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Abstract

Background

Accelerometers are widely adopted in research and consumer devices as a tool to measure

physical activity. However, existing algorithms used to estimate activity intensity are wear-

site-specific. Non-compliance to wear instructions may lead to misspecifications. In this

study, we developed deep neural network models to classify device placement and activity

intensity based on raw acceleration data. Performances of these models were evaluated by

making comparisons to the ground truth and results derived from existing count-based

algorithms.

Methods

54 participants (26 adults 26.9±8.7 years; 28 children, 12.1±2.3 years) completed a series

of activity tasks in a laboratory with accelerometers attached to each of their hip, wrist, and

chest. Their metabolic rates at rest and during activity periods were measured using the por-

table COSMED K5; data were then converted to metabolic equivalents, and used as the

ground truth for activity intensity. Deep neutral networks using the Long Short-Term Memory

approach were trained and evaluated based on raw acceleration data collected from accel-

erometers. Models to classify wear-site and activity intensity, respectively, were evaluated.

Results

The trained models correctly classified wear-sites and activity intensities over 90% of the

time, which outperformed count-based algorithms (wear-site correctly specified: 83% to

85%; wear-site misspecified: 64% to 75%). When additional parameters of age, height and

weight of participants were specified, the accuracy of some prediction models surpassed

95%.
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Conclusions

Results of the study suggest that accelerometer placement could be determined prospec-

tively, and non-wear-site-specific algorithms had satisfactory accuracies. The perfor-

mances, in terms of intensity classification, of these models also exceeded typical count-

based algorithms. Without being restricted to one specific wear-site, research protocols for

accelerometers wear could allow more autonomy to participants, which may in turn improve

their acceptance and compliance to wear protocols, and in turn more accurate results.

Introduction

Engagement in regular physical activity (PA) is associated with better health and well-being

across individuals of all ages [1–3]. In particular, research has shown that even low volumes of

PA, including those that could be accrued from daily activities, can lead to beneficial outcomes

[3]. Monitoring PA accurately across a wide spectrum of activities is hence important for clini-

cal, research, or even general self-monitoring purposes. With the rapid growth of technology

and advanced computation methods [4], PA information can be captured using small, wear-

able digital devices with relative ease. As a result, these devices are widely used in the consumer

market and research [5]. While they serve as a tool to monitor activity, research has shown

that they could be used to increase PA and improve the health of users [6,7]. In research set-

tings, accelerometers are frequently used as the PA measure of choice. Typically, these devices

contain accelerometer modules that capture acceleration on multiple axes, and can be attached

to different wear-sites, most commonly to participants’ hips or wrists. Traditionally, accelera-

tion information measured by these devices are converted to device-specific units for further

analyses [8,9]. More recently, researchers have shifted towards the analyses of raw acceleration

data captured by the devices instead, as they are more information-rich, and could increase

generalisability of data captured using devices of different models [10–12].

With much larger volumes of data being available, researchers have adopted machine learn-

ing approaches to derive algorithms that could improve accuracies to existing methods for PA

detection [13–15]. When applied appropriately, machine learning could be used to identify

patterns in large dataset that may not be apparent to humans. This is applicable to accelerome-

ters as raw data are typically collected at multiple axes and at high frequencies (up to 100Hz).

For example, machine learning methods have been applied for the detection of activity types

and posture [16], gait patterns [17], and falls [18]. While these methods were shown to have

respectable accuracy for intensity classification purposes, the majority of them were developed

for data collected by devices attached to a specific wear-site (e.g., hip or wrist). Although stud-

ies have found that devices worn at different wear-sites could produce results that are strongly

associated [19], applying an algorithm intended for a different wear-site could still endanger

the validity of results. Previously, researchers could only rely on participants’ compliance to

the protocol, with no means of counterchecking. As a solution to this problem, researchers

[20] have developed wear-site detection algorithms to identify the placement of the devices.

