step. Therefore, we use the PairWiseAligner tool from the BioPython library [24].
The alignments are performed locally with the Smith-Waterman algorithm [25] and the
NUC44 substitution matrix is used to score the alignments. The gap score is set to —10 and
the gap extend score is set to —0.5. These two scores are default scores from emboss [26] tools.
Fig la shows the procedure of collecting the data and inverting it to similarity matrices.

2.3 Learning phase

The learning phase aims to train a model to predict the most effective antivirals for the MPXV.
To do this, MPXV-Pred utilizes three machine learning methods, i.e., decision tree, SVM, and
random forest [27]. The MPXV-Pred uses the similarity vectors of each virus and antiviral as
their feature vector. Therefore, the input vectors of each learning method are the concatena-
tion of feature vectors corresponding to each virus-antiviral pair. The interaction matrix plays
the role of the virus-antiviral label. Therefore, we can formulate the problem as follows.

%, = LeraningMethod(v[|av,) (1)

Where, v; and av; represent the features vectors of i-th virus and j-th antiviral. The X, shows
the prediction result of the interaction between the i-th virus and j-th antiviral. Moreover, it
uses a convolution-based deep learning model which we call our proposal as Drug Repurpos-
ing-analytic Way (DRaW) [8] to complete the same mission. Fig 2 shows the DRaW frame-
work. DRaW consists of three convolution layers in total. The first layer is the convolution
layer with 128 filters with size 3 and batch normalization is applied to improve training stabil-
ity. And dropout layer is used to randomly drop 50% of the unit during training to reduce
overfitting. for the second and third layers, we’ve used the same pattern but with different sizes
of filters. And lastly, a dense layer with 128 units is applied for classification.

DRaW’s input vector is the virus-antiviral pair’s representation from the concatenation of
v;and avj, ore;; = v,|av,.

minZZ[xij — DRaW(e,;, opt : Adam, loss : Cross — Ent, )] (2)

i=1 j=1

2.4 Voting process

The MPXV-Pred investigates the suggested antivirals of whole methods and reports those that
happen in at least two of the learning methods. This may help to suggest the most effective
potential antivirals for MPXV treatment.

2.5 Homology modeling, refinement and validation

Since the outbreak of the MPXV global epidemic, tecovirimat is the only currently available
therapeutic agent that has been suggested for use in Europe under “exceptional circumstances”
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Fig 2. DRaW architecture. It is a CNN-based deep learning method.
https://doi.org/10.1371/journal.pone.0299342.g002

by the European Medicines Agency [28]. In other words, there is no approved drug for
MPXV. According to the literature, the envelope receptor F-13 is a potential target for tecoviri-
mat. This protein plays a crucial role in the growth and maturation of the monkeypox virus.
The mechanism of F-13-inhibition could be a promising treatment for monkeypox. Therefore,
we employed molecular docking simulations to investigate the binding capability of drugs pre-
dicted by our proposed model to the F-13 protein as a potential and promising target.

The primary challenge arises from the unavailability of the complete crystal structure of the
poxvirus F-13. To address this challenge, the UniprotKB [29] entry Q5IXYO, representing the
monkeypox envelope protein F-13 with a length of 372 amino acids, was uploaded to Alpha-
Fold2 [30] to generate a predicted 3D protein structure. We also determined the predicted
local distance difference test (pLDDT) values for the predicted structure. This modeled struc-
ture was optimized by energy minimization using the YASARA server [31], which used the
YASARA force field for this purpose.

Before conducting molecular docking and assessing the potential binding of predicted
drugs to the F-13 protein, the constructed structure of this protein needs to be refined and vali-
dated. The predicted tertiary structure of monkeypox envelope protein F-13 was refined using
the Galaxy Refine service [32]. Furthermore, to validate the structure of the refined model, the
energy of residue-residue interaction using a distance-based pair potential and the energy was
transformed to a score (called z-score) were analyzed using the ProSA-web server [33]. The
Stereochemical quality of the modeled F-13 protein was calculated using the Errat [34]. Addi-
tionally, Ramachandran plot analysis was employed to assess the consistency of the con-
structed model [35].

