
RESEARCH ARTICLE

Analyses of plasma metabolites using a high

performance four-channel CIL LC-MS method

and identification of metabolites associated

with enteric methane emissions in beef cattle

Hongwei Li1☯, Xiaohang Wang2☯, Michael Vinsky3, Ghader ManafiazarID
1,4,

Carolyn FitzsimmonsID
1,3, Liang Li2*, Changxi Li1,3*

1 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta,

Canada, 2 Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, 3 Lacombe

Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada,

4 Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, Nova

Scotia, Canada

☯ These authors contributed equally to this work.

* changxi.li@agr.gc.ca (CL); liang.li@ualberta.ca (LL)

Abstract

Reducing enteric methane (one greenhouse gas) emissions from beef cattle not only can be

beneficial in reducing global warming, but also improve efficiency of nutrient utilization in the

production system. However, direct measurement of enteric methane emissions on individ-

ual cattle is difficult and expensive. The objective of this study was to detect plasma metabo-

lites that are associated with enteric methane emissions in beef cattle. Average enteric

methane emissions (CH4) per day (AVG_DAILYCH4) for each individual cattle were mea-

sured using the GreenFeed emission monitoring (GEM) unit system, and beef cattle with

divergent AVG_DAILYCH4 from Angus (n = 10 for the low CH4 group and 9 for the high CH4

group), Charolais (n = 10 for low and 10 for = high), and Kinsella Composite (n = 10 for low

and 10 for high) populations were used for plasma metabolite quantification and metabolite-

CH4 association analyses. Blood samples of these cattle were collected near the end of the

GEM system tests and a high performance four-channel chemical isotope labeling (CIL) liq-

uid chromatography (LC) mass spectrometer (MS) method was applied to identify and quan-

tify concentrations of metabolites. The four-channel CIL LC-MS method detected 4235

metabolites, of which 1105 were found to be significantly associated with AVG_DAILYCH4

by a t-test, while 1305 were significantly associated with AVG_DAILYCH4 by a regression

analysis at p<0.05. Both the results of the t-test and regression analysis revealed that

metabolites that were associated with enteric methane emissions in beef cattle were largely

breed-specific whereas 4.29% to 6.39% CH4 associated metabolites were common across

the three breed populations and 11.07% to 19.08% were common between two breed popu-

lations. Pathway analyses of the CH4 associated metabolites identified top enriched molec-

ular processes for each breed population, including arginine and proline metabolism,

arginine biosynthesis, butanoate metabolism, and glutathione metabolism for Angus; beta-

alanine metabolism, pyruvate metabolism, glycolysis / gluconeogenesis, and citrate cycle
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(TCA cycle) for Charolais; phenylalanine, tyrosine and tryptophan biosynthesis, phenylala-

nine metabolism, arginine biosynthesis, and arginine and proline metabolism for Kinsella

Composite. The detected CH4 associated metabolites and enriched molecular processes

will help understand biological mechanisms of enteric methane emissions in beef cattle. The

detected CH4 associated plasma metabolites will also provide valuable resources to further

characterize the metabolites and verify their utility as biomarkers for selection of cattle with

reduced methane emissions.

Introduction

Climate change and global warming have been a concern for all humans since 1970s, and the

main cause, greenhouse gas emissions, has attracted enormous attention with discussions in

political, environmental, technological, and cultural areas [1]. Greenhouse gas mainly includes

carbon dioxide (CO2), enteric methane (CH4), nitrous oxide (N2O), etc., in which the impact

of CH4 on the climate change is more than 25 times greater than CO2. According to a widely

quoted figure from United Nations Food and Agriculture Organization (FAO), livestock, par-

ticularly cattle, are responsible for 14.5 percent of global human-induced greenhouse gas emis-

sions [2]. And due to an expected doubling demand of global milk and meat by 2050, CH4

emissions from livestock is predicted to substantially increase [3]. In Canada, it is estimated

that beef cattle produce up to 20 million tons carbon dioxide equivalent (CO2 eq) of methane

per year as a result of enteric fermentation, accounting for the great influence on the green-

house effect [4].

Cattle release 6% of their ingested energy as eructated methane [5], thus reducing methane

emissions not only can be beneficial in reducing carbon foot print of the industry, but also

improve nutrition utilizing efficiency and decrease production costs. The mechanism of meth-

ane emissions from cattle remains to be fully revealed, but it has been shown that cattle meth-

ane emission is in part controlled by animal genetics, offering an opportunity to reduce

methane emissions through genetic selection. Conventional genetic selection of low methane

emission beef cattle based on directly measured phenotypes is challenging and expensive

because methane emission data collection is time- and labor-intensive [6]. Marker assisted

selection (MAS) or genomic selection is an alternative approach with identified predictive

markers from DNA, transcriptomics, metabolomics or other types [7].

Of those, metabolomics is an emerging field and a powerful tool to characterize complex

biochemical phenotypes. It has the potential to reveal promising biomarker candidates associ-

ated with biomolecular processes of methane emissions. The major issues of current metabolo-

mics studies include low metabolome coverage as well as not high quantification accuracy. As

a result, new techniques are required. Previously, we reported the use of high-performance

chemical isotope labeling (CIL) LC-MS method for the profiling of amine/phenol submetabo-

lome [8]. This derivatization method can significantly improve LC separation, MS sensitivity,

and also provide precise relative quantification result. The power and promising future of this

method have been realized from its successful application in various samples and areas [9–13].

In order to further improve metabolome coverage, recently, we have developed other CIL

approaches targeting different submetabolomes, such as carboxylic acids [14], hydroxyls [15],

ketones and aldehydes [16]. By using this divide-and-conquer strategy and combining all these

four-channel methods together, we could gain a coverage as high as 90% of potential whole

metabolome [17].
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Thus, in this work, we applied the high performance four-channel CIL LC-MS method to

detect and quantify plasma metabolites from cattle that were measured for enteric methane

emissions. Subsequently, we conducted association analyses to identify metabolites and

enriched molecular processes that are significantly associated with enteric methane emissions

in beef cattle.

Materials and methods

Animal populations and management

Animals used in this study were from three beef cattle populations including Angus, Charolais,

and Kinsella Composite (KC) that are located at the Roy Berg Kinsella Ranch, University of

Alberta. The three beef cattle populations were previously described [18, 19]. Briefly, the

Angus and Charolais cow herds were maintained via breeding using registered bulls with their

pedigree information maintained by the Canadian Angus or Charolais association, respec-

tively. The KC cow herd were produced from crosses among 3 composite cattle lines, namely

beef synthetic 1, beef synthetic 2, and dairy × beef synthetic (DBS). The beef synthetic 1 was

composed of 33% Angus, 33% Charolais, and about 20% Galloway, with the remainder from

other beef breeds. The beef synthetic 2 composite was made up of about 60% Hereford and

40% other beef breeds. The dairy × beef synthetic was composed of approximately 60% dairy

breeds (Holstein, Brown Swiss, or Simmental) and 40% beef breeds, mainly Angus and Charo-

lais. The KC cow herd was maintained via breeding using Angus, Charolais, or University of

Alberta Hybrid bulls that were produced from the three beef synthetic lines. All the three cow

herds were bred between June to August and their calves were born between March to May.

