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Abstract

Epigraphy is witnessing a growing integration of artificial intelligence, notably through its sub-

field of machine learning (ML), especially in tasks like extracting insights from ancient inscrip-

tions. However, scarce labeled data for training ML algorithms severely limits current

techniques, especially for ancient scripts like Old Aramaic. Our research pioneers an innova-

tive methodology for generating synthetic training data tailored to Old Aramaic letters. Our

pipeline synthesizes photo-realistic Aramaic letter datasets, incorporating textural features,

lighting, damage, and augmentations to mimic real-world inscription diversity. Despite minimal

real examples, we engineer a dataset of 250 000 training and 25 000 validation images cover-

ing the 22 letter classes in the Aramaic alphabet. This comprehensive corpus provides a robust

volume of data for training a residual neural network (ResNet) to classify highly degraded Ara-

maic letters. The ResNet model demonstrates 95% accuracy in classifying real images from

the 8th century BCE Hadad statue inscription. Additional experiments validate performance on

varying materials and styles, proving effective generalization. Our results validate the model’s

capabilities in handling diverse real-world scenarios, proving the viability of our synthetic data

approach and avoiding the dependence on scarce training data that has constrained epi-

graphic analysis. Our innovative framework elevates interpretation accuracy on damaged

inscriptions, thus enhancing knowledge extraction from these historical resources.

1 Introduction

Deciphering ancient scripts through the study of inscriptions, known as epigraphy, provides

valuable insights into historical languages and cultures. However, the automated recognition

and interpretation of ancient writing systems pose considerable challenges for ML techniques

[1, 2]. In particular, Old Aramaic scripts present a highly complex task for algorithmic

analysis.

Aramaic has been used as a script for over three millennia, evolving into distinct regional

styles [3]. The Aramaic alphabet, first used in the 9th century BCE, has 22 letter signs. The
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Aramaic alphabet has evolved to include localized variations in writing conventions [4]. Sur-

viving Aramaic inscriptions display a tremendous diversity based on temporal, geographic,

and linguistic factors [5]. For instance, ancient Imperial Aramaic was used for official inscrip-

tions during the Achaemenid era in the 1st millennium BCE [6]. Later forms such as Jewish

Babylonian Aramaic and Jewish Palestinian Aramaic emerged following the exile of Jewish

populations [7]. This evolution resulted in scripts of dialects, such as Syriac, Mandaic, and

Samaritan in the Common Era [8].

Besides linguistic differences, Aramaic texts were inscribed on various materials, such as

stone, ceramic, papyrus, parchment, and metal, each imparting a distinct visual quality [9].

For example, stone inscriptions were either incised or in relief. Inscriptions on papyrus were

typically displayed in dark ink on a yellowish background, on parchment in dark ink on a

white background, and on ceramic in dark or red ink on a brown background. Environmental

factors over centuries of exposure have eroded many inscriptions.

Some promising applications of deep neural networks have recently emerged for analyzing

ancient scripts such as Old Greek, Cuneiform, and Egyptian hieroglyphs [1, 10, 11]. However,

a persistent barrier is the lack of sufficient training examples, with datasets often limited to

10,000s of images. Significant amounts of annotated letters are challenging to access due to

various factors, including the preservation condition of ancient inscriptions, limited accessibil-

ity, and the time-consuming nature of manual annotation. Synthetic data generation provides

a potential solution by producing labeled corpora for training ML models [12, 13]. Recent

advances in procedural modeling and computer graphics enable the creation of simulated

environments with high visual realism [12]. However, frameworks tailored to the complexities

of historical scripts like Old Aramaic remain lacking. Manual annotation is extremely chal-

lenging given the temporal and geographic breadth of the ancient scripts. This scarcity of

labeled training data has constrained computational approaches to recognizing Aramaic

scripts.

This paper presents a novel pipeline for the synthetic generation of annotated Old Aramaic

letter datasets covering various styles and materials. Synthetic data are used to train deep neu-

ral networks for classifying Aramaic glyphs within inscriptions by algorithmically simulating

factors such as linguistic variations, material differences, and erosion effects. Our approach

bridges the interdisciplinary gap between ML and cultural heritage, providing a scalable solu-

tion for deciphering ancient inscriptions where real-world training data is scarce.

For our analysis, we will test on several Old Aramaic inscriptions across the northern

Levant region [9, 14]. For instance, the mid-8th-century monumental Hadad statue (see Fig 4)

from Gerçin preserves an inscription in 34 lines [15]. The inscription has been intentionally

damaged and is, in addition, in certain places, considerably worn, making many of its letters

hard to discern, even with modern high-resolution visual techniques.

This paper is organized as follows. Section 2 reviews the related work in the field, highlight-

ing the current gaps our work aims to address. Section 3 discusses the challenges in the recog-

nition of Old Aramaic letters. Section 4 presents our methodological approach, from synthetic

data generation to model training and testing. This is followed by Section 5, which details our

experiments and results. Lastly, Sections 6 and 7 provide discussion and conclusions by sum-

marizing our findings and their implications for epigraphy.

2 Related work

The application of ML algorithms to analyze ancient scripts has seen growing interest in recent

years. However, a persistent challenge hampering the performance of modern deep learning

models on these tasks is the scarcity of large-scale, representative training datasets. We review
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relevant literature on ML for ancient languages, existing datasets, and synthetic data

generation.

2.1 Machine learning for ancient scripts

The application of machine learning to analyze ancient scripts has seen growing interest, but

progress has been constrained by limited training data. Ancient script datasets typically com-

prise 10,000s of examples, far smaller than the volumes needed to train modern deep neural

networks effectively. This scarcity poses obstacles to the performance of modern deep learning

models, which typically require far larger volumes of data.

For instance, Popovic et al. [16] applied various machine learning techniques to investigate

patterns for the identification of scribal hands in the Dead Sea Scrolls, particularly the Great

Isaiah Scroll (1QIsaa). Their research demonstrated that multiple scribes contributed to the

same manuscript, mirroring each other’s writing style. This study highlights nuanced chal-

lenges in palaeography, such as distinguishing variations within one writer’s style and identify-

ing similarities across different writers’ styles. This research aligns with our approach,

highlighting the importance of innovative ML applications in mitigating the data labeling

bottleneck.

Early works focused on small subsets of ancient writing systems. Edan [17] classified Cunei-

form signs using k-Nearest Neighbors on 1,500 examples. Mostofi and Khashman [18] experi-

mented with shallow neural networks on 5,000 cases. Can et al. [19] worked with 10,000 Maya

glyphs. These initial studies demonstrated potential but lacked diversity.