2.6 Molecular docking

Structure-based molecular docking is a computational technique to evaluate how a ligand
interacts with a target and addresses three main objectives: virtual screening, posture
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prediction, and estimation of binding affinity [36]. Among the top ten drugs predicted by
DRaW, we investigated instances that were also included in the predicted drug lists of three
other models. To elucidate further, according to the data from Table 4, Tilorone, Valacyclovir,
Ribavirin, Baloxavir, and Favipiravir are the drugs that appear most frequently across the pre-
dicted lists of all models. Therefore, we decided to do molecular docking studies employing
these drugs.

The homology-modeled protein structure was prepared using the Autodock tools (ADT).
This procedure involved the incorporation of polar hydrogens and Kollman charges. The
3D-SDF structures of all five candidate drugs were retrieved from NCBI PubChem [37].

The preparation of ligands involved the addition of polar hydrogens and Gasteiger charges.
Additionally, root detection and selection of torsions from the torsion tree were conducted

to rotate all the rotatable bonds [38]. We identified the F-13 binding site based on the
methodology outlined by Li et al. [39]. According to their study, the grid box was fixed at
(-6.27702) * (-2.48567) * (-8.66086) in XYZ-coordinates, with a radius of 8.9, and the spacing
for the grid box was kept at 0.375 A. Finally, docking studies were performed by AutoDock 4.2
using the Lamarckian genetic algorithm.

2.7 Complexity analysis

We provide a complexity analysis of all four learning methods. Let m be the number of viruses
and » be the number of antivirals. The feature vector is the concatenation of virus and antiviral
similarity vectors. We assume its size is d.

Decision tree. Time complexity of the decision tree is O(m * n * log(m * n) * d) where m * n
is the number of whole virus-antiviral pairs in the training phase and d is the dimensionality of
the data. The runtime complexity is O(depth).

SVM. Train complexity of Support Vector Machine is O((m * 1)%). The runtime complexity
is O(k * d) where k is the number of support vectors and d is the dimensionality of data.

Random forest. The time complexity of a random forest depends on the number of trees in
the forest and the depth of each tree. So the training time complexity is O(m * n * log(m * n) *
d * t). Where t is the number of decision trees. The runtime time complexity is O(depth * t).

Deep learning. We assume the number of epochs in the training phase is e and each epoch
time interval is equal to T;. Then, the training phase time complexity is O(m *n *d* e * T). Its
runtime complexity is O(d*T), where T is the test phase running time.

3 Results

This section provides the result of the MPXV-Pred using the proposed methods with early
stpping. The reported results are based on 10-fold cross-validation.
Table 1 reports the specifications of the SVM, random forest, decision tree, and DRaW.

3.1 Performance evaluations

We evaluate the results of the methods using the following metrics. These metrics are useful
for binary classification [40]. The MPXV-Pred dataset is imbalanced, therefore, metrics such
as F1-score and AUPR are significant in interpreting the results [41].

TN
Specificity = ——— 3
pecificity = o, (3)
TP
Sensitivity = ———— 4
ensitivity = - (4)
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Table 1. Learning models’ parameters.

ML Algorithms Parameters Parameters’ Values
DRaW optimizer adam
loss BinaryCrossEntropy
epoch 500
batch size 128
SVM kernel rbf
degree 3
gamma scale
tol le-3
Random Forest criterion gini
no. estimators 100sqrt
max features sqrt
Decision Tree criterion gini
splitter best
https://doi.org/10.1371/journal.pone.0299342.t001
TP
Precision = — 5
recision TP + FP 5 ( )
TP+ TN
Accuracy = , 6
YT TP+ TN+ FP+ FN ©)
recision X recall
Fl—score:2><p__—, (7)
precision + recall
TP x TN — FP X FN
MCC = ) (8)
/(TP + FP)(TP + FN)(IN + FP)(TN + EN)
AUC — ROC = ) "TPRAFPR,, (9)
i=1
AUPR = Zprecisioni A recall,. (10)

3.2 Prediction results

i=1

Tables 2 and 3 show two different handling of the results. As mentioned above, we applied
three machine learning methods and DRaW, a deep convolutional learning method for drug

Table 2. Comparing the performance of machine learning models by different measures. In this experiment, the threshold limit in the classification problem is set

equal to 0.5.