Calves remained with their dams until they were weaned at 6–7 months of age. All animals

were raised and managed following the Canadian Council of Animal Care (CCAC) guidelines

on the care and use of farm animals in research teaching and testing [20], and all the experi-

mental procedures applied to the animals were approved by the University of Alberta Animal

Care and Use Committee (AUP00000777).

Methane emissions data collection

Methane emissions were measured on Angus and Charolais heifers after weaning and on KC

mature cows using the GEM (GreenFeed emissions monitoring) system at the Roy Berg Kin-

sella Ranch along with a feedlot test trial. All the animals in the three breed population were

fed ad libitum once daily (8am) with the mixed ration (as fed basis) during the feedlot test and

during adaptation to diet (25 d before test) period. Ingredient composition of the mixed ration

offered to animals in the Angus and Charolais populations was 71.8% silage, 19% oat grain,

4.5% corn dried distillers grains with solubles (cDDGS), and 4.7% Feedlot 30-Rumensin (F30).

For the KC population, the ingredient composition was 85% Barley Silage, 10% Barley, 5%

F30. The F30 contained crude Protein (min) 30.0%; Equivalent Crude Protein from Non-pro-

tein sources (max) 10.0%; Crude Fat (min) 2.5%; Crude Fibre (max) 8.0%; Flourine (max) 120

mg/kg; Sodium (act) 2,0%; Calcium (act) 8.5%; Phosphorus (act) 0.7%; Magnesium (act) 0.4%;

Potassium (act) 0.9%; Sulfur (act) 0.4%; Iron (act) 135 mg/kg; iodine (act) 30 mg/kg; Copper

(act) 310 mg/kg; Manganese (act) 840 mg/kg; Zine (act) 1,440 mg/kg; Cobalt (act) 6.0 mg/kg:

Vitamin A (min) 100,000 LU./kg: Vitamin D (min) 10,000 I.U./kg: Vitamin E (min) 300 I.U./

kg and monensin 22mg/kg.

Details of measuring methane emissions using the GEM system were described by Manafia-

zar et al. [21]. Briefly, the GEM system dispenses feed pellets to attract the animals. When an

individual animal visits GEM, the system reads the animal’s radio-frequency identification tag,

and the beginning, and end time of each visit are recorded. Any measurements with a
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minimum of 3 min per each visit time were considered as acceptable observations for monitor-

ing emissions. Animals had free access to the GEM system 24 h/day while on drylot, although

pellet intake was restricted such that each animal received a maximum of six drops per GEM

visit, and pellets were dropped at 36 second intervals. After the sixth drop, animals were

required to wait 4 h until their next six drops, resulting in a maximum of 36 drops per animal

per day with six possible visits, and drop sizes averaged 35.4 g drop−1 (SD = 0.30). Pellets used

in the GEM unit consisted of barley, beef vitamin-trace mineral premix, calcium carbonate,

corn distiller’s grains screenings, sodium chloride, wheat/wheat middlings, and zinc chelate

(MasterFeeds Inc., Red Deer, AB, Canada). Continuous and negative air flow from a system

fan draw air past the animal’s nose and mouth when it enters the shroud, thus mixing air with

respired and (or) eructated CH4 and CO2. This mixture was drawn up a collection pipe,

remixed, sampled, and analyzed by a nondispersive infrared analyzer. Valid time per visit and

visit duration were defined as any spot measurement of CH4 and CO2 emissions, where the

animal’s head was continuously in the shroud within 20 cm of the proximity sensor for a mini-

mum of 3 min. Total number of drops per day for each animal were also extracted. Visit data

were then converted to daily emission data using SAS software program (SAS 2016) and mea-

surements of individual animal enteric methane emissions were obtained as an average of

daily CH4 amount in gram over the test period (i.e. AVG_DAILYCH4), which was expressed

as (g d−1).

Plasma sample collection and metabolite analyses

Near the end of GEM system tests, blood samples were collected in green topped lithium hepa-

rin vacutainers from each animal using jugular blood sampling once before morning feeding.

There were no duplicates in the process of blood sample collection. Then, blood was thor-

oughly mixed with lithium heparin vacutainers and centrifuged to collect the plasma, which

was then immediately frozen on dry ice, transported back to the lab and stored at -80˚C for

subsequent metabolite analyses. For this study, blood samples of 19 heifers born in 2017 from

the Angus breed, 20 heifers born in 2017 from the Charolais breed, and 20 mature cows born

in 2015 from the Kinsella Composite (KC) breed were used. These animals were selected from

72, 48, and 40 cattle measured for the enteric methane emissions in 2018 to represent cattle

with the lowest or highest amounts of AVG_DAILYCH4 of each breed population.

Chemicals and reagents

All the chemicals and reagents, unless otherwise stated, for metabolite analyses were purchased

from Sigma-Aldrich Canada (Markham, ON, Canada). Dansyl chloride (DnsCl), p-dimethyla-

minophenacyl (DmPA) bromide, dansylhydrazine (DnsHz) and RT-calibrants was purchased

from Nova Medical Testing (NovaMT) Inc (Edmonton, Alberta, Canada). LC−MS grade

water, acetonitrile (ACN), and methanol (MeOH) were purchased from Thermo Fisher Scien-

tific (Edmonton, Alberta, Canada).

Analytical workflow

A high-performance chemical isotope labeling (CIL) method was applied to achieve relative

metabolite quantification and high metabolome coverage. Fig 1 shows the overall workflow of

this work. It contains the following steps: (1) sample aliquoting and generation of pooled sam-

ple, (2) 4-channel submebolome labeling, (3) LC-UV quantification and normalization, (4)

mixing of 12C-labeled individual samples and 13C-labeled pooled sample at equal amounts, (5)

LC-FTICR-MS analysis of 12C-/13C- mixtures, (6) data processing using R programs, (7)
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metabolite identification and statistical analysis using IsoMS Pro software (NovaMT, AB, Can-

ada). The detailed experimental conditions are described below.

Aliquoting and generation of the pooled sample

Each individual cow plasma sample from -80˚C freezer was thawed then centrifuged at 15,000

g for 10 min. Supernatant was taken and split into 6 aliquots for four different labeling meth-

ods (15 μL each), backup (15 μL each) and preparation of pooled sample (35 μL each). For the

one aliquot for preparing of pooled sample, all the aliquots from each individual sample were

combined and mixed thoroughly, which was used as the reference. All of the leftovers were

stored at -80˚C for future analyses.