While such developed algorithms have respectable sensitivity and specificity (i.e., close to

90%), machine learning approaches may yield methods with even better accuracies. Further, if

a non-wear-site-specific intensity classification algorithm could be developed, researchers may

allow participants a higher level of autonomy in terms of where and how to wear the devices.

Practically, having an additional choice of wear-site may reduce non-compliance [21], or even

device loss due to misplacements.
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Based on the above, in this study we developed and evaluated algorithms based on deep

neural networks that are aimed to (a) determine the wear-site of accelerometers, and (b)

detected PA intensities irrespective of wear-site. While algorithms specifically for adults and

children were developed, we further explored whether a unified algorithm could be created for

both groups. We further examined whether the inclusion of additional anthropometric infor-

mation of participants could improve the accuracy of the estimates.

Materials and methods

Participants and procedures

All procedures of the study were reviewed and approved by the Joint CUHK-NTEC Clinical

Research Ethics Committee (Ref. No. 2018.038). We recruited 60 healthy participants (30

adults and 30 children) to take part in the study between October 2018 and October 2019.

Adult participants were recruited through university mass mail postings, and children were

recruited through primary schools the authors had contact with. Adult participants provided

initial consent using an online form before they were invited to the laboratory for data collec-

tion purposes. For participating children, information sheets were sent to their parents in

advance, only those whose parents provided written consent were invited to the laboratory.

Invited participants were asked to abstain from alcohol or coffee for eight hours prior to test-

ing and to consume only water from three hours prior to testing. After participants arrived at

the laboratory, research staff explained the procedures involved in the study, and asked partici-

pants to sign an informed consent form to confirm their participation. All invited participants

agreed to the procedures and signed the consent form.

Participants height and weight were measured, and then they completed a semi-structured

data collection protocol. Although all participants completed the protocol, there was data loss

due to technical failures. As a result, data from six participants (four adults and two children)

had to be removed from the final analyses. As such, the final analyses were conducted based

on data collected from 26 adults (26.9±8.7 years; 11 female) and 28 children (12.1±2.3 years;

19 female). Demographic information of participants is presented in Table 1.

Table 1. Demographic background of participants and their metabolic exertion during different activity types.

Adults Children

Sex

• Male 15 9

• Female 11 19

Age 26.9 ± 8.7 years 12.1 ± 2.3 years

BMI 21.8 ± 2.0 kg/m2 18.3 ± 2.5 kg/m2

Oxygen consumption (VO2) at different activity types (in metabolic

equivalent)

• Resting 4.09 ± 0.98 ml/kg/

min

(1.0 ± 0.0 METS)

5.71 ± 1.91 ml/kg/

min

(1.0 ± 0.0 METS)

• Living or light physical activity 6.86 ± 1.39 ml/kg/

min

(1.7 ± 0.9 METS)

9.81 ± 2.68 ml/kg/

min

(1.8 ± 1.0 METS)

• Moderate physical activity 22.91 ± 6.86 ml/kg/

min

(5.8 ± 1.9 METS)

25.58 ± 6.31 ml/kg/

min

(4.8 ± 1.5 METS)

• Vigorous physical activity 31.65 ± 8.15 ml/kg/

min

(8.2 ± 2.3 METS)

40.50 ± 8.52 ml/kg/

min

(7.7 ± 2.1 METS)

https://doi.org/10.1371/journal.pone.0299295.t001
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Data collection protocol

All activities took place in an exercise laboratory and were completed in a single visit. Research

assistants first fitted the measurement devices on the participants. Participants were then

asked to sit down with minimal movement for ten minutes so their resting heartrate and meta-

bolic rate could be measured (resting rates were taken as the average between the sixth and

ninth minute during the resting period). Each participant then performed 7 activities from a

list of 17 choices. Activities were grouped into the following categories: (1) Sedentary or light

daily living activities (e.g., sitting and writing, reading, playing a card-matching game, sewing,

light effort sweeping, folding clothes, using a tablet computer while seated), (2) light physical

activities (e.g., walking at 2 km per hour [kph], walking at 3.2 kph, stretching exercises), (3)

moderate physical activities (e.g., walking at 4.0 kph, walking at 4.8 kph, walking at 4.8 kph at