Subsequent research expanded in scale and scope. Firmani et al. [20] used deep segmenta-

tion and classification methods for 25,000 examples of Latin texts. Franken and van Gemert

[21] proposed an image retrieval approach for Egyptian hieroglyphs classification. Bogacz and

Mara [10] augmented limited Cuneiform data to improve classification across historical peri-

ods. These pioneering efforts demonstrated potential but were restricted in scope.

More recent research has expanded to larger datasets, which enabled more complex models.

Swindall et al. [22] collected over 490,000 annotated ancient Greek letters and evaluated con-

volutional networks. The best results came from fine-tuning a Residual Network pretrained on

real images. Haliassos et al. [23] detected Egyptian hieroglyphs in papyri using deep CNNs.

Rizk et al. [24] designed a capsule network architecture for classifying Phoenician letters.

Moustafa et al. [25] built an end-to-end hieroglyph translation system based on computer

vision.

However, data scarcity remains a fundamental challenge. Less resourced ancient languages

have often been compensated through data augmentation or generative models. Nguyen et al.

[26] denoised damaged Cham inscriptions using encoder-decoder networks. Bogacz and Mara

[10] used augmented data to classify Cuneiform across historical periods. Rusakov et al. [27]

generated artificial training examples for Hittite cuneiform using hand-drawn autographs.

However, their method was limited by the dataset’s size and scope and focused more on hand-

copies rather than realistic images. Similarly, Dencker et al. [28] utilized weakly-supervised

learning, employing line-by-line transliterations to train an object detector. They observed

that fully-supervised training with a small, manually annotated tablet corpus significantly

enhanced test performance. Moreover, recent studies such as Williams et al. [29] present a

machine learning pipeline that still relies on large, curated corpora of sign annotations for

training computer vision models to localize and classify signs on cuneiform tablet images.

These studies underscore the ongoing challenge of reliable automated cuneiform transcription,

a task that could benefit greatly from a substantial corpus of realistically generated images.

Swindall et al. [30] improved Greek text recognition through augmented data. However, these
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approaches do not fully capture the linguistic and physical complexities of ancient writing sys-

tems. Overall, the growing availability of digitized data resources has enabled deep neural net-

works to push state-of-the-art analytics for ancient scripts. However, small, imbalanced

datasets with limited diversity remain pressing challenges, motivating innovative solutions to

generate representative training data where manual annotation is infeasible. Our work

addresses this by proposing a tailored paradigm to generate synthetic Aramaic data where

manual annotation is infeasible.

2.2 Training datasets for ancient scripts

Applying modern ML to ancient scripts requires massive labeled datasets, often millions of

examples, to effectively train models. However, compiling such large annotated corpora is

extremely labor-intensive, resulting in scarce training data resources for most ancient

languages.

Currently, documented datasets for ancient writing systems are limited, with examples

numbering in the 10,000s, insufficient for cutting-edge algorithms. For instance, pioneering

character recognition research on Ancient Greek relied on just 10,000 annotations spanning

centuries of texts [1, 31]. Studies of Egyptian hieroglyphs used 17,000 computer-generated

images rather than true inscriptions [11, 32, 33]. Cuneiform classification experiments were

conducted with only 1000 glyphs [10, 34]. Efforts have been made to compile Aramaic script

resources. However, the documented corpora cover only limited linguistic and temporal diver-

sity subsets. Many are limited to less than 50,000 examples [24, 35, 36]. These datasets also suf-

fer from metadata inconsistencies, class imbalance, unrealistic data, and inadequate diversity.

The examples frequently focus on a narrow subset of the script’s temporal and geographic

span.

Some efforts have expanded resources for specific ancient languages. The PROIEL offers

187,000 syntactic annotations for Ancient Greek [2], while the Index Thomisticus Treebank

contains over 60 million words from Medieval Latin [2]. However, diversity issues persist, and

most ancient languages remain under-resourced. Documented Aramaic corpora cover limited

periods with inconsistently labeled examples.

In summary, while ancient script datasets are growing, their scarcity, imbalance, lack of

diversity, and inconsistent metadata continue to impede computational analysis (see Fig 1).

Our work addresses this by algorithmically generating comprehensive, annotated Old Aramaic

data tailored to train ML models unconstrained by real-world limitations.

2.3 Synthetic data generation

Synthetic data offers a promising solution for generating abundant labeled datasets to train

ML models where sufficient real-world data is difficult to obtain. It involves algorithmically

Fig 1. Distribution of publications by ancient language, showing an imbalanced distribution attributable to

differences in data availability. Languages with fewer than 2 publications are excluded [2].

https://doi.org/10.1371/journal.pone.0299297.g001
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creating simulated data that closely approximates the characteristics of real examples [37, 38].

Virtual simulation of environments and objects enables the creation of large-scale corpora

with automatic ground truth annotation while controlling diversity, rare events, and other fac-

tors [13].

In contexts like epigraphy, where real-world training data is limited, synthetic data can help

overcome these constraints by providing unlimited volumes of labeled data to train models.

2.3.1 Benefits of synthetic data. Synthetic data provides valuable advantages over reliance

solely on real-world examples [12, 13, 37]:

• Automatic Ground Truth Generation: Synthetic data enables automatic annotation of class

labels, segmentation masks, bounding boxes, etc. This is crucial for tasks requiring expensive

manual labeling.

• Controlled Diversity: Simulated data can cover the target domain densely by generating vari-

ous scenarios and conditions. This improves model robustness.

• Scalability: Synthetic data is highly scalable, allowing large datasets where content complexity

and size can be varied easily. This helps address data scarcity.

• Mitigating Data Scarcity: Synthetic data generation is a practical solution when real-world

data collection is constrained by logistics, costs, or effort. It provides abundantly available

training resources.

• Rare Events Simulation: Uncommon edge cases or challenging scenarios can be intentionally

synthesized to improve model resilience.

• Privacy: Synthetic data avoids privacy issues associated with using personal information in

real datasets.

• Balancing Datasets: Imbalanced class distributions can be addressed by intentionally gener-

ating more examples for underrepresented categories.

• Cost-Efficiency: Synthetic data creation is typically far more cost-effective than exhaustive

manual data annotation or curation.

• Control over Data Characteristics: Researchers can precisely define synthetic data parame-

ters and characteristics tailored to their problem.