Amine/Phenol submetabolome labeling

For the 15 μL aliquot for amine/phenol labeling, 45 μL of LC-MS grade MeOH was added to

perform protein precipitation. The sample was vortexed then incubated at -20˚C for 2 hours.

After that, the sample was centrifuged at 15,000 g for 10 min. 45 μL of the supernatant was

taken and completely dried using a Savant SC110A Speed Vac at room temperature. The sam-

ple was re-suspended in 25 μL of LC-MS grade water and ready for dansylation labeling. The

labeling protocol was adapted from a previous report [8]. 25 μL of individual sample or 25 μL

of the pooled sample was mixed with 12.5 μL of ACN. Then, 12.5 μL of 250 mM sodium car-

bonate/sodium bicarbonate buffer was added to the samples. The solution was mixed with

25 μL of freshly prepared 12C- dansyl chloride (DnsCl) solution (18 mg/mL, in ACN) (for light

labeling, individual samples) or 13C-DnsCl solution (18 mg/mL, in ACN) (for heavy labeling,

pooled sample). After incubation for 45 min at 40˚C, 5 μL of 250 mM sodium hydroxide solu-

tion was added to quench the reaction. The solution was then incubated at 40˚C for another

Fig 1. Workflow of 4-channel chemical isotope labeling LC-MS of cow plasma samples.

https://doi.org/10.1371/journal.pone.0299268.g001
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10 min. Finally, 25 μL of formic acid (425 mM) in ACN/water (50:50, v/v) was added to make

the solution acidic.

Carboxyl submetabolome labeling

For the 15 μL aliquot for carboxyl labeling, 45 μL of LC-MS grade ACN was added to perform

protein precipitation. The sample was vortexed then incubated at -20˚C for 2 hours. After that,

the sample was centrifuged at 15,000 g for 10 min. 40 μL of the supernatant was taken and

ready for DmPA labeling. The labeling protocol was adapted from a previous report [14].

40 μL of individual sample or 40 μL of the pooled sample was mixed with 10 μL of 0.5 M

triethanolamine. Then, 25 μL of freshly prepared 12C-DmPA solution (10 mg/mL, in ACN)

(for light labeling, individual samples) or 13C-DmPA solution (10 mg/mL, in ACN) (for heavy

labeling, pooled sample). After incubation for 60 min at 80˚C, 20 μL of 0.2 M Tri-Gly was

added and incubated at 80˚C for another 30 min to quench the excessive labeling reagent.

Hydroxyl submetabolome labeling

For the 15 μL aliquot for hydroxyl labeling, the labeling protocol was adapted from a previous

report [15]. 3 μl of saturated NaCl and 1.5 μL of a 6 M HCl was added to the individual sample

or the pooled sample. After vortexing, 45 μL of ethyl acetate was added to extract metabolite

for twice. Then, the extracted solutions were combined and completely dried. After that, the

sample was re-suspended in 12.5 μL of LC-MS grade ACN. 12.5 μl of freshly prepared 18 mg/

mL 12C-(for light labeling, individual samples) or 13C- (for heavy labeling, pooled sample)

DnsCl solution (in ACN) and 12.5 μL of 24.5 mg/mL DMAP solution (in ACN) was added.

The sample was vortexed, followed by spinning down, and then incubated at 60˚C for 60 min-

utes. After that, 2.5 μL of a 250 mM NaOH solution was added to quench the excessive labeling

reagent. The solution was incubated at 60˚C for another 10 minutes. Finally, 12.5 μL of 425

mM formic acid solution in ACN/water (50:50, v/v) was added to adjust pH.

Carbonyl submetabolome labeling

For the 15 μL aliquot for carbonyl labeling, the labeling protocol was adapted from a previous

report [16]. 45 μL of LC-MS grade MeOH was added to perform protein precipitation. The

sample was vortexed, spun down, then incubated at -20˚C for 2 hours. After that, the sample

was centrifuged at 15,000 g for 10 min. 45 μL of the supernatant was taken and completely

dried. The sample was re-suspended in 15 μL of LC-MS grade water. 15 μL of 144 mM HCl

solution (in MeOH) was added to the individual sample or the pooled sample. After vortexing

and spinning down, 15 μL of freshly prepared 20 mM 12C- (for the individual samples and the

pooled sample) or 13C- (for the pooled sample) DnsHz (in MeOH) was added. The sample was

then vortexed, followed by spinning down. The mixture was incubated at 40˚C for 60 minutes.

After that, the sample was removed from the incubator and placed in the -80˚C freezer for 10

minutes to stop the reaction. The solution was then completely dried down. Finally, the labeled

metabolites were re-dissolved in 80 μL of ACN/water (50:50, v/v).

LC-UV sample normalization

The total amount of dansyl-labeled metabolites in each sample from amine/phenol labeling

was measured using an LC-UV with a protocol reported previously [22]. The instrument used

for detection was a Waters ACQUITY UPLC system with a photodiode array (PDA) detector.

A Phenomenex Kinetex reversed-phase C18 column (50 mm × 2.1 mm, 1.7 μm, 100 Å pore

size) was used to achieve a fast step-gradient. Mobile phase A was 0.1% (v/v) formic acid in 5%
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(v/v) ACN/water, and mobile phase B was 0.1% (v/v) formic acid in ACN. The gradient profile

was as follows: t = 1 min, B = 0%; t = 1.01 min, B = 95%; t = 2.5 min, B = 95%; t = 3 min,

B = 0%; t = 6 min, B = 0%. The flow rate was 0.45 mL/min. The peak area, which represents

the total concentration of dansyl-labeled metabolites, was integrated using the Empower soft-

ware (6.00.2154.003).

Sample mixing

According to the quantification results, 12C-labeled individual samples and the 13C-labeled

pooled sample were mixed in equal amounts, respectively, for all the 4 channels. 12C- and 13C-

labeled pooled sample were mixed in equal amounts to serve as a quality control (QC) sample.

Besides, for carboxyl, carbonyl and hydroxyl labeling, 12C- and 13C-labeled blanks (water)

were mixed in equal volume to serve as the method blanks. The mixtures were ready for

LC-MS analysis.