3% inclination, following a video to do a moderate workout) and (4) vigorous physical activi-

ties (e.g., running at 6.4 kph, running at 7.2 kph, self-paced stair climbing). Cards labelled with

each activity were shuffled and participants randomly drew three activities from category 1,

three activities from category 2 or 3, and one activity from category 4. Each activity was per-

formed for 5 minutes, or up to 8 minutes to ensure participants’ metabolic rates remained at a

steady state for at least 3 minutes. Participants were given 3 minutes of rest time (or when sub-

ject’s heartrate returned to resting heartrate, whichever is sooner) between each activity. Their

mean oxygen consumption and corresponding metabolic equivalents (METS) when perform-

ing these activities are presented in Table 1. A simple schematic diagram to demonstrate the

data collection and analyses procedures is presented in Fig 1.

Measures

Accelerometry. Tri-axial ActiGraph GT3X+ accelerometers (ActiGraph, Florida, U.S.A.)

were attached to three wear-sites on the subjects: on the hip, wrist, and chest by suspending a

device using a lanyard placed around the neck. The hip and wrist are common attachment

sites used in extant research. The chest was also found to be a viable wear-site [22], and are

applicable to some consumer devices. Therefore, it was included as a third wear-site in the

study. Accelerometer data were recorded at a frequency of 100Hz. Raw acceleration data at the

three axes were extracted and used for analyses. While some previous research have extracted

additional features from these devices for analyses [15], in this study we only used raw acceler-

ation data of the axes to ensure our results could be applied to all devices containing triaxial

accelerometer modules. To ensure the extracted data were taken from a steady state of activity

and metabolism, the first and final minute of data taken from each activity under the protocol

were excluded from the analyses.

Heartrate and metabolic rate. Participants’ heartrate was measured using a Polar heart

rate sensor (Polar Electro, Kempele, Finland) attached to the chest using an adjustable strap.

The heart rate monitor was used in this study to monitor participants’ response to exercise

(i.e., reaching steady state). The COSMED K5 (COSMED Srl, Rome, Italy) portable metabolic

analyser used as the criterion to measure exercise intensity in this study. The COSMED K5

was used to measure oxygen consumption (VO₂ per kg) and carbon dioxide production dur-

ing rest periods and activities within the study protocol. The average VO₂ per kg at steady state

(i.e., no clear increasing or decreasing trends observed) during each activity was calculated.

When a participant was unable to attain a steady state during an activity, the corresponding

data (per activity) were excluded from the analyses. Metabolic equivalents for each activity

were estimated by dividing the corresponding oxygen consumption with that at resting stage.

Activities per participant were then classified to sedentary, light, moderate, or vigorous using
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the cutoff values of METS < 1.5, 1.5�METS < 3.0, 3.0�METS < 6.0, and METS� 6.0,

respectively. These activity intensities were used as the ground truth in our analyses.

Data analyses

To demonstrate the accuracy of the results derived from deep neural network models com-

pared to existing count-based methods of intensity classification, activity intensities were first

calculated using standard hip-worn protocols for adults [9] and children [8], respectively. To

further demonstrate how misspecified wear-sites might negatively affect the accuracy of the

estimates, we also applied the same protocols on data collected from wrist- and chest-worn

Fig 1. Schematic diagram of data collection and analyses procedures of study.

https://doi.org/10.1371/journal.pone.0299295.g001
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devices. These preliminary results would serve as reference values for comparison when evalu-

ating the performances of more advanced machine learning models.

The Long Short-Term Memory (LSTM) machine learning approach was used in this study.