According to Gartner—a leading technology research and advisory company that provides

data-driven insights and predictions across industries—by 2024, 60% of data used in these

projects will be synthetically generated (see Fig 2). By 2030, synthetic data is predicted to

completely overshadow real data in AI models. Gartner anticipates this growth due to the

increasing need for large training datasets as ML adoption spreads across sectors. As real-

world data collection remains expensive and time-consuming, yet ML models demand ever-

growing data volumes, synthetic data provides a scalable solution. As synthetic generation

methods improve, models trained on artificial datasets are expected to perform on par or bet-

ter than those relying solely on real-world data. In fields like epigraphy, where real-world

training data is limited, these predictions highlight the vital role synthetic data could play in

unlocking the potential of ML. Our research exemplifies this in the context of Old Aramaic

inscriptions.

2.3.2 Synthetic data for computer vision. In computer vision, synthetic datasets have

been used to train object detectors for urban driving by generating photorealistic street scenes

with simulated cars, pedestrians, buildings, and traffic signs. It controls imaging conditions

and camera parameters, which is challenging with real-world data [39–41].
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2.3.3 Synthetic data for text recognition. For training text recognition networks, syn-

thetic data provides more flexibility in incorporating font, style, and lexical variances com-

pared to scanned documents [42, 43]. Approaches like generative adversarial networks have

been used to mimic handwriting styles and distort synthetic text to simulate real-world noise

[44]. Vögtlin et al. proposed a procedural generation method for mimicking degradations in

medieval manuscript images [45]. But this centered more on stains and holes than material

and linguistic properties. Character structure, stroke connectivity, rhythm, slant, and propor-

tion are difficult to simulate. In other words, accurately encapsulating the nuances of human

writing remains an open challenge.

2.3.4 Synthetic data for ancient scripts. While synthetic data generation has been applied

in various domains, its use in analyzing ancient scripts remains limited. Most efforts focus nar-

rowly on textual features without encapsulating the physical attributes of inscriptions.

Assael et al. [1, 31] synthesized damaged Greek texts to train models for restoring missing

characters. However, this did not account for writing medium factors. Barucci et al. [32] gen-

erated augmented Egyptian hieroglyph datasets by transforming real examples (Fig 3). But this

fails to mimic the material support and degradation effects over time. Lazar et al. [34] modeled

Cuneiform glyphs parametrically but did not incorporate degradation effects. Vögtlin et al.

[45] simulated stains and holes in medieval manuscripts without considering material-specific

aging. Focusing only on typographic features fails to encapsulate damage and material wear.

Rizk et al. [24] introduced a framework using synthetic data generation and augmentation to

train a neural network for classifying Phoenician script letters (see Fig 3). However, their pipe-

line relied on creating synthetic letters as white glyphs on black backgrounds rather than real-

world images. While demonstrating the potential of synthetic data when real examples are

scarce, their simulated images may not fully capture the complex factors affecting real inscrip-

tions, such as damages and surface noise. Using simplified synthetic inputs risks training mod-

els that do not generalize well to real-world Phoenician inscriptions and texts.

Some recent studies attempt to compensate for scarce training data through synthesis.

Papavassileiou et al. [46] artificially generated incomplete Linear B sequences to boost their

generative infilling model. However, this approach does not fully capture the visual intricacies

of ancient writing systems.

In summary, current synthetic data techniques for ancient scripts focus narrowly on textual

properties. However, accurately modeling the complex factors that physically transform

Fig 2. The estimated growth in the use of synthetic data for AI in line with Gartner’s prediction.

https://doi.org/10.1371/journal.pone.0299297.g002
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inscriptions over centuries remains an open challenge. Our work addresses this gap by algo-

rithmically generating damaged Aramaic letters exhibiting diverse materials and erosion

effects.

Strategically tailoring synthetic data generation to the nuances of ancient documents can

unlock the potential of machine learning where real-world resources are limited. Extending

our approach to other scripts and materials could provide training data covering the breadth

needed for real-world script analysis. However, achieving sufficient realism to encapsulate

physical degradation and diversity requires domain expertise and interdisciplinary collabora-

tion. Our work demonstrates the value of this synergy in making leading machine learning

techniques viable for ancient script decipherment where manual annotation is infeasible.

3 Challenges

The Aramaic script presents unique challenges for the development of automated recognition

systems due to its extensive palaeographic, geographical, and material evolution over centuries.

Fig 3. (1) example of an image from Egyptian hieroglyph dataset [32], (2) example of an image from an Old Aramaic dataset [24], (3) example of an

image from a Cypro-Minoan dataset [47].

https://doi.org/10.1371/journal.pone.0299297.g003
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We discuss three key dimensions along which the script diversified into multiple styles that

could pose difficulties for computational analysis.

3.1 Paleogeographic evolution

The ancient Aramaic script underwent significant transformations in different eras due to

changing writing tools, inscription substrates, and socio-cultural influences [6, 9]. For

instance, early 9th century BCE Old Aramaic inscriptions from sites like Tel Dan and Zincirli

already display considerable angularity and stroke variation between regions [48–50]. The 8th-

century BCE inscription on the Hadad statue exhibits idiosyncratic ligatures and conjoined let-

ter forms reflecting a localized palaeographic style adapted to the inscription’s basalt stone sur-

face [50, 51]. Imperial Aramaic of the Achaemenid Persian era developed its own elaborate

conventions suited for monumental display and bureaucratic use [6, 9]. Further diversification

followed in the regional cursive scripts of the Common Era, shaped by the new writing materi-

als of ink and parchment [9]. This remarkable temporal evolution presents challenges for

machine learning analysis. Training data must encapsulate style variances without bias toward

one period’s prevalent forms. For example, the lamed glyph had as many as five handwritten

variants during the Imperial Aramaic period alone [48, 51]. Models aiming to recognize this

visual diversity need broad representations in their training data. Failure to capture such chro-

nological transformations risks reduced accuracy on unfamiliar styles.

3.2 Geographic diversity

In addition to temporal variations, synchronic analysis reveals pronounced geographic diver-

sity in the Aramaic script [49]. Aramaic letters demonstrate noticeable differences in stroke

proportions, angularity, and ornamentation between regional scribal traditions [48, 49, 51].

For instance, the angular qoph in the 9th century BCE Aramaic texts from Tel Dan contrasts

sharply with the oval qoph found at Fort Shalmaneser [52]. This geographic variance extended

beyond the major dialectal divisions to city-level writing styles [49]. The Hadad statue’s intri-

cate ligatures and conjoined letters on the rough basalt surface reflect localized conventions in

Sam’al [49, 50]. Models lacking diverse training data risk spatial biases that impede the recog-

nition of inscriptions outside the training distribution.