LC-MS analysis

Labeled and mixed cow plasma samples were analyzed using a Bruker 9.4 T Apex-Qe FTICR

mass spectrometer (Bruker, Billerica, MA), coupled with an Agilent capillary 1100 binary sys-

tem (Agilent, Palo Alto, CA). An Agilent eclipse plus reversed-phase C18 column (100 × 2.1

mm, 1.8 μm) was used. Mobile phase A was 0.1% (v/v) formic acid in 5% (v/v) ACN/water,

and mobile phase B was 0.1% (v/v) formic acid in ACN. The gradient profile for amine/phenol

labeling was: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18 min, 65% B; t = 24 min, 99% B; t = 32

min, 98% B. The gradient profile for carboxyl labeling was: t = 0 min, 20% B; t = 9 min, 50% B;

t = 22 min, 65% B; t = 26 min, 80% B; t = 28 min, 98% B; t = 34 min, 98% B. The gradient pro-

file for hydroxyl labeling was: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 9.2 min, 65% B; t = 21.2

min, 99% B; t = 31.2 min, 99% B. The gradient profile for carbonyl labeling was: t = 0 min, 1%

B; t = 3min, 25% B; t = 23min, 99% B; t = 34min, 99% B. Flow rate was all 180 μL/min. All

mass spectra were collected in the positive ion mode. The MS conditions for FTICR-MS were:

nitrogen nebulizer gas, 2.3 L/min; dry gas flow, 7.0 L/min; dry temperature, 195˚C; capillary

voltage, 4200 V; spray shield, 3700 V; acquisition size, 256 k; mass scan range, m/z 200−1000;

ion accumulation time, 1 s; TOF (AQS), 0.007 s; DC extract bias, 0.7 V. All the samples were

injected in random order. QC samples, blanks and RT-calibrants were injected every 10 runs

to monitor the performance of the instrument.

Data processing

After LC-FTICR-MS analysis, the entire list of centroid peaks with information of retention

times, m/z values and peak intensities was exported to.csv files using Bruker Data Analysis

software (Version 4.0). IsoMS [23] R-program was used to pick peak pairs, filter false-positive

pairs (e.g., dimers and common adducts) and calculate peak-pair relative intensity ratios. After

the alignment of peak pairs from multiple samples using the Alignment R-program, the Zero-

fill R-program was applied to recover the high-confidence peak pair ratios lost during the pre-

vious data processing steps. For carboxyl, carbonyl and hydroxyl labeling, Blank Subtraction

R-program was used to reduce background peak pairs.

Metabolite identification

Three-tiers identification approach was used to perform metabolite identification using IsoMS

Pro software. In tier 1, based on accurate mass and retention time, peak pairs were searched

against a labeled metabolite library-CIL Library, which contains more than 1,300 experimental
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entries, including metabolites and dipeptides. In tier 2, based on accurate mass and predicted

retention time, the remaining peak pairs were searched against a linked identity library (LI

Library), which includes over 7,000 pathway-related metabolites and provides high-confidence

putative identification results. In tier 3, based on accurate mass, the remaining peak pairs were

searched against the MyCompoundID (MCID) library, which is composed of 8,021 known

human endogenous metabolites (zero-reaction library) and their predicted metabolic products

from one metabolic reaction (375,809 compounds) (one-reaction library) and two metabolic

reactions (10,583,901 compounds) (two-reaction library).

Methane emission and metabolite data consolidation

AVG_DAILYCH4 and each metabolite concentration were examined for outliers and normal-

ity of distribution. Values that are greater or smaller than 3 times standard deviation of the

mean of AVG_DAILYCH4 or metabolite concentration were excluded. Descriptive statistics

of original phenotypic values of AVG_DAILYCH4 and all metabolites were provided in S1

and S2 Tables, respectively. Since animal ages at the start of measuring CH4 and thus at blood

sample collection were different, the values of AVG_DAILYCH4 and all metabolite concentra-

tions were adjusted through a regression on the animal age factor using glm function in R pro-

gramming. The regression model is shown below.

y ¼ b0 þ b1∗X1 þ ε ð1Þ

Where y is the vector of the original phenotype values, β0 is the intercept, β1 is the slope of

the line, X1 is the animal age in day, ε is the residual term. The residuals of the regression were

used as adjusted phenotypic values for further analyses. The adjusted CH4 (AVG_DAILYCH4)

and adjusted metabolite concentrations conform to a normal distribution for each breed popu-

lation as shown in normal quantile–quantile (Q-Q) plots of S1 Fig (adjusted AVG_DAILYCH4

and adjusted metabolite A-5 as an example).

Association analyses

T-test within breed population. The animals were assigned into high or low methane emis-

sion groups within each breed based on their adjusted AVG_DAILYCH4 values. The high and

low methane emissions groups had significantly different AVG_DAILYCH4 values in each of

the Angus (p-value = 4.51E-05), Charolais (p-value = 2.81E-04), and KC (p-value = 3.67E-09)

breed populations as shown in Table 1.

A t-test of adjusted metabolite concentrations between the high and low methane emission

groups within each breed was conducted to detect metabolites that are significantly associated

with the amount of methane emission. In order to consider multiple testing, permutation tests

were used to determine the significance threshold value (p-value) for the t-test [24]. In the per-

mutation tests, adjusted metabolite concentrations were randomly shuffled for each metabolite

and then assigned to animals in the high or low methane groups, and a t-test was conducted

and the corresponding p-value was recorded. The process was repeated 1000 times and 1000

Table 1. Significance of differences of AVG_DAILYCH4 (g/per day) between the high and low methane emission groups in the Angus, Charolais, and Kinsella

Composite (KC) populations.

Threshold Number of records Numb er of records in low group Number of records in high group Mean_low group±se Mean_high group±se p-value

Angus 19 10 9 -16.5±2.97 18.33±5.03 4.51E-05

Charolais 20 10 10 -13.59±4.92 13.59±1.62 2.81E-04

KC 20 10 10 -31.08±4.2 31.08±4.1 3.67E-09

https://doi.org/10.1371/journal.pone.0299268.t001
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p-values were recorded. Then, all the recorded 1000 p-values were ordered from smallest to

largest and the 50th p-value, which corresponds to the 5% type 1 error of the order, was used

as the significance threshold value of the t-test for each corresponding metabolite.

Construction of volcano plots within breed population. In order to integrate both the

biological and statistical significance concerning the metabolites, volcano plots were imple-

mented within each breed population. In statistics, a volcano plot is a type of scatter-plot that

is used to quickly identify changes in large data sets composed of replicate data [25, 26]. In our

study, volcano plots combined a measure of statistical significance (p-value) from the t-test

above (between the high and low methane emission groups within each breed) with the magni-

tude of the change, enabling quick visual identification of those data-points (metabolites, etc.)

that display large magnitude changes that are also statistically significant. The fold change

(FC) of volcano plots were calculated as Mean(High group) / Mean(Low group), and the

metabolites selection criteria of FC was 1<|Log2FC| 6.644 (26.644�100). Different from general

volcano plots, we used the significance threshold value obtained from permutation tests to

determine the significance of t-test in our volcano plots. The volcano plots was conducted

using Metaboanalyst 5.0 and R program.