Analyses were conducted within the TensorFlow (Google) environment. LSTM is a class of

recurrent neural networks in the field of deep learning, and it has shown to be superior for

learning and forecasting time series datasets (e.g., continuous time stamped accelerometer

data)[23]. LSTM methods have also shown high accuracies for developing activity classifica-

tion and recognition algorithms in accelerometry [23,24]. Two models were tested for each

series of analyses in this study: a) a simple LSTM model composed of one fully connected

LSTM layer, one dense layer with ReLu (Rectified Linear Unit) activation and dropout, and

one dense output layer with Softmax activation, and b) a stacked LSTM model (“Bi-LSTM”)

composed of one convolution layer, one pooling layer, one bidirectional LSTM layer, two

LSTM layer, one dense layer with ReLu activation and dropout, and one dense output layer

with Softmax activation. Additional bi-directional models were applied to enhance data pro-

cessing by capturing dependencies of data from both the past and future. By processing

sequential data in both directions, the performances of neural networks may improve, and

hence were applied in this study.

Prior to training and testing the models, the data was segmented using a sliding window

with a size of 100 continuous samples (i.e., each window contained data from 1 second). Subse-

quently, a total of 228,600 sample features, labelled by wear-site, participant height and weight,

and activity intensity were used for analysing the LSTM-based models. To evaluate the model,

90% sample features were randomly used to train the models (i.e., training set) and the

remaining 10% was used to evaluate the performance of the models (i.e., validation set). Two

sets of models were evaluated, respectively, for algorithms to classify wear-site and activity

intensity. Both models were evaluated for two scenarios: (i) classification between two wear-

sites (hip or wrist), and (ii) classification between three wear-sites (hip, wrist or chest). A train-

ing epoch of 20 was used for model training. The performances of the models were evaluated

based on their percentage of correct classifications compared to the ground truth.

Results

Preliminary analyses

We first compared the PA intensities derived from existing hip-worn, count-based cut points

for adults [9] and children [8], respectively, with the ground truth. The overall accuracy was

84%, which was similar to existing machine-learning based algorithms [15]. However, the cor-

responding specificities for some combinations of populations and activity intensities (e.g.,

children’s moderate PA, 35%; adults’ light PA, 51%) were low (Table 2). Further, if the device

was positioned at a different wear-site, and researchers applied the same algorithm without the

knowledge, the accuracy would further decrease (wrist-worn: 65%; chest-worn: 75%). These

results suggest that misspecification of accelerometer wear-site could lead to low accuracies in

PA intensity detection.

Main analyses–wear-site classification

The models trained using deep neural network showed respectable levels of accuracy when

predicting between the hip and wrist wear-sites (LSTM model: 93.0%, Bi-LSTM: 93.7%; see

Table 3 for detailed results). There were slight differences between the accuracies of trained

models for children (LSTM: 93.2%; Bi-LSTM: 93.6%) and adults (LSTM: 95.3%; Bi-LSTM:

96.5%). When the models were trained to classify between three wear-sites (hip, wrist, and
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chest), the accuracies obtained were lower numerically, but were generally above 90% (for the

combined adult and children sample; LSTM: 91.1%; Bi-LSTM: 92.8%).

Main analyses–activity intensity classification

Models were also trained to classify activity to intensities of sedentary, light, moderate, or vig-

orous. The predictive accuracies of the trained models, when the possible wear-site was limited

to two, was around 90% (for the combined adult and children sample; LSTM: 90.8%; Bi-

LSTM: 91.3%). Similar to the wear-site specification model, there were slight differences

between the accuracies for the models for adult- or children-specific data (please refer to

Table 3 for details). We further examined whether the inclusion of labels for participants

height, weight, and age would further improve the accuracies of the classifications. Results

showed that with these inclusions, the accuracy of models increased beyond 95% (for the com-

bined adult and children sample; LSTM: 96.2%; Bi-LSTM: 96.3%).

Table 2. Accuracy of activity intensity classification using count-based algorithms in this study.