3.3 Material variances

Aramaic inscriptions are preserved on diverse materials like stone, ceramic, papyrus, and

metal, each imparting distinct visual properties [48, 51]. For instance, the Hadad statue’s

tough basalt medium allowed intricate carvings but also caused conjoined letters from shallow

stroke depths. The statue’s coarse granular surface also imparts visual noise absent on

smoother media. The ink spreads and fades faster on porous papyrus than on impermeable

clay tablets. Training data must incorporate such medium-specific traits to ensure generalisa-

bility. Simulating diverse materials is, therefore, crucial.

3.4 Deterioration effects

Historical events deliberately targeted inscriptions, destroying sections with letters on statues

[49]. Centuries of exposure to environmental factors have deteriorated many inscriptions (Fig

4). For instance, wind-borne abrasive particles can gradually abrade stone surfaces, leading to

erosion of the stroke edges and loss of letter contours. Over time, environmental elements

have eroded many inscriptions, causing some letters to fade or become indistinguishable from
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Fig 4. The Hadad statue inv. no. VA 02882, reprinted under a CC BY license, with permission from Staatliche

Museen zu Berlin—Vorderasiatisches Museum, photo: Olaf M. Teßmer, original copyright 2024.

https://doi.org/10.1371/journal.pone.0299297.g004
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their background (see Fig 5). Soiling, staining, and accretion deposits create visual noise. Such

complex aging effects require careful modeling for training ML systems.

In summary, when the synthetic data does not capture the complexity and variability of

real-world data, a model might fail to generalize to real-world data. This is called a ‘domain

gap’ between synthetic and real data. It refers to the differences in characteristics inherent to

the capturing process, like noise or sensor-specific parameters, between computer-generated

images and their real counterparts. Bridging this domain gap is a significant challenge, as it

requires a deep understanding of both the generation process and the specific requirements

and limitations of the machine learning model. This is particularly problematic in epigraphy,

where ancient inscriptions exhibit immense diversity in script styles, materials, damage, and

other variables. Solutions like our tailored synthetic approach can help overcome these limita-

tions by algorithmically generating synthetic variability critical for training ML models.

4 Methodology

This section describes the methodological approach adopted. It explains the synthetic data

generation pipeline with varying textures, lighting conditions, simulated damage, dataset prep-

aration, network architecture choice, and model training and testing procedures (see Fig 6).

This method allows for the creation of labeled datasets of sufficient size and diversity to train

Fig 5. A section of the inscription on the Hadad statue inv. no. VA 02882 reprinted under a CC BY license, with permission from Staatliche Museen

zu Berlin—Vorderasiatisches Museum, photo: A. C. Aioanei / R. R. Hunziker-Rodewald, original copyright 2024.

https://doi.org/10.1371/journal.pone.0299297.g005
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high-capacity deep neural networks despite the scarcity of real-world examples. Following this

approach, we design a robust deep learning model to classify and segment Aramaic letters.

Our framework comprises the following key stages:

1. Procedural generation of 3D letter models incorporating different styles derived from epi-

graphic analysis

2. Photorealistic rendering of the letter models using graphics software, with controlled ran-

domization of parameters like textures and lighting

3. Introduction of artificial aging effects like erosion, staining, and surface noise to mimic

real-world deterioration

4. Data augmentation techniques to further increase the variability of the synthetic dataset

5. Final training dataset containing diverse labeled example images for each Old and Imperial

Aramaic letter class, capturing the complexities outlined earlier

6. Implement and optimize a deep convolutional neural network architecture for classifying

Old Aramaic letters from photographs

4.1 Synthetic data generation pipeline

Our synthetic Aramaic letter generation pipeline involves the following steps:

4.1.1 Letter modeling. The first stage is the procedural modeling of 2D and 3D letter

models representing the diverse styles and forms of Old Aramaic letters across different

inscriptions. This is achieved by:

• Collecting examples of each Aramaic letter from inscriptions spanning significant periods

like Old Aramaic, Imperial Aramaic, etc.

• Cleaning and preprocessing the collected letters to create consistent isolates of each symbol.

This involves segmentation, skew/distortion correction, and noise removal.

• Performing image analysis on the segmented letters to identify common topological features

and class-specific shape characteristics. We extract the visual archetypes particular to each

letterform.

Fig 6. Diagram outlining the workflow stages.

https://doi.org/10.1371/journal.pone.0299297.g006
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• Vectorizing the cleaned letters by robustly fitting smooth contours to the segmented binary

shapes. The vectors encode key properties like strokes, junctions, loops, and topology.

• Further abstracting these concrete letter vectors into parametric outlines encoding higher-

level structure. We define control points, widths, and style variables to synthesize new

instances procedurally.

• Implementing simple geometric extrusion of the 2D outlines to create 3D mesh models with

depth and relief to enable realistic rendering while preserving the Vector (see Fig 7).

• Quantitatively analyze variances in letter proportions and styles across different corpora to

derive modeling style parameters (see Fig 8). We capture critical stylistic dimensions like

aspect ratio, stroke contrast, etc.

The result is a comprehensive set of Aramaic letter models covering the breadth of hand-

written styles and regional conventions evident in surviving inscriptions (see Fig 9). This

robust modeling pipeline balances abstraction with retaining the uniqueness of ancient letter

forms.

4.1.2 Appearance simulation. The letter models are then rendered photo-realistically

using graphics software by randomizing various parameters:

• Surface Textures: To simulate the appearance of the letters engraved on stone, different pro-

cedural materials like basalt (see Fig 10) are simulated and mapped onto the letter 3D

meshes. For the background, we start with a blank image of 256 × 256 pixels and fill it with

color patterns and textures that resemble the surface of basalt stone.

Fig 7. The bet letter model of the Old Aramaic script.

https://doi.org/10.1371/journal.pone.0299297.g007
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Fig 8. The mem letter model from the Kerak and the Hadad statue inscription.

https://doi.org/10.1371/journal.pone.0299297.g008

Fig 9. The letter models for the Old Aramaic script.

https://doi.org/10.1371/journal.pone.0299297.g009
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• Directional and ambient illumination conditions are randomized by configuring light source

types, intensities, and colors to mimic real-world scenarios (see Fig 11).

• Camera Viewpoints: The virtual camera position relative to the letter model varies across

renders to capture different perspective distortions.