Regression analyses within breed population. A regression analysis of adjusted AVG_-

DAILYCH4 to each adjusted metabolite concentration was also performed to detect metabo-

lites that are significantly associated with the amount of methane emission. Similarly,

permutation tests were used to determine the significance threshold value (p-value) at the 5%

type error for the regression analysis [24].

Pathway analyses

Metabolites that were detected by both the t-test and the regression analysis as having signifi-

cant associations with the enteric methane emissions in each breed population were listed for

subsequent pathway analysis. Pathway analysis was conducted using Metaboanalyst 5.0 for

those common detected metabolites that have a high-confidence of quantification (tier 1 and

tier 2). Those commonly detected enteric methane emission associated metabolites were

matched to the Bos taurus (cow) (KEGG) pathway library to identify enriched molecular

processes.

Results

Metabolite detection and identification results of four-channel labeling

LC-MS

The four-channel labeling technique targets amine/phenol -, carboxyl-, hydroxyl-, and car-

bonyl—submetabolomes. The data was firstly processed for each submetabolome separately,

and then combined together. A total of 4235 peak pairs or metabolites were detected for the 59

cow plasma samples. Three-tier identification approach was used for identifying these metabo-

lites. In tier 1, a total of 110 peak pairs were positively identified against CIL library. In tier 2,

260 peak pairs were putatively identified with high confidence against LI library. In tier 3, 676,

1709 and 941 peak pairs were matched in the zero-, one- and two-reaction libraries, respec-

tively, against MCID library. Thus, in total, out of 4235 detected metabolites, 3696 metabolites

(87.3%) were either definitely or putatively identified. Among them, 370 metabolites were

identified as high-confidence results (tier 1 and tier 2), which were more important as they can

be used for other analysis (e.g., pathway analysis). The detailed metabolite detection and iden-

tification results were presented in S3 Table.
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Metabolites associated with enteric methane emissions detected by the t-

test and volcano plots in the three populations

Table 2 showed the number of metabolites that were significantly associated with CH4 detected

by the t-test and a complete list of metabolites names was presented in S4 Table. As summa-

rized in Table 2, there were 1406 significant metabolites, of which 1105 were unique, from the

three populations using the t-test method, with 458, 476 and 472 metabolites for Angus, Cha-

rolais and KC, respectively. And the p-value ranges were from 3.46E-05 to 9.75E-02, 7.76E-05

to 1.33E-01 and 6.12E-09 to 6.83E-02 for Angus, Charolais and KC, respectively. The volcano

plots of differential metabolite identification between the high and low enteric methane emis-

sion (AVG_DAILYCH4) groups in the Angus, Charolais and KC populations were shown in

Figs 2–4. As is shown in Table 2, the Log2FC range used for volcano plots were from -6.5918 to

-1.0448 and 1.1173 to 6.6009, -6.3489 to -1.0396 and 1.0685 to 6.5368, -6.0214 to -1.0871 and

1.0063 to 6.5121 for Angus, Charolais and KC, respectively. Additional, S5 Table presented a

list of the Log2FC, pvalues and directions for enteric methane emissions of each metabolite for

the volcano plots in the Angus, Charolais, and Kinsella Composite (KC) populations. For

Angus, Charolais and KC, 157, 266 and 262 differential metabolites were positively correlated

with the CH4 amount, and 265, 195 and 157 differential metabolites were negatively correlated

with the CH4 amount. Also, the number of metabolites that are significantly associated with

the enteric methane emissions (AVG_DAILYCH4) detected by volcano plots were shown in

Table 2, it is noticed that the volcano plots verified 422 of 458 (92.1%), 461 of 476 (96.8%) and

419 of 472 (88.8%) of the metabolites detected by the t-test in the three breed populations,

which means the t-test detected additional 36, 14, and 53 metabolites in the three populations,

respectively. All the metabolites identified in volcano plots were included in t-test results. As

the vast majority of the metabolites detected by the t-test in the three breed populations (88.8%

to 96.8%) were verified through the volcano plots and the t-test identified additional metabo-

lites associated with CH4, we will focus on all the potential CH4 associated metabolites detected

by the t-test for subsequent analysis and discussion.

The number of common metabolites between different breed populations that were signifi-

cantly associated with CH4 detected by the t-test was shown in Table 3, in which 115 (14.04%)

significant metabolites were common between Angus and Charolais, 149 (19.08%) significant

metabolites were common between Angus and KC, and 108 (12.86%) significant metabolites

were common between Charolais and KC. A Venn diagram of significant metabolites from the

results of the t-test in different breed populations was shown in Fig 5, of which, 71 metabolites

(6.39%) were common among the three breed populations. As is shown in S4 Table, all the 71

common metabolites had the same direction of correlations for CH4 amount for the Angus

and KC populations, of which 66 of the 71 metabolites were positively correlated with the CH4

amount, and 5 of the 71 metabolites had the negative correlations with the CH4 amount. Of

Table 2. Number of metabolites that are significantly associated with the enteric methane emissions (AVG_DAILYCH4) detected by the t-test and volcano plot in

the Angus, Charolais, and Kinsella Composite (KC) populations.

Population T-test p-value range Permutation p-value threshold

range

Volcano

plot

Log2FC range Common between T-test and Volcano

plot

Angus 458 3.46E-05- 9.75E-

02

3.08E-02- 1.33E-01 422 (-6.5918~-1.0448) &

(1.1173~6.6009)

422

Charolais 476 7.76E-05- 1.33E-

01

3.84E-02- 1.75E-01 461 (-6.3489~-1.0396) &

(1.0685~6.5368)

461

KC 472 6.12E-09- 6.83E-

02

3.53E-02- 1.04E-01 419 (-6.0214~-1.0871) &

(1.0063~6.5121)

419

Total 1406 - - 1302 - 1302

https://doi.org/10.1371/journal.pone.0299268.t002
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the 71 common significant metabolites in Charolais, 66 had the negative correlations with the

CH4 amount, and 5 metabolites had the positive correlations with the CH4 amount. However,

the direction of correlations between the significant metabolites and CH4 amount in Charolais

was opposite than that in Angus and KC.

Metabolites associated with enteric methane emissions detected by

regression analysis in the three populations

The number of metabolites that were significantly associated with CH4 detected by regression

was shown in Table 4 and a complete list of metabolites names was also presented in S4 Table.

In total, 1651 significant metabolites, of which 1305 were unique, were discovered using the

regression analysis in the three populations with 708, 478, and 465 significant metabolites in

Fig 2. The volcano plot of differential metabolite identification between the high and low enteric methane

emission (AVG_DAILYCH4) groups in the Angus population.

https://doi.org/10.1371/journal.pone.0299268.g002

Table 3. Number of common metabolites between or among the Angus, Charolais, and Kinsella Composite (KC)

populations that are significantly associated with the enteric methane emissions (AVG_DAILYCH4) detected by

both the t-test and regression analysis.