Method Sp Re(Se) Pr Ac F1 MCC AUC-ROC AUPR
Decision Tree 0.9982 + 0.0006 | 0.3337 £0.0324 | 0.4953 +0.0931 | 0.9949 £+ 0.0006 | 0.3962 + 0.0424 | 0.4028 + 0.0479 | 0.6660 + 0.0162 | 0.4161 = 0.0536
SVM 0.9996 + 0.0004 | 0.0816 £+ 0.0387 | 0.5600 + 0.2881 | 0.9951 + 0.0003 | 0.1383 + 0.0620 | 0.2062 + 0.0875 | 0.8593 +0.0730 | 0.2456 * 0.1060
Random Forest | 1.0 £ 0.0 0.1329 +0.0283 | 1.0 £0.0 0.9957 +0.0004 | 0.2337 £ 0.0436 | 0.3622 + 0.0379 | 0.9543 +0.0196 | 0.3890 + 0.0408
DRaW 0.9999 +0.0002 | 0.1143 £ 0.0557 | 0.9200 + 0.1789 | 0.9955 +0.0011 | 0.1966 + 0.0842 | 0.3104 + 0.0716 | 0.9641 +0.0172 | 0.4114 = 0.0534

https://doi.org/10.1371/journal.pone.0299342.t002
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Fig 3. Performance comparison of methods on MPXV-Pred dataset. AUC-ROC and AUPR bar charts.

https://doi.org/10.1371/journal.pone.0299342.g003

repurposing, to the dataset. Table 2 shows the result by defining a fixed threshold equal to 0.5.
In the majority of metrics DRaW model has the highest score. DRaW has the highest
AUC-ROC. Additionally, The highest AUPR score belongs to the decision tree and DRaW.
We believe the higher result of the decision tree model in comparison to the random forest
and SVM could be due to overfitting [42]. Because decision trees have a high probability of
falling into the overfitting problem.

In contrast to the previous calculation of evaluation metrics, we defined a floating threshold
to choose the best values of all metrics except AUC-ROC and AUPR (Because these two do
not depend on a single threshold). Table 3 shows the results of the floating threshold. The last
row shows the threshold of each method. The decision tree model does not need any threshold
and, therefore, is left empty. The DRaW has the highest AUC-ROC and the decision tree has
the lowest AUC-ROC. The DRaW and decision tree have the highest AUPR. The high value of
AUPR for the decision tree, as mentioned before, could be due to overfitting.

Fig 3 shows the bar chart of the AUC-ROC and AUPR of the decision tree, SVM, random
forest, and DRaW models. As shown in the figure, random forest and DRaW have the highest
AUC-ROC, and the winner is the latter. Additionally, DRaW and decision tree have the high-
est AUPR.

3.3 Voting results

Table 4 shows the suggested drugs of voting results of whole four methods. As shown in the
table, the first rank in all methods belongs to Tilirone. Valacyclovir occupies the second rank
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Table 4. Proposed drugs from the voting process.