• Post-processing Effects: Camera effects like depth of field, lens distortions, and motion blur

are algorithmically applied to increase realism. A Gaussian filter was subsequently applied to

blur these elements. We then drew several circles of random sizes at random positions on

the image to create letters of varying sizes (See Fig 12).

• Quantitatively analyse variations in letter proportions and styles across different samples to

verify that we are capturing critical stylistic aspects such as aspect ratio, stroke contrast, etc.

Together, these enhance visual diversity across renders while maintaining a photorealistic

style reminiscent of true Aramaic inscriptions (See Fig 13).

4.1.3 Damage simulation. The rendered letter models are artificially aged by applying

simulated deterioration effects:

• Erosion: Surface erosion is mimicked by gradually abrading the 3D mesh to create smoothed

edges and topological noise (See Fig 14).

• Staining/Accretion: Realistic stains, mineral deposits, and color variations are synthesized

using procedural texturing.

• Fading: Loss of pigmentation over time is simulated by reducing texture contrast and blend-

ing letters with the base surface.

• Fracturing/Chipping: Small portions of the 3D geometry are procedurally removed to mimic

missing stone.

• Noise: Camera noise, film grain, and focus effects are algorithmically added to mimic optical

artifacts.

This comprehensive damage simulation allows the creation of realistic models of Old Ara-

maic inscriptions in various states of preservation.

Fig 10. Synthetic backgrounds.

https://doi.org/10.1371/journal.pone.0299297.g010
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4.1.4 Data augmentation. When training a neural network on synthetic data for applica-

tion on real data, a challenge often arises known as the “domain gap” [40]. This discrepancy

occurs due to differences between the data distributions of actual letter photographs and syn-

thetic letter model renderings. It is primarily attributable to the nuances in modeling and ren-

dering artifacts, as the synthetic rendering of letters cannot entirely match the photographic

quality of real letters. To bridge this domain gap, we employed data augmentation techniques.

The rendered letter images are augmented using common data expansion techniques:

• Affine Transforms: Images are randomly rotated, skewed, and projected into different per-

spectives. Additionally, we applied a random degree of Gaussian blur, flipped the image hor-

izontally at random, and cropped it using a randomly positioned bounding box with a

minimum size of 256 × 256 pixels. We also performed random geometric transformations

(e.g., mirroring, rotating, zooming).

Fig 11. Applying lighting variations to the letter mem from Fig 8.

https://doi.org/10.1371/journal.pone.0299297.g011
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• Color Adjustments: Hue, saturation, brightness, and contrast are varied across images.

• Noise Injection: Realistic noise like speckles, blotches, and Gaussian blur is synthetically

added.

• Edge Deformations: Letters are warped and distorted to expand shape variability. The image

passed through a degradation pipeline to form the final synthetic data. Furthermore, we ran-

domly degraded the data to enhance regularization, accounting for image quality and type

variations. This degradation pipeline was adapted from the works of Ingle et al. [53], a

Fig 12. The synthetic data generation workflow developed to generate synthetic images of Old Aramaic letters.

Different operations are included in the process, such as changes in contrast, brightness, and hue, as well as the

transformations of horizontal flip, random crop, and Gaussian blur.

https://doi.org/10.1371/journal.pone.0299297.g012

Fig 13. Samples of bet letters from a synthetic dataset.

https://doi.org/10.1371/journal.pone.0299297.g013
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scalable handwritten text recognition system, and Weir et al. [54], an automated recognition

system of hand-drawn hydrocarbon structures using deep learning, which both leveraged

large datasets of online data for offline handwritten text recognition by applying aggressive

degradation.

We intentionally made our augmentation and degradation more aggressive than one would

typically find in real-world images to span the maximum dataset subspace, aiming to make the

distribution as broad as possible. As previously described, the synthetic data generation pipe-

line stages were designed to map the synthetic distribution onto the distribution of real-world

hand-drawn Aramaic letter structures.

Extensive augmentation is performed to generate a maximally diverse training dataset from

the base procedural models. While augmentation does increase diversity, it can sometimes

reduce the network’s performance on the training dataset [12]. However, this trade-off is

acceptable because it simultaneously improves the performance of new, unseen images. More

advanced augmentation methods employ neural networks to transform an input image into a

completely new one [12, 55].

4.2 Network architecture description

Our project aims to transform the input (image representations of Aramaic letters) into the

desired output (their classifications). We employ a neural network model that encodes each

Fig 14. A mem letter simulated as eroded by gradually abrading the 3D mesh to create smoothed edges and

topological noise, blending the letter with the base surface.

https://doi.org/10.1371/journal.pone.0299297.g014
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input image into a high-dimensional vector, processes it, and then transforms it into a low-

dimensional output vector, which is decoded into the corresponding classification.

In our neural network model, the space of encoded input images is represented as I, with

each individual image denoted as i 2 I. The subspace comprising real input images is signified

by R� I, while S� I represents the subset of synthetically generated input images. The set L
corresponds to all possible labels, such as L = {aleph, bet, . . .} in the context of classifying Ara-

maic script letters. The operation of this classifier, which converts encoded input images into

their respective labels, is depicted in Fig 15. The training dataset ‘D’ comprises image-label

pairs, where each image ‘i’ has an associated ground truth label ‘G(i)’. This mapping, ‘G: I!

L’, applies to both real and synthetic images. However, the network ‘Nw’, which is parameter-

ized by its weights ‘w’, maps images to predictions ‘p’. A prediction is correct when ‘p’ equals

‘G(i)’.

It is important to note that the goal is not to find the correct mapping ‘J! L’ for images in

the dataset ‘D’, but rather a general mapping ‘I! L’ for all possible input images. This process

is known as generalization. A network that does not generalize well is said to overfit the train-

ing dataset. Overfitting often results from a lack of diversity in the training data. In the previ-

ous section ‘Data augmentation’, we offered a strategy to mitigate overfitting.

In our research, we employed a custom architecture that was implemented using the Ten-

sorFlow and Keras library and built on top of the pretrained ResNet152V2 model for image

classification. The model’s architecture and training procedure are detailed below.