Group Ground truth intensity Count-based algorithms

Hip-worn Wrist-worn* Chest-worn*
- = + - = + - = +

Adult Sedentary – 99% 1% – 76% 24% – 96% 4%

Light 36% 51% 13% 1% 44% 55% 14% 81% 5%

Moderate 10% 78% 12% 23% 51% 27% 67% 29% 4%

Vigorous 26% 74% – 26% 74% – 56% 44% –

Children Sedentary – 99% 1% – 74% 26% – 89% 11%

Light 25% 60% 16% 2% 31% 67% 9% 82% 9%

Moderate 40% 35% 25% 20% 33% 47% 68% 25% 8%

Vigorous 1% 99% – 14% 86% – 29% 71% –

Adult Combined 11% 85% 4% 8% 67% 26% 21% 75% 3%

Children Combined 10% 83% 7% 6% 64% 31% 17% 74% 9%

Combined Combined 10% 84% 6% 7% 65% 28% 19% 75% 6%

Notes.

*Hip-worn algorithms were applied to simulate misspecification of wear-site. - Underestimated activity intensity; = Correctly estimated activity intensity;

+ Overestimated activity intensity.

https://doi.org/10.1371/journal.pone.0299295.t002

Table 3. Performances of deep neural networks developed in the study.

Purpose Group Hip and wrist wear-sites only Hip, wrist, and chest wear-

sites

LSTM Bi-LSTM LSTM Bi-LSTM

Wear-site detection Adult 95.3% 96.5% 88.3% 90.8%

Children 92.6% 93.6% 89.5% 92.1%

Combined 93.0% 93.7% 91.1% 92.8%

Intensity classification Adult 92.0% 93.0% 86.5% 88.4%

Children 89.8% 90.3% 86.3% 87.6%

Combined 90.8% 91.3% 86.5% 86.2%

Intensity classification with age, height, and weight as additional parameters Adult 96.0% 97.1% 93.3% 94.5%

Children 95.7% 95.4% 93.8% 92.7%

Combined 96.2% 96.3% 93.9% 92.8%

https://doi.org/10.1371/journal.pone.0299295.t003
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When using data collected from devices placed at all three wear-sites, the trained models

correctly predicted the intensities of the activity below 90%, when no additional anthropomet-

ric information was included (for the combined adult and children sample; LSTM: 86.5%; Bi-

LSTM: 86.2%). When labels for participants height, weight, and age were included, the accura-

cies of the predictions increased to above 90% (for the combined adult and children sample;

LSTM: 93.9%; Bi-LSTM: 92.8%).

Discussion

In the current study, we applied deep neural network to develop classification algorithms for

the detection of accelerometer wear-site and PA intensity. Our results showed that one-second

samples of raw accelerations contain sufficient information for classification purposes, with

the algorithm correctly determining the wear-site on approximately 90% of the time. While

researchers [20] have shown that a similar level of specificity was achievable through non-

machine learning approaches, the analyses of data from longer windows was required. Based

on existing accelerometer deployment protocols, participants are usually recommended to

adhere to a single protocol for accelerometer wearing, and therefore longer windows are prac-

tical. In fact, one may argue that second-by-second classifications of wear-site is unpractical

given changes in wear-site, if any, do not happen rapidly or frequently. Nonetheless, the cur-

rent study is a strong proof of concept, and new algorithms could be developed by stacking

second-by-second classifications to longer windows that would receive the same wear-site

label.

As demonstrated in our preliminary analyses, our intensity classification models outper-

formed results derived from count-based approaches (91% versus 84%). Nonetheless, data col-

lection for this study was conducted in a controlled, laboratory environment, whereby the

researchers can determine the wear-site with certainty. If, instead, devices were administered

in the field and the participants placed the device at a different wear-site, and the researcher

processed the data unknowingly, the difference in accuracy could be even more substantial

(91% versus 65%). Yet researchers have shown that when appropriate algorithms were applied,

hip- and wrist-worn devices can provide very similar estimates [21]. Therefore, the ability to

correctly detect device wear-site is, on its own, of great importance to ensure the validity of

accelerometer-based PA data. Nonetheless, in this study, we have further developed models

for intensity classification based on data collected from devices, irrespective of their wear-sites.