DRaW SVM Random Forest DecisionTree
Tilorone Tilorone Tilorone Tilorone
Valacyclovir Amantadine Favipiravir Ribavirin
Ribavirin Baloxavir marboxil Ribavirin

Foscarnet Lamivudine Itraconazole

Inosine (Inosine pranobex) Favipiravir Baloxavir marboxil

Baloxavir marboxil Valacyclovir Valacyclovir

Favipiravir Thymalfasin Fluvastatin

Valganciclovir Rimantadine Famciclovir

Lamivudine Lopinavir Ilaprazole

Ganciclovir Zanamivir Resveratrol

https://doi.org/10.1371/journal.pone.0299342.t1004

in CNN and has been suggested by three out of four methods. Ribavirin has been suggested by
three out of four methods. The same as the latter happened for Favipiravir. Finally, Baloxavir
marboxil has been reported by three out of four methods. Notably, the decision tree suggested
two drugs and we report those two, i.e., Tilirone and Ribavirin. One important observation is
that while the four methods follow different approaches for learning and prediction, they con-
firm each other and the majority of top-rank antivirals are the same in all of them.

3.4 Results of homology modeling, refinement and validation

We utilized AlphaFold tools to predict the three-dimensional structure of the monkeypox
envelope protein F-13, which has a length of 372 amino acids. The evaluation of structure pre-
diction relied on the predicted local distance difference test (pLDDT) score [29]. The highest
pLDDT score among the five predicted envelope protein F-13 structures was 91.04. The addi-
tional pLDDT scores are shown in Table 5.

Fig 4 Illustrates the homology model confidence score with predicted LDDT and predicted
aligned error (Rank 1). Given that a pLDDT score greater than 70 is indicative of a high-qual-
ity structure, the results from the pLDDT analysis further confirm the high accuracy of the pre-
dicted structures.

The ProSA was used to validate the three-dimensional model of the F-13 protein. This tool
employs the z-score and a plot of the residue energies of the input structure as two quality met-
rics. The z-score of our refined model was —8.09 kcal/mol. As illustrated in Fig 5A, the model
structure of F-13 follows the known proteins whose structures have already been determined
through X-ray crystallography (light blue) or NMR spectroscopy (dark blue) studies. Also, the
energy plot, shown in Fig 5B, depicts the local model’s quality by showing energies as a function
of amino acid sequence position. As a rule, positive numbers often indicate inaccurate portions
of a model. The “overall quality factor” for non-bonded atomic interactions, or ERRAT, is a

Table 5. pLDDT scores.

Model Rank Mean pLDDT Max PAE pTM

1 91.04 30.95 0.92
2 90.67 30.77 0.92
3 90.26 30.86 0.92
4 90.21 31.13 0.91
5 89.41 30.81 0.91

https://doi.org/10.1371/journal.pone.0299342.t1005
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score that represents the quality of a model. The generally accepted threshold for a high-quality
model is above 50 [43]. In this study, the ERRAT score for the modeled F-13 protein was 89.73,

shown in Fig 6, indicating that the model quality is significant and acceptable.

In Fig 7, the Ramachandran plot analysis revealed that 87.3% of the residues were in the
favored regions (A, B, and L), while 11.8% were in additionally allowed regions (a, b, 1, and p).
Only 0.3% of the residues were in generously allowed regions, and 0.6% were in the unflavored
regions. These results indicate that the generated structures of the F-13 protein are highly valid

and reliable.

3.5 Docking result

Molecular docking studies were conducted to assess the potential interactions between the F-
13 protein and a set of five chosen antiviral drugs. We chose the best ligand conformations by

Program: ERRAT2

File: model_1.pdb

Chain#A

Overall quality factor**: 89.736

©
2
®

©

&

X
=z,
L

Error value*

20 40 60 8 100 120 140 160 180 200 220 240 260 280 300
Residue # (window center)

Fig 6. ERRAT result depicting the overall quality factor of modeled protein.

https://doi.org/10.1371/journal.pone.0299342.9006
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clustering them based on both RMSD and binding affinity [44]. To explore the intermolecular
interaction forces, the results of the docking were visualized using Biovia Discovery Studio
Visualizer [45]. Table 6 displays the five selected antiviral drugs along with their respective
docking scores with the homology-modeled F-13 protein structure. Based on the docking
scores, Baloxavir exhibited the most favorable binding energy of —8.32 kcal/mol and formed
three hydrogen bonds with LYS 88, ASN 90, and SER 58. Figs 8 to 12 illustrate both the 3D
and 2D representations of each drug-F-13 protein complex.