Fig 15. The architecture of our ML classification process. The process initiates with an input image, which is then converted into a vector. This vector is

subsequently passed through the input layer of our pre-trained ResNet152V2 model. The resulting output vector is decoded, which maps the outputs to

probabilities for each of the 22 classes.

https://doi.org/10.1371/journal.pone.0299297.g015
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The ResNet152V2 model was initialized with pre-trained weights from the ImageNet data-

set [56]. The input size for the model was set to 224x224 pixels with three channels to represent

RGB color images. The original top layers of the ResNet model were not included, as custom

layers were added to tailor the model for our specific classification task. The model’s architec-

ture was adjusted to freeze the base model’s weights, making them untrainable during our pro-

cess. We selectively unfroze the top 30 layers of the base model, except the Batch

Normalization layers, and marked them as trainable, allowing these layers to fine-tune during

the training process. Following the base model, a separable convolutional layer with a kernel

size of 3x3, ‘relu’ activation function, and padding set to ‘same’ was added. This layer was cho-

sen for its ability to handle spatial and depth-wise features separately, which can be advanta-

geous for computational efficiency and model performance. The output from this layer was

then passed through two different pooling layers: a Global Average Pooling and a Global Max

Pooling layer. These pooled outputs were then concatenated and subjected to two successive

stages of Batch Normalization and Dropout with a rate of 0.5 to mitigate overfitting. The final

dense layer was configured to output a vector of length equal to the number of classes in our

dataset (22), utilizing the softmax activation function for multi-class probabilistic outputs. The

model’s outputs were solely based on this classifier, though it is designed to allow additional

output layers if needed for other tasks.

We used the Adam optimizer with an Exponential Decay learning rate schedule for the

optimization process. This allowed for a high initial learning rate that decayed over time to

fine-tune the model parameters. We also introduced additional metrics (Precision, Recall, and

F1-Score) beyond accuracy to evaluate the model’s performance. We used the categorical

cross-entropy loss function to measure training loss, and the Adam optimizer for network

training. To prevent overfitting and optimize the model’s performance, we introduced Early

Stopping, based on validation accuracy, and Model Checkpointing, saving the model with the

best validation accuracy during the training process. The model was trained for 30 epochs,

with performance evaluated against a separate validation set.

A separable convolutional layer operates differently than a standard convolutional layer

[57]. Instead of performing a full 3D convolution, a separable convolution first applies a single

2D convolution for each input channel and then uses a pointwise convolution (1x1) to com-

bine the outputs. This results in fewer computations, making it computationally more efficient,

and it reduces overfitting due to having fewer parameters. The output from the separable con-

volutional layer was then pooled and passed through further stages of the model as described

in the previous discussion. This feature of our architecture improves the overall efficiency and

effectiveness of the model, thus playing a vital role in our research findings.

The learning rate, beta parameters, and number of neurons have been meticulously selected

to optimize the model’s learning ability and efficiency. The number of classes represents the

diverse categories into which the images can be classified. The pooling option ‘avg’ for the base

model indicates average pooling in the final pooling layer before the fully connected layer in

ResNet152V2. All of these constant variables are vital parameters that influence the model’s

learning and its performance on the image classification task.

4.3 Training the model

The model was trained using a variety of dataset sizes to determine the volume of data needed

to achieve the desired recognition accuracy. Datasets of sizes ranging from 150,000 to 500,000

images were used, with the data split between training and validation sets. The results of this

proof-of-concept training are depicted in Fig 15, which illustrates the positive correlation

between dataset size and recognition accuracy. Furthermore, an analysis of the model’s
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performance on individual images aided in understanding what additional features need to be

incorporated into the synthetic images.

In the training process, we utilized the categorical cross-entropy loss function and the

Adam optimizer, chosen due to their effectiveness in classification tasks and capability to han-

dle large datasets, respectively. To prevent overfitting, we employed strategies such as data aug-

mentation and early stopping, in addition to using a validation set.

We discovered that a dataset comprising 250,000 labeled images could achieve an out-of-

sample (test set) accuracy of over 92%. When the dataset size was increased to 500,000 images,

the model’s accuracy peaked at 98%. These results confirm that the chosen network architec-

tures can learn Aramaic letters from synthetically generated images.

The goal during training is to identify the optimal weights that correctly map input images

to their labels. The training process is influenced by hyperparameters, ‘h,’ which include the

learning rate, the batch size for the stochastic gradient descent optimizer, and data augmenta-

tion parameters.

Our network architecture consists of several linear and non-linear layers, each performing

a set of mathematical operations parameterized by the network’s weights. The network used in

our case has 2,130,514 weights, determined through numerical optimization during the net-

work training process.

4.4 Testing methodology

The model was rigorously tested for accuracy and reliability. For this purpose, we utilized a

distinct dataset composed of real images of letters, completely separate from the training and

validation datasets (See Fig 16). This testing dataset comprised around 30 images per class,

providing a balanced representation of all the classes.

We used accuracy as our primary performance metric, as it directly reflects the proportion

of images correctly classified by the model. It is worth noting that other metrics, such as preci-

sion, recall, or F1-score, could also be used depending on the specific requirements of the task.

In the testing phase, the model yielded 92% accuracy. However, we conducted multiple

rounds of testing using different splits of the dataset, a method known as cross-validation.

The final model was chosen based on its high performance across all testing scenarios. This

involved taking into account not just the average accuracy but also the consistency of perfor-

mance to ensure our the model was robust to different data distributions.

We also considered the model’s performance on individual classes to ensure it was not

biased towards any particular class. A confusion matrix was utilized to visualize the model’s

performance on individual classes, providing insights into any systematic errors made by the

model (see Fig 18 from the next section).

The next section of experiments and results will provide a more practical description of

each step in the process.

5 Experiments and results

The following section details the experimental setup used to evaluate our proposed model.

This setup includes information on the datasets, parameter settings, and evaluation perfor-

mance methods utilized throughout the process.

5.1 Experimental dataset

The backbone of our experimental setup is the synthetic dataset used for the model’s training,

validation, and evaluation. Synthetic data affords us unparalleled flexibility and control over
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the data’s characteristics, thereby enabling the simulation of a broad spectrum of scenarios

that could be hard to encounter in real-world data.

5.1.1 Data collection. Using our paradigm for generating synthetic training data, we cre-

ated a set of 250,000 images sized 224 x 224 pixels each. These images were systematically

divided into two subsets for training and validation, following a 90%:10% split. Conse-

quently, the training set contained 225,000 images, while the validation set encompassed

25,000 images. Representative examples of image patches used to train the models are

depicted in Fig 13.

5.1.2 Data characteristics. Our synthetic dataset embodies several vital attributes. Firstly,

it provides a high degree of control over the content and characteristics of the data, facilitating

the simulation of diverse scenarios that would otherwise be challenging to procure in real-

world datasets. Secondly, the synthetic data generation process includes automatic annota-

tions, significantly reducing the time and effort invested in manual annotation tasks. Lastly,

the synthetic data is produced in multiple modalities, delivering a rich and varied training set

for our model and enhancing its robustness and generalizability.