In a similar study, Montoye and colleagues [14] simultaneously collected data from multiple

devices and used artificial neural networks to develop intensity classification algorithms for

the respective wear-sites. However, to the best of our knowledge, our study was the first suc-

cessful attempt to create a non-wear-site-specific method for intensity detection, which has

great potential for wide adoption in PA and health research.

Another advancement of the current study was the inclusion of the chest wear-site.

Although chest-worn protocols for accelerometers [22] are uncommon in research, necklace-

attached activity trackers are common in consumer devices. In fact, during the COVID-19

pandemic, some participants (or parents of children) were sceptical to the idea of attaching a

device in direct contact with their bodies. Providing a chest-worn option may potentially

increase acceptability to data collection protocols. Adherence may also improve given its rela-

tive ease of use. We do not, nevertheless, imply that the three included wear-sites are the only

viable placement sites. By contrast, the results of our study suggest that advanced modelling

approaches could allow for the development of unifying algorithms for any wear-sites. For

example, the thigh [25], ankle [26], and ears [27] are all possible placement sites that could be

incorporated in research in the future. Results from this study could have major implications
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to research data collection protocols. For example, instead of requiring participants to adhere

to a single wear-site, or even requesting them to switch between during non-sleeping and

sleeping periods [28], researchers could allow participants to choose, and switch, between sev-

eral wear locations based on their preferences, expected activities, or choice of attire. In fact,

these are common requests made by participants in real-life settings. Providing such auton-

omy to participants could potentially improve their adherence, thereby reducing non-adher-

ence and potential reduce device loss due to misplacement of devices.

While a universal (in terms of wear-site and participant age group) activity intensity classifi-

cation algorithm based on accelerometer-data alone may be coveted, results of our study sug-

gested that the predictive power of the models can be improved when additional features, such

as participants age, height, and weight are also incorporated into the models. Specifically, with

these additional parameters included, the accuracies of the predictions could reach over 95%.

Based on these findings, it might be appropriate to postulate that other characteristics of par-

ticipants, such as their anthropometric measures, are necessary inputs for the development of

a unified activity intensity detection algorithm for all age groups. While we did include both

children and adult participants in our study, future studies should incorporate participants

from more age groups (e.g., adolescents, older adults) and examine what parameters, such as

age or anthropometric measures, might be critical to the predictive powers of such models.

Nonetheless, researchers should continue to examine the performances of algorithms by sepa-

rating and combining, respectively, data from participants of different age groups, to investi-

gate the feasibility of developing non-age group-specific models for activity intensity

classification. Also, in our study, a sampling frequency of 100 Hz was used for accelerometer

data retrieval in our study to maximize the information that could be captured and used.

While researchers agreed to maximizing the volume of data retrieval in such studies [15],

more processing power will be required for data analysis. Further work is still required to

explore how to optimize the balance between richness and efficiency in processing data.

Limitation

A limitation of the study is that all activities were conducted under a controlled environment

within a laboratory. Findings from laboratory-based studies were not always reproducible in

free-living settings [13]. The limited choice of activities may also be insufficiently diverse to

represent all possible forms of activities at all intensities. Hence additional research is needed

to evaluate similar methods in non-laboratory settings. Furthermore, we were unable to iden-

tify potential factors that might contribute to the accuracies of prediction models. Further

research is required to examine if other participant characteristics, including but not limited to

sex, age, fitness levels, or skill level with respect to the activity tasks might affect the predictive

accuracies of the models.