Fig 8 shows Tilorone’s 3D and 2D representations. In this figure, the docking results reveal
hydrogen bonds with ASP109 and ILE108 residues, as well as van der Waals interactions with
several other residues. Additionally, the binding of tilorone to the F-13 protein indicates unfa-
vorable acceptor-acceptor interactions with HIS338.

Fig 9 shows Valacyclovir’s 3D and 2D representations. The interaction between Valacyclo-
vir and F-13 encompasses various non-covalent interactions, including hydrogen bonds, pi-
alkyl interactions, and van der Waals forces.

Fig 10 shows Ribavirin’s 3D and 2D representations. This figure illustrates undesirable
donor-donor bonding involving TYR285 and VAL284 in the interaction between ribavirin
and F-13. Nevertheless, the overall interaction pattern involves hydrogen bonds with TRP279,

Table 6. Docking scores of selected drugs.

Drug Name PUBCHEM CID Molecular Formula Docking Score (kcal/mol)
Tilorone 5475 Cy5H34N,03 -7.10
Valacyclovir 135398742 C13H5NgOy -7.19
Ribavirin 37542 CgH,N,O5 —-7.40
Baloxavir 124081876 Cy4H,9F,N504S -8.32
Favipiravir 492405 CsH4FN;0, -5.13

https://doi.org/10.1371/journal.pone.0299342.t1006
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Fig 8. 2D and 3D representations of the docked pose for the predicted interaction between Tilorone. The green dashed lines represent hydrogen
bonds and F-13 protein.
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Fig 9. 2D and 3D representations of the docked pose for the predicted interaction between Valacyclovir. The green dashed
lines represent hydrogen bonds and F-13 protein.
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Fig 10. 2D and 3D representations of the docked pose for the predicted interaction between Ribavirin. The green dashed lines represent
hydrogen bonds and F-13 protein.

https://doi.org/10.1371/journal.pone.0299342.9010
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ASN282, MET287, and SER286 residues, along with van der Waals interactions with other
residues.

Fig 11 shows Favipiravir’s 3D and 2D representations. For the interaction of favipiravir
with F-13 (Fig 11), conventional hydrogen bonds, pi-alkyl interactions, and weak van der
Waals bonds dominate.

As the last suggested drug, Fig 12 shows Baloxavir marboxil’s 3D and 2D representations.
Baloxavir binds to the F-13 protein by forming hydrogen bonds with ASP280, VAL284,
SER286, ASN282, and MET287 residues, as well as other interactions such as pi-sigma, pi-sul-
fur, and van der Waals forces.

4 Conclusion

While the monkeypox virus has caused a global epidemic in recent years, there are no
approved drugs for its treatment. This work proposed a computational drug repurposing
approach to suggest several drugs to deal with MPXV. To do this, we prepared a dataset from
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viruses and antivirals to apply computational learning methods for drug suggestions. We have
applied SVM, random forest, decision tree, and convolutional deep model (DRaW) to the
virus and antiviral features to learn virus-antiviral interactions. The performance analysis
shows that DRaW has the highest performance and the random forest comes after that. Then,
using voting, the highly promising antivirals, i.e., Tilorone, Valacyclovir, Ribavirin, Baloxavir
marboxil, and Favipiravir, suggested by the learning methods have been chosen for further
analysis. We did the homology modeling and molecular docking study on the proposed drugs.
The homology modeling using AlphaFold makes it clear that envelope receptor F-13 can be
the target of the antivirals. Therefore, we applied the docking studies on the suggested drugs of
the computational modeling and it approved the hypothesis with high binding affinity. Gener-
ally, to our best knowledge, this is the first work that proposes antivirals for treating the
MPXV. These screening results on Tilorone, Valacyclovir, Ribavirin, Baloxavir marboxil, and
Faviapiravir can be further analyzed using laboratory analysis. The work approves the high
potential of computational drug repurposing for the screening phase of drug discovery which
causes lower time and costs.
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