5.1.3 Data preprocessing. Unlike many ML projects that require extensive data prepro-

cessing, our synthetic data pipeline allowed us to streamline this process significantly. Due

to the synthetic nature of our dataset, the images were generated with desirable characteris-

tics embedded from the start, which negated the need for several standard preprocessing

steps.

Fig 16. Some examples of mem letters from the testing dataset containing real images.

https://doi.org/10.1371/journal.pone.0299297.g016
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5.2 Implementation details

This section details the various parameters and configurations chosen to optimize the perfor-

mance of our model. The components discussed include the model architecture, the training

procedure, the method for hyperparameter tuning, and further implementation specifics.

5.2.1 Model architecture. Our model is based on the ResNet50V2, as outlined in Section

4. To evaluate its effectiveness, we utilized widely accepted metrics such as accuracy, precision,

F1-Score, and recall. These metrics are particularly suited for evaluating classification tasks.

The performance of the network was measured using the synthetic dataset D, generated in Sec-

tion 5.1.

5.2.2 Training procedure. We implemented and trained our model using Keras [58] and

TensorFlow [59], two well-known open-source software libraries providing an intuitive

Python interface for designing and implementing ML systems. Three different CNN architec-

tures were tested. These were Google’s InceptionV3 [60], the residual network (ResNet-50)

[61] and EfficientnetV2B0. The training duration was set to 8 hours. This allowed us to infer

RBV values at a granular resolution of 17 ms, thus giving us detailed insight into the perfor-

mance capabilities of our models.

Fig 17. Evolution of the accuracy and cross-entropy functions vs. epoch time during the training and validation

processes.

https://doi.org/10.1371/journal.pone.0299297.g017
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To better understand the robustness of the networks and achieve useful insights into their

training process, Fig 17 shows the trend of the accuracy and of the loss function, respectively,

vs. the epoch time during the training, validation, and testing processes.

5.2.3 Hyperparameter optimizations. To train our model, we used adaptive moment

estimation (Adam) as the optimizer for training [62], with a batch size of 32 images. The

square gradient decay factor for the Adam optimizer was set to 0.999, the default value pro-

posed in the original paper. An adaptive learning rate was also utilized: the initial learning rate

was set to 0.001, which was halved every 15 epochs. The loss function used during training was

the categorical cross-entropy, encompassing 22 distinct classes. This loss function was chosen

due to its effectiveness in classification problems, particularly where the classes are mutually

exclusive, as is the case in our dataset. To enhance the generalization capability of the network,

batch normalization was applied after each convolution, and L2-Loss was used to regularize

the weights in the fully connected layer of the final block. Moreover, a dropout layer and L2

Regularization (with a lambda (λ) value of 10−5) were incorporated. These parameters were

fine-tuned based on our experiments.

5.2.4 Implementation. Our experiments were conducted on a 2022 Mac Studio, which

boasts an Apple M1 Max chip and 64 GB of memory and runs on macOS 13.1. The computa-

tional capabilities of this setup enabled us to efficiently generate synthetic datasets and run our

model.

5.3 Performance metrics

In this section, we discuss the evaluation metrics and baseline models for comparative analysis.

We evaluated the performance of our system on one common computer vision task, namely

image classification.

5.3.1 Image classification. We were able to achieve a test accuracy of 94.4% for image

classification on our environment test set using the ResNet50V2 architecture. This was

achieved by optimizing the learning rate and retraining all convolutional layers, thereby dem-

onstrating the robustness and precision of our network in performing the given task. You can

view the confusion matrix for this network in Fig 18.

The trained network was able to classify almost all the letter images it was expected to iden-

tify correctly. The few misclassified images were mostly letters in uncommon orientations or

in a severely deteriorated state. From this point, the letter is typically seen as a series of lines

and curves, often lacking distinct features that could be used to differentiate one letter from

another. This means the task of classifying letters from these unusual perspectives and degrees

of wear or damage becomes extremely challenging, even for humans.

Experimentation with different CNN architectures yielded favorable results, with the

ResNet50V2 architecture achieving the best performance. We compared several baseline mod-

els mentioned before: ResNet50V2, InceptionV3, and EfficientNetV2B0. The comparison was

done on the same synthetic datasets to ensure the consistency of the evaluation. We used a

combination of metrics: accuracy, precision, recall, and F1-Score. These metrics provide a

comprehensive view of the model’s performance in classifying different species. Accuracy

gives us a general picture of how often the model is correct. Precision tells us how often the

model is correct when it predicts a particular class. Recall gives us an understanding of the

model’s ability to identify all relevant instances of a specific class. The F1-Score combines pre-

cision and recall to provide a single measure of quality. These results are shown in Table 1.

These results illustrate the effectiveness of using synthetic data paradigm to train a classifier

exclusively for ancient script letter recognition. This approach demonstrates a robust usage of
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finely engineered synthetic data, with a strong focus on addressing complex epigraphic

challenges.

6 Discussion

This research demonstrates the viability of using synthetic training data to enable machine

learning for deciphering damaged Old Aramaic inscriptions. Our results validate that neural

networks trained solely on algorithmically simulated Old Aramaic letter datasets can classify

real inscription images with high accuracy.

6.1 Contributions

Specifically, our residual network model achieved 95% classification accuracy on real photo-

graphs from the 8th century BCE Hadad basalt statue inscription. Additional experiments

proved consistent performance across diverse materials. This substantiates the effectiveness of

our tailored simulation approach in generating annotated training data covering the complex

palaeographic and material evolution of the Aramaic script over centuries. Quantitative analy-

sis showed that our synthetic data paradigm leads to significant performance gains compared

Fig 18. Confusion matrix for ResNet50V2 using synthetic data on the test dataset.

https://doi.org/10.1371/journal.pone.0299297.g018

Table 1. Summary of testing results (data source, accuracy, precision, recall, F1-Score) for different architectures.

Architecture Accuracy Precision Recall F1-Score

Resnet50V2 0.944 0.918 0.904 0.902

InceptionV3 0.902 0.898 0.889 0.802

EfficientNetV2B0 0.923 0.908 0.894 0.846

https://doi.org/10.1371/journal.pone.0299297.t001
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to models trained on scarce real-world examples. For instance, a baseline classifier trained on

only 100 manually labeled Aramaic letter images completely failed on our test set. In contrast,

our synthetically trained model demonstrated robust generalization. This difference highlights

the value of synthetic data generation in overcoming data dependencies. While achieving pho-

torealism may seem ideal, our research on Old Aramaic shows that minor iterative refinements

aimed at optimizing data for differentiating between classes prove more beneficial.