Conclusions

In this study, we provided initial evidence that non-wear-site-specific activity classification

algorithms for accelerometer data can be derived using deep neural networks. Furthermore,

by applying similar data analytical approaches, we were able to correctly classify activity inten-

sity above 85% of the time, without prior knowledge of the device wear-site. While additional

work may be required to explore its application in real-life settings and adoption in research

studies, our results may serve as important reference for future research in this direction. Find-

ings from this study could have important implications to protocols for the collection of physi-

cal activity data, which may improve participant adherence and in turn, the quality and

quantity of data available for research.
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13. Farrahi V, Niemelä M, Kangas M, Korpelainen R, Jämsä T. Calibration and validation of accelerometer-

based activity monitors: A systematic review of machine-learning approaches. Gait & Posture. 2019;

68:285–99. https://doi.org/10.1016/j.gaitpost.2018.12.003 PMID: 30579037

14. Montoye AHK, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA. Validation and comparison of accelerome-

ters worn on the hip, thigh, and wrists for measuring physical activity and sedentary behavior. AIMS

Public Health. 2016; 3(2):298–312. https://doi.org/10.3934/publichealth.2016.2.298 PMID: 29546164

15. Narayanan A, Desai F, Stewart T, Duncan S, Mackay L. Application of raw accelerometer data and

machine-learning techniques to characterize human movement behavior: A systematic scoping review.

J Phys Act Health. 2020; 17(3):360–83. https://doi.org/10.1123/jpah.2019-0088 PMID: 32035416

16. Bach K, Atle K, Bårdstu H, Bardal EM, Kjærnli HS, Herland S, et al. A machine learning classifier for

detection of physical activity types and postures during free-living. J Meas Phys Behav. 2021; 5(1):24–

31. https://doi.org/10.1123/jmpb.2021-0015

17. Figueiredo J, Santos CP, Moreno JC. Automatic recognition of gait patterns in human motor disorders

using machine learning: A review. Med Eng Phys. 2018; 53:1–12. https://doi.org/10.1016/j.medengphy.

2017.12.006 PMID: 29373231

18. Rastogi S, Singh J. A systematic review on machine learning for fall detection system. Comput Intell.

2021; 37:951–74. https://doi.org/10.1111/coin.12441

19. Kamada M, Shiroma EJ, Harris TB, Lee IM. Comparison of physical activity assessed using hip- and

wrist-worn accelerometers. Gait & Posture. 2016; 44:23–8. https://doi.org/10.1016/j.gaitpost.2015.11.

005 PMID: 27004628

20. Rowlands AV, Olds TS, Bakrania K, Stanley RM, Parfitt G, Eston RG, et al. Accelerometer wear-site

detection: When one site does not suit all, all of the time. J Sci Med Sport. 2017; 20(4):368–72. https://

doi.org/10.1016/j.jsams.2016.04.013 PMID: 28117147

21. Scott JJ, Rowlands AV, Cliff DP, Morgan PJ, Plotnikoff RC, Lubans DR. Comparability and feasibility of

wrist-and hip-worn accelerometers in free-living adolescents. J Sci Med Sport. 2017; 20(12):1101–6.

https://doi.org/10.1016/j.jsams.2017.04.017 PMID: 28501418

22. Zhang JH, Macfarlane DJ, Sobko T. Feasibility of a chest-worn accelerometer for physical activity mea-

surement. J Sci Med Sport. 2016; 19(12):1015–9. https://doi.org/10.1016/j.jsams.2016.03.004 PMID:

27017012

23. Twomey N, Diethe T, Fafoutis X, Elsts A, McConville R, Flach P, et al. A comprehensive study of activity

recognition using accelerometers. Informatics. 2018; 5:27. https://doi.org/10.3390/informatics5020027

24. Santos GL, Endo PT, Monteiro KHdC, Rocha EdS, Silva I, Lynn T. Accelerometer-based human fall

detection using convolutional neural networks. Sensors. 2019; 19(7):1644. https://doi.org/10.3390/

s19071644 PMID: 30959877

25. Stevens ML, Gupta N, Inan Eroglu E, Crowley PJ, Eroglu B, Bauman A, et al. Thigh-worn accelerometry

for measuring movement and posture across the 24-hour cycle: a scoping review and expert statement.