Combination T-test Regression

Common between Angus and Charolais 115 131

Common between Angus and KC 149 177

Common between Charolais and KC 108 94

Common among three population 71 56

https://doi.org/10.1371/journal.pone.0299268.t003
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Angus, Charolais and KC, respectively. The p value ranges in the three populations were from

1.68E-10 to 6.26E-02, 4.86E-06 to 6.49E-02 and 1.00E-08 to 5.79E-02, respectively.

As is shown in Table 3, 131 (12.42%) significant metabolites were common between Angus

and Charolais, 177 (17.77%) significant metabolites were common between Angus and KC,

and 94 (11.07%) significant metabolites were common between Charolais and KC. The Venn

diagram (Fig 6) showed that 56 (4.29%) of them were common metabolites across the three

breed populations. As presented in S4 Table, for Angus and KC, 49 of the common 56 metabo-

lites were positively correlated with the CH4 amount and 7 of the common 56 metabolites

were negatively correlated with the CH4 amount, and they had the same direction of correla-

tions. For Charolais, 50 of the 56 common metabolites were negatively correlated with the

CH4 amount and 6 metabolites were positively correlated with the CH4 amount. Of these 56

Fig 3. The volcano plot of differential metabolite identification between the high and low enteric methane

emission (AVG_DAILYCH4) groups in the Charolais population.

https://doi.org/10.1371/journal.pone.0299268.g003

Table 4. Number of metabolites that are significantly associated with the enteric methane emissions (AVG_DAILYCH4) detected by the regression analysis in the

Angus, Charolais, and Kinsella Composite (KC) populations.

Population Regression p-value range Permutation p-value threshold range

Angus 708 1.68E-10- 6.26E-02 3.08E-02- 8.70E-02

Charolais 478 4.86E-06- 6.49E-02 2.91E-02- 7.13E-02

KC 465 1.00E-08- 5.79E-02 3.25E-02- 7.34E-02

Total 1651 - -

https://doi.org/10.1371/journal.pone.0299268.t004
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common metabolites in Charolais, 55 metabolites had opposite correlation directions that that

in Angus and KC.

The t-test method detected 265, 324, and 286 significant metabolites that were specific to

the Angus, Charolais, and KC population, which represents approximately 57.9%, 68.1%,

60.6% of the significant metabolites detected in the breed population, respectively. The regres-

sion analyses discovered 456, 309, and 250 significant metabolites that were specific to the

Angus, Charolais, and KC population, which represents approximately 64.4%, 64.6%, 53.8% of

the significant metabolites detected in the breed population, respectively.

Comparison between the results of t-testand regression analysis

We used both the t-test and regression to detect metabolites that are significantly associated

with CH4. As is shown in Table 5 and Fig 7, there were 394 (51%), 279 (41.3%), and 375

(66.7%) common significant metabolites between the t-test and regression analysis in the

Angus, Charolais and KC populations, respectively. It was found that 64 (8.3%), 197 (29.2%),

and 97 (17.3%) metabolites were detected by t-test but not by regression in the Angus, Charo-

lais and KC populations, respectively. A total of 314 (40.7%), 199 (29.5%), and 90 (16%) metab-

olites were detected by regression but not by t-test in Angus, Charolais and KC, respectively.

We used a high performance four-channel CIL LC-MS method in this study and were able to

quantify 4235 peak pairs or metabolites using a 3-tier identification approach. We further

showed the significant metabolites of high-confidence metabolite quantification (tier 1 and

Fig 4. The volcano plot of differential metabolite identification between the high and low enteric methane

emission (AVG_DAILYCH4) groups in the Kinsella Composite (KC) population.

https://doi.org/10.1371/journal.pone.0299268.g004
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tier 2) detected by both the regression analysis and t-test in the three cattle populations in

Table 6. As shown in Table 6, 15, 12 and 21 high-confidence detected metabolites (tier 1 and

tier 2) for Angus, Charolais, and KC populations, respectively, were significantly associated

with methane emissions.

Pathway analysis

A list of enriched molecular process with p-values and impact factors from the pathway analy-

ses was presented in S6 Table for each breed population. As an illustration, plots of -log (p-

value) against the pathway impact of top four enriched molecular process were shown in S2A,

S3A, and S4A Figs, respectively, for Angus, Charolais, and KC with the pathway of the highest

impact and significance located on the top right corner. On the pathway schematic (S2B, S3B

and S4B Figs), light blue means the metabolites cannot be identified, but it was used as a back-

ground for enrichment analysis. Those metabolites with other colors (varying from yellow to

red) were the positively identified metabolites with different levels of significance. The red-col-

ored metabolite had a more significant change between the low and high methane emission

groups than a yellow-colored metabolite. The relative metabolite concentrations of those

Fig 5. Venn diagram showing overlap of metabolites significantly associated the enteric methane emissions

(AVG_DAILYCH4) at p<0.05 based on the t-test in the Angus, Charolais, and Kinsella Composite (KC)

populations.

https://doi.org/10.1371/journal.pone.0299268.g005
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metabolites in the low and high methane emission groups were also displayed. The top four

enriched molecular processes detected by the pathway analysis for each breed population

included arginine and proline metabolism, arginine biosynthesis, butanoate metabolism, and

glutathione metabolism for Angus (S2 Fig), beta-alanine metabolism, pyruvate metabolism,

glycolysis / gluconeogenesis, and citrate cycle (TCA cycle) for Charolais (S3 Fig),

Fig 6. Venn diagram showing overlap of metabolites significantly associated the enteric methane emissions

(AVG_DAILYCH4) at p<0.05 based on the regression analysis in the Angus, Charolais, and Kinsella Composite

(KC) populations.

https://doi.org/10.1371/journal.pone.0299268.g006

Table 5. Number of candidate metabolites associated with methane emissions (AVG_DAILYCH4) that were detected by both the t-test and regression analysis for

the Angus, Charolais, and Kinsella Composite (KC) populations and suggestive metabolites that were detected by one of the t-test and regression methods.

Population T-test Regression Common (Identified) T-test_not_regressiona Regression_not_t-testb Suggestive

Angus 458 708 394 64 314 378

Charolais 476 478 279 197 199 396

KC 472 465 375 97 90 187

aThe number of metabolites identified by t-test but not identified by regression analysis.
bThe number of metabolites identified by regression analysis but not identified by t-test.

https://doi.org/10.1371/journal.pone.0299268.t005
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Fig 7. Venn diagram showing overlap of metabolites significantly associated the enteric methane emissions

(AVG_DAILYCH4) between the t-test and regression analysis at p<0.05 in the Angus, Charolais, and Kinsella

Composite (KC) populations.

https://doi.org/10.1371/journal.pone.0299268.g007

Table 6. Common metabolites of Tier 1 and Tier 2 detected to be associated with the enteric methane emissions (AVG_DAILYCH4) in the Angus, Charolais, and

Kinsella Composite (KC) populations using both the t-test and regression analysis.