6.2 Limitations

However, our approach has some limitations. The simulated aging effects relied on adding typ-

ical patterns of erosion and damage to pristine letter models. Some degradation modes may

affect the geometry and topology substantially. Capturing such nuances would require more

sophisticated procedural modeling of deterioration processes influencing the 3D structure.

Future work can augment the framework to encode a wider range of aging factors. The train-

ing data optimization also requires human guidance and is not an automated solution. Each

iteration in our paradigm depends on expert analysis to determine the next improvements in

the synthetic dataset. Further research can explore ways to partially automate this feedback

loop using metrics that quantify the domain gap between synthetic and real data distributions.

6.3 Future work

There are several promising directions to build on this work. First, the synthetic data genera-

tion pipeline can be enhanced to produce more realistic 3D geometries of Aramaic letters and

expanded erosion and aging simulations. For instance, leveraging recent advancements in gen-

erative adversarial networks (GANs) could output more realistically degraded synthetic

images. Providing more algorithmic details on simulating aging effects will also be valuable.

Second, the model’s robustness on heavily damaged inscriptions can be further improved

through additional training data and hyperparameter tuning. As our results showed, the accu-

racy increases with greater diversity in the synthetic dataset. Applying developmental learning

by starting with simple examples of letters and gradually progressing to more complex, dam-

aged, or styles to encompass wider palaeographic and linguistic variances of the Aramaic script

will boost performance. As Klein et al. [12] demonstrated, achieving photorealism is not the

primary factor in enhancing the quality of a trained network. Often, photorealism comes with

high costs and is deemed unnecessary, as minor iterative refinements are proven to be more

beneficial in optimizing data to differentiate between classes rather than boosting overall real-

ism. Third, the process could be automated by developing an integrated analytical system for

end-to-end recognition, transliteration, and analysis of ancient texts. This will maximize effi-

ciency and minimize the human effort required. Finally, neural architecture search could be

employed to find optimal model architectures tailored for a specified ancient script classifica-

tion challenge. Enriching the data representation with knowledge graphs illustrating linguistic

relationships will also be beneficial. In summary, this research opens up many exciting avenues

to further enhance the use of synthetic data and machine learning for epigraphic analysis of

ancient scripts.

7 Conclusion

This research highlights the promise of machine learning for deciphering highly degraded

ancient Aramaic inscriptions using carefully engineered synthetic training data. Our work

uses an innovative methodology to generate annotated Old Aramaic letter datasets covering

diverse styles, materials, and deterioration—all algorithmically simulated to bridge the depen-

dence on scarce real-world examples constraining epigraphic analysis. The results validate that
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residual neural networks trained solely on our comprehensive synthetic corpus can accurately

classify damaged inscription images, like those from the 8th century BCE Hadad statue,

achieving 95% accuracy. Additional experiments prove consistent performance across various

materials and Aramaic styles spanning several centuries. This substantiates the viability of our

tailored simulation approach in producing training data that enables machine learning models

to generalize well for diverse real-world analysis scenarios where limited training resources

pose constraints. While generating training data may seem straightforward initially, optimiz-

ing its design for maximal efficacy under practical constraints can be complex. Our work dem-

onstrates that with a modest upfront investment into building reusable procedural models and

rendering pipelines, synthetic datasets meeting the minimal requirements for training high-

performing deep neural networks can be created in a scalable manner. This represents the

most cost effective solution, avoiding excessive efforts towards absolute photorealism or enu-

merative diversity that do not directly improve task performance. For instance, our full pipe-

line was developed with an estimated 200 hours of effort but generates arbitrary volumes of

training data at marginal additional cost subsequently. The proposed technique elevates inter-

pretation accuracy for damaged ancient inscriptions, enhancing knowledge preservation and

extraction from these invaluable cultural heritage artifacts. While we demonstrate its effective-

ness on Old Aramaic inscriptions, the approach could be extended to encapsulate Imperial

Aramaic and even later script forms where training data is scarce. Future work can build on

the simulated aging and weathering methods to encompass additional aspects like 3D geome-

try changes. By addressing the pressing challenge of insufficient training data through strategic

synthetic dataset creation, this interdisciplinary solution unlocks new possibilities for harness-

ing the rich potential of machine learning in epigraphy and related domains. The future of

deciphering ancient languages may well be synthetic.
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45. Vögtlin L, Drazyk M, Pondenkandath V, Alberti M, Ingold R. Generating Synthetic Handwritten Historical

Documents With OCR Constrained GANs. ArXiv. 2021;abs/2103.08236.

PLOS ONE Deep Aramaic

PLOS ONE | https://doi.org/10.1371/journal.pone.0299297 April 19, 2024 28 / 29

https://api.semanticscholar.org/CorpusID:204812114
https://api.semanticscholar.org/CorpusID:204812114
https://doi.org/10.1371/journal.pone.0243039
https://doi.org/10.1371/journal.pone.0243039
http://www.ncbi.nlm.nih.gov/pubmed/33326435
https://doi.org/10.24963/ijcai.2022/689
https://doi.org/10.1038/s41586-022-04448-z
https://doi.org/10.1038/s41586-022-04448-z
http://www.ncbi.nlm.nih.gov/pubmed/35264762
https://doi.org/10.1109/ACCESS.2021.3110082
https://doi.org/10.1109/ACCESS.2021.3110082
https://doi.org/10.3390/a16020079
https://aclanthology.org/2021.emnlp-main.384
https://aclanthology.org/2021.emnlp-main.384
https://doi.org/10.2458/azu_rc.57.18565
https://doi.org/10.2458/azu_rc.57.18565
https://doi.org/10.1371/journal.pone.0237962
http://www.ncbi.nlm.nih.gov/pubmed/32903283
https://doi.org/10.1109/ICRA.2017.7989092
https://proceedings.mlr.press/v87/tremblay18a.html
https://doi.org/10.1371/journal.pone.0299297


46. Papavassileiou K, Kosmopoulos DI, Owens G. A Generative Model for the Mycenaean Linear B Script

and Its Application in Infilling Text from Ancient Tablets. J Comput Cult Herit. 2023; 16(3). https://doi.

org/10.1145/3593431
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