BMJ Open Sport Exerc Med. 2020; 6:e000874. https://doi.org/10.1136/bmjsem-2020-000874 PMID:

33408875

26. Bezuidenhout L, Thurston C, Hagstromer M, Conradsson DM. Validity of Hip and Ankle Worn Actigraph

Accelerometers for Measuring Steps as a Function of Gait Speed during Steady State Walking and

Continuous Turning. Sensors. 2021; 21:3154. https://doi.org/10.3390/s21093154 PMID: 34062943

27. Skoglund MA, Balzi G, Jensen EL, Bhuiyan TA, Rotger-Griful S. Activity Tracking Using Ear-Level

Accelerometers. Front Digit Health. 2021; 3:724714. https://doi.org/10.3389/fdgth.2021.724714 PMID:

34713193

28. Cox NS, Eldridge B, Rawlings S, Dreger J, Corda J, Hauser J, et al. A web-based intervention to pro-

mote physical activity in adolescents and young adults with cystic fibrosis: protocol for a randomized

controlled trial. BMC Pulm Med. 2019; 19:253. https://doi.org/10.1186/s12890-019-0942-3 PMID:

31856791

PLOS ONE Evaluating a deep learning algorithm for intensity classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0299295 March 7, 2024 11 / 11

https://doi.org/10.1371/journal.pone.0160644
https://doi.org/10.1371/journal.pone.0160644
http://www.ncbi.nlm.nih.gov/pubmed/27513333
https://doi.org/10.1016/j.gaitpost.2017.12.028
http://www.ncbi.nlm.nih.gov/pubmed/29324298
https://doi.org/10.1016/j.gaitpost.2018.12.003
http://www.ncbi.nlm.nih.gov/pubmed/30579037
https://doi.org/10.3934/publichealth.2016.2.298
http://www.ncbi.nlm.nih.gov/pubmed/29546164
https://doi.org/10.1123/jpah.2019-0088
http://www.ncbi.nlm.nih.gov/pubmed/32035416
https://doi.org/10.1123/jmpb.2021-0015
https://doi.org/10.1016/j.medengphy.2017.12.006
https://doi.org/10.1016/j.medengphy.2017.12.006
http://www.ncbi.nlm.nih.gov/pubmed/29373231
https://doi.org/10.1111/coin.12441
https://doi.org/10.1016/j.gaitpost.2015.11.005
https://doi.org/10.1016/j.gaitpost.2015.11.005
http://www.ncbi.nlm.nih.gov/pubmed/27004628
https://doi.org/10.1016/j.jsams.2016.04.013
https://doi.org/10.1016/j.jsams.2016.04.013
http://www.ncbi.nlm.nih.gov/pubmed/28117147
https://doi.org/10.1016/j.jsams.2017.04.017
http://www.ncbi.nlm.nih.gov/pubmed/28501418
https://doi.org/10.1016/j.jsams.2016.03.004
http://www.ncbi.nlm.nih.gov/pubmed/27017012
https://doi.org/10.3390/informatics5020027
https://doi.org/10.3390/s19071644
https://doi.org/10.3390/s19071644
http://www.ncbi.nlm.nih.gov/pubmed/30959877
https://doi.org/10.1136/bmjsem-2020-000874
http://www.ncbi.nlm.nih.gov/pubmed/33408875
https://doi.org/10.3390/s21093154
http://www.ncbi.nlm.nih.gov/pubmed/34062943
https://doi.org/10.3389/fdgth.2021.724714
http://www.ncbi.nlm.nih.gov/pubmed/34713193
https://doi.org/10.1186/s12890-019-0942-3
http://www.ncbi.nlm.nih.gov/pubmed/31856791
https://doi.org/10.1371/journal.pone.0299295