Angus Direction Charolais Direction KC Direction

N6-Acetyl-Lysine - Galactose + Isomer 1 of Arginine +

Ornithine - 2,3-Dihydroxy-p-cumate—2 tags + Arginine +

3-Hydroxybutyric acid + 5-Hydroxyconiferyl alcohol—2 tags + Methylcysteine +

Hydroxyisobutyric acid + Creatinine + Valine +

Formyl-5-hydroxykynurenamine—2

tags

- Isomer 2 of 4-Chloro-L-lysine—2 tags + Phenylalanine +

L-4-Hydroxyglutamate semialdehyde - Isomer 3 of 4-Chloro-L-lysine—2 tags + Isoleucine +

Isomer 1 of 4-Aminobutyraldehyde - cis,cis-4-Hydroxymuconic semialdehyde + 3-Hydroxybutyric acid +

4-Aminobutyraldehyde - 5-Phenyl-1,3-oxazinane-2,4-dione - Hydroxyisobutyric acid +

L-Formylkynurenine/N’-

Formylkynurenine

- Isomer 1 of 5-epi-Valiolone/2-epi-5-epi-

Valiolone

+ Resorcinol—2 tags +

Morpholine - 3-Oxopropanoate + 3,4-Dihydroxystyrene—2 tags -

2-Hexenal - Pyruvate + L-Formylkynurenine/N’-

Formylkynurenine

+

Diacetyl—2 tags - Isomer 1 of 2-Oxobutanoate + Isomer 3 of L-Arginine—2 tags/D-Arginine

—2 tags

+

3,5,5-Trimethyl-2-cyclohexen-1-one - Isomer 1 of L-Proline/D-Proline -

Isomer 1 of Glycolaldehyde - 4-Methylaminobutyrate +

6-Hydroxy-3-succinoylpyridine - p-Octopamine +

L-Norleucine +

Dihydrotestosterone/5beta-

Dihydrotestosterone

+

4-Oxoproline -

Isomer 1 of Ineketone +

(+)-cis-Isopulegone +

4-Formylsalicylic acid -

+: The metabolite is positively associated with amount of CH4

-: The metabolite is negatively associated with amount of CH4

https://doi.org/10.1371/journal.pone.0299268.t006
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phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine bio-

synthesis, and arginine and proline metabolism for KC (S4 Fig). Arginine and proline metabo-

lism and arginine biosynthesis were two common pathways detected by the both Angus and

KC populations.

Discussion

The high performance four-channel CIL LC-MS method was able to detect and quantify up to

4235 metabolites in cattle plasma samples. This high level coverage of metabolites provides a

great resource to investigate biological basis of complex traits in cattle. Indeed the analyses

identified more than one thousands of metabolites in total that showed significant associations

with the enteric methane emissions in the three beef breed populations. However, both the

results of the t-test and regression analysis revealed that methane emission associated metabo-

lites in beef cattle were largely breed-specific. The difference of metabolites across samples was

further tested by a sparse partial least squares-discriminant analysis (sPLS-DA) [27, 28]that

investigated distributions of samples with low CH4 emission measurements in regarding to

their metabolite concentrations in the three beef cattle population. The sPLS-DA results (S5

Fig) showed a clear separation of the three breed populations, indicating that there were signif-

icant metabolomic differences across the three breed populations.

The results of breed-specific metabolite and methane emission associations were consistent

with previous reports in RNAseq studies. Robert Mukiibi et.al investigated the hepatic tran-

scriptomic profiles and their associations with ADG, DMI, RFI and MWT in the same Angus,

Charolais, and Kinsella Composite (KC) populations through global RNAseq analyses and

found that the identified differentially expressed (DE) genes were largely breed-specific [29,

30]. Similar results were found for rumen microbiota, and some studies have also indicated

that the rumen microbiota could be influenced by host breed/species in ruminants [31, 32]. In

addition, Zhang et.al assessed the effects of breed and feed efficiency on rumen microbiota and

demonstrated that cattle breed could affect rumen microbiota at both the abundance and

activity level [33].

The Angus and KC populations have more common metabolites that are significantly asso-

ciated with CH4 compared with the Angus and Charolais or Charolais and KC populations

although animals in the Angus and Charolais populations were all heifers and had the same

diet/management levels whereas animals in the KC population were mature cows and were fed

a diffident diet. It is noted that the Angus and Charolais are pure breeds while the KC popula-

tion is a composite herd. Based on our breed composition analyses using DNA genotypes, 20

KC cows have 33.41% and 0.57% Angus and Charolais, respectively, plus other breeds. The

greater proportion of Angus in the KC population indicates that the KC cattle are more geneti-

cally related to Angus than to Charolais, which supports the results that more significant

metabolites were shared between the KC and Angus populations. Angus, a British breed, is

characterized by its moderate frame and earlier fattening, which allows it to accumulate fat at

an early stage, whereas Charolais is a continental European breed and is characterized by a

larger frame and later maturity to fattening [34]. It is reported that in comparison with the

Charolais breed, Angus has greater fat depth, greater marbling score and more daily DMI but

less ADG at the similar ages [18, 35], presumably due to early maturity in Angus allowing the

cattle to deposit more fat at a younger age [36] and in growing cattle, more energy is needed to

deposit fat than protein because protein synthesis is energetically more efficient than fat syn-

thesis [37, 38]. The distinctive biological processes between Angus and Charolais may explain

why the directions of associations between the significant metabolites and methane emission

detected in this study were largely different than that in the Angus and KC populations.
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The discrepancies of the association analyses results between the t-test and the regression

are likely due to the relatively small sample size used. Published reviews on the fundamental

factors determining an appropriate sample size reported that sample size determination is con-

tingent upon the significance threshold and the type of statistical test [39, 40]. In order to find

the reason for the different results between the t-test and regression analysis in our study, the

scatter plots for some uncommon significant metabolites concentration vs. CH4 amount were

presented in S6 Fig. When the relationship between the adjusted AVG_DAILYCH4 (g/per

day) and metabolite concentrations is sufficiently nonlinear, which may be also due to a small

sample size, the regression analysis will likely not detect the metabolite at the significance level.

The small sample size may also reduce the power of detecting significant metabolites by the t-

test that contrasts the means of metabolite concentrations between the low and high methane

groups, but the regression analyses may detect the significant association as it regresses metab-

olite concentrations on methane emission amounts on all animals.

However, the small sample size should have a smaller impact in detecting metabolite and

methane emissions when its association is stronger. In this study, we further examined the spe-

cific directions of metabolites and CH4 correlations as in the S4 Table. The results suggested

that the directions of all the 394, 279, and 375 common metabolite-CH4 associations detected

by the t-test are the same as that detected by the regression in Angus, Charolais and KC,

respectively. Therefore, in consideration of limitations of the smaller sample size used, we fur-

ther classified metabolites that were detected by both the t-test and by regression as candidate

or common metabolites associated with methane emission and metabolites that were detected

by one of the t-test and regression methods as suggestive. We found 394, 279 and 375 candi-

date or common metabolites for methane emission in Angus, Charolais and KC, and 378, 396

and 187 suggestive metabolites associated with methane emission in Angus, Charolais, and

KC, respectively.

Metabolites 3-Hydroxybutyric acid (C-1373), Hydroxyisobutyric acid (C-1580) and L-For-

mylkynurenine/N’-Formylkynurenine (A-357) were detected in both the Angus and KC popu-

lations in Table 6. And as shown in S4 Table, 3-Hydroxybutyric acid and Hydroxyisobutyric

acid had positive correlations with the CH4 amount, and L-Formylkynurenine/N’-Formylky-

nurenine had a negative correlation with CH4 amount. Minji Kim et.al [41] investigated the

metabolic characteristics of Japanese Black cattle using enteric methane emissions and found

that in cattle with high methane emissions the concentration of blood β-hydroxybutyric acid

and insulin levels were high, whereas blood amino acid levels were low, which is similar to our

results. Luz Yáñez et.al found that it was feasible to produce (R)-3-hydroxybutyric acid from

methane in vivo depolymerization of polyhydroxybutyrate in Methylocystis parvus OBBP

[42]. Mai et.al also demonstrated that 2-hydroxyisobutyric acid could be produced from meth-

ane [43].

According to the results of our study, morpholine was found to be significantly associated

with the enteric methane emissions in Angus. Shaukat et.al found morpholine was a develop-

ing solvent for CO2 capture, which had better reactivity with green gas such as CO2 [44]. In

our study, phenylalanine was identified in KC and had a positive correlation with CH4

amount. Some previous researches have shown that the phenylalanine is a promoter in meth-

ane hydrate formation [45, 46].

We also listed 44 common metabolites of Tier 3 in the three beef cattle populations detected

by both the t-test and regression analysis in S7 Table. These statistically significant candidate

and suggestive metabolites quantified using the 3-tier approach will also help identify metabo-

lites as biomarkers to assist with selection of cattle with reduced methane emissions. For

instance, C-5074 was one of the candidate metabolites detected by both the t-test and regres-

sion analyses in all three breed populations. The histogram of relative concentration of C-5074
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in high and low adjusted CH4 group and the scatter plots for C-5074 concentration vs. CH4

amount in three populations was shown in Fig 8. Both of results of the t-test and regression

analysis clearly indicated that the significant metabolite (C-5074) was positively associated

with the amount of CH4 in both Angus and KC but negatively associated with the amount of

CH4 in the Charolais population. Indeed, follow up studies are required to further characterize

the metabolite and verify its association with methane emission through validation studies.

The metabolites detected in this study as associated with the methane emission will also

help improve our understanding on the molecular basis of metabolite and methane emissions.

With the help of pathway analysis, we can study and compare the importance of some path-

ways and metabolites, and this would facilitate our understanding of why different cows have

different methane production and emission amounts.

For Angus breed (S2A Fig), the most affected pathways include “Arginine and proline

metabolism”, “Arginine biosynthesis”, “Butanoate metabolism” and “Glutathione metabo-

lism”. We took “Arginine and proline metabolism” as an example for more discussion (S2B

Fig). L-ornithine is a non-essential, non-protein amino acid [47], and was significantly down-

regulated in high methane emission group. For Charolais breed (S3A Fig), “beta-Alanine

metabolism”, “Pyruvate metabolism”, “Glycolysis / Gluconeogenesis” and “Citrate cycle (TCA

cycle)” were the four most affected pathways, and as for the “beta-Alanine metabolism” (S3B

Fig), we found a significant increase of 3-Oxopropanoate in high methane emission group.

For KC breed (S4A Fig), many pathways were affected and of those, “Phenylalanine, tyro-

sine and tryptophan biosynthesis”, “Phenylalanine metabolism”, “Arginine biosynthesis” and

“Arginine and proline metabolism” were the four top affected ones. Here, we provide a discus-

sion about the relation between methane emission and “Phenylalanine, tyrosine and trypto-

phan biosynthesis” as shown in S4B Fig. Phenylalanine is an aromatic essential amino acid. An

increased concentration of phenylalanine in beef cattle with high methane emission amount

was observed. A recent study also found the enrichment of phenylalanine in cows with higher

milk production and less methanogen and methanogenesis functions, which may reveal the

important role of the rumen microbiome [48].

Fig 8. The histogram of relative concentrations of an identified metabolite (C-5074) in the high and low enteric

methane emission (AVG_DAILYCH4) groups and its scatter plots of concentration vs. AVG_DAILYCH4 amount

in the Angus, Charolais, and Kinsella Composite (KC) populations.

https://doi.org/10.1371/journal.pone.0299268.g008
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Arginine and proline metabolism and arginine biosynthesis were two common pathways in

all four top pathway detected by the both Angus and KC populations, which also supports the

results that the Angus and KC populations had more common metabolites that were signifi-

cantly associated with CH4. It was found that the alanine pathway was the center of interac-

tions of many other pathways [49], which implied the activation of this pathway might be

related to higher methane emissions. It is reported that Arginine and proline metabolism

(detected in Angus and KC population) and Phenylalanine metabolism (detected in KC popu-

lation) were significantly affected pathway on enteric methane emissions from dairy cows [50].

Furthermore, the above enriched pathways or molecular processes detected through analyz-

ing metabolite samples of the Angus, Charolais, and KC populations with methane emissions

will also help prioritize candidate genes to detect DNA polymorphisms that are associated

with methane emissions in beef cattle.

Conclusions

In this work, a high performance four-channel CIL LC-MS method was applied to profile

amine/phenol -, carboxyl -, hydroxyl—and carbonyl submetabolomes of cow plasma samples.

High metabolome coverage was achieved with the detection of 4235 metabolites in three tiers.,

T-tests, volcano plots, and regression analyses within breed population were conducted to

detect metabolites that were significantly associated with the amount of methane emission.

Our results showed that metabolites that were associated with methane emissions in beef cattle

were largely breed-specific. The pathway analysis detected enriched metabolic processes

related to methane production in beef cattle. The detected metabolites from the three beef cat-

tle populations and enriched metabolic processes provide valuable resources to further charac-

terize the metabolites and verify their associations with CH4 as biomarkers to assist in

selection of cattle with reduced methane emissions.
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