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Abstract

The linkages between the US and China, the world’s two major agricultural powers, have

brought great uncertainty to the global food markets. Inspired by these, this paper examines

the extreme risk spillovers between US and Chinese agricultural futures markets during sig-

nificant crises. We use a copula-conditional value at risk (CoVaR) model with Markov-

switching regimes to capture the tail dependence in their pair markets. The study covers the

period from January 2006 to December 2022 and identifies two distinct dependence

regimes (stable and crisis periods). Moreover, we find significant and asymmetric upside/

downside extreme risk spillovers between the US and Chinese markets, which are highly

volatile in crises. Additionally, the impact of international capital flows (the financial channel)

on risk spillovers is particularly pronounced during the global financial crisis. During the

period of the COVID-19 pandemic and the Russia-Ukraine 2022 war, the impact of supply

chain disruptions (the non-financial channel) is highlighted. Our findings provide a theoreti-

cal reference for monitoring the co-movements in agricultural futures markets and practical

insights for managing investment portfolios and enhancing food market stability during

crises.

1. Introduction

Recently, global agricultural/food markets have become increasingly volatile due to frequent

and severe economic and socio-political shocks, such as the global financial crisis (GFC),

weather extremes, trade wars, the COVID-19 pandemic, and geopolitical conflicts. The agri-

cultural futures market is particularly susceptible to these extreme shocks, and the consequent

excess volatility will spill into spot markets [1]. Notably, the COVID-19 pandemic in 2020 and

the Russia-Ukraine war in 2022 further expose the interconnectedness among global agricul-

tural markets and the vulnerability of the global food system [2–4]. Due to economic globaliza-

tion, risk event shocks in one country can quickly spread to others along their economic

linkages. They may even trigger systemic risk contagion in global agricultural futures markets,

which sparks great concerns about food security. Thus, investigating extreme risk spillovers

across agricultural futures markets, especially during crises, is highly intriguing.
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The US and China have a pivotal role in the global agricultural futures markets, and the sta-

bility of their markets is a concern for international regulators and investors. Focusing on the

extreme risk spillover effects between these two markets is typical for two main reasons: First,

China and the US, the world’s two biggest consumers/producers of agricultural commodities,

have close economic and trade relations. For instance, according to USA Trade Online, in

2022, the US exported 30.1 billion US dollars of agricultural products to China (soybean

exports accounted for about 60%). Second, the deepening financialization of agricultural com-

modities and the integration of global markets have led to closer ties in their agricultural

futures markets. Furthermore, we provide an example of their co-movements: during the

GFC, the prices of US agricultural futures surged, and China also experienced a significant

price rise despite implementing various intervention policies.

In recent years, cross-border risk spillovers in the international agricultural futures markets

have attracted much attention [5]. Previous literature extensively estimates the co-movements

between the US and Chinese agricultural futures markets [6–10]. Most of them discuss the risk

spillovers between these two markets using volatility and confirm the existence of co-move-

ments. However, volatility spillovers fail to portray the risk spillovers under extreme market

conditions and ignore the asymmetry of upside and downside distress. The extreme risk spill-

over effects caused by significant crises are still underexplored, let alone the differences in the

interdependence between stable and crisis periods. Since markets are usually more closely

linked in times of crisis than in times of stability [11, 12], it is imperative to fill this gap by

studying the extreme risk spillovers between the two agricultural powers and incorporating

the changes in dependence structure in turbulent times.

Our work proceeds in two steps. First, using the daily prices of agricultural commodity

futures in the two countries from January 10, 2006, to December 31, 2022, and employing a

Markov regime-switching copula-conditional value at risk (CoVaR) model, we measure the

extreme risk spillover effects. The analyzed extreme risk spillovers focus on the fluctuations

under extreme market conditions and depict the “net” negative externalities, excluding the

dependence derived from the common factors. Furthermore, it is different from the conven-

tional copula-CoVaR model by Reboredo and Ugolini [13], Mensi et al. [14], and Wang and

Xu [15]. We introduce a hidden two-state Markov chain for the intercept term of the time-

varying dependence parameter in line with da Silva Filho et al. [16], Ji et al. [17], and Jiao and

Ye [18]. In this way, the interdependence between “stable” (low dependence) and “crisis”

(high dependence) regimes is distinguished. Also, it is different from the switching between

upside and downside dependence regimes by Ji et al. [19]. Second, we explore the driving fac-

tors of extreme risk spillovers, especially during the GFC (August 2007–April 2009), the

US-China trade war (January 2018 to December 2022), the COVID-19 pandemic (December

2019 to December 2022), and the Russia-Ukraine war (March 2022 to December 2022).

The contributions of this study can be summarized as follows: First, our empirical analysis

enriches studies on the information transmission between the US and Chinese markets by por-

traying the tail risk spillovers under extreme event shocks. Previous studies focus on informa-

tion transmission regarding return and volatility, but few analyze the extreme risk spillovers.

Hence, this paper serves as a supplement in this respect. Second, by distinguishing the low and

high dependence regimes, our study provides empirical evidence for the changes in the depen-

dence structure between the two markets in a stable environment and a turbulent period. This

highlights the vulnerability of interconnected food markets in crises using the theory of depen-

dence-switching regimes. Third, this analysis sheds light on the driving factors of extreme risk

spillover effects during recent crises. During the period of the COVID-19 pandemic and the

Russia-Ukraine 2022 war, it not only highlights the impact of international capital flows (the

financial channel) but also emphasizes trade and production shocks (the non-financial
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channel). Our work outlines important implications for investors to manage their portfolios

and for policymakers to improve the stability of food markets.

The rest of this paper is organized as follows: Section 2 briefly reviews the previous litera-

ture on risk spillovers in commodities markets as well as the correlations between US and Chi-

nese agricultural markets. The Markov regime-switching copula-CoVaR model used to

measure the extreme risk spillovers is introduced in Section 3. Section 4 details the data and

stylized facts of the futures prices. Section 5 presents the empirical findings on risk spillovers

and investigates their influencing factors during different crises. Finally, Section 6 summarizes

conclusions and recommendations.

2. Literature review

With the financialization of the commodity market, the risk spillovers in the commodity mar-

kets have become a new key point of systemic risk contagion and have been extensively investi-

gated in the literature. For example, Kumar et al. [20] study the correlations in the commodity

markets of the Asia-Pacific region. Bouri et al. [21] analyze the volatility connectedness of

commodity futures and explore its determinants, providing valuable insights into the factors

driving volatility in commodity markets. Furthermore, Vardar et al. [22], Ahmed and Huo

[23], Bouri et al. [24], and Zhang et al. [25] contribute to understanding the dynamics of shock

propagation and volatility spillover across stock and commodity markets, offering insightful

information about market dynamics and interactions.

Among the commodities, agricultural markets are increasingly active, and the linkages

among agricultural markets in different countries/regions are increasingly closer [5]. For

example, Hernandez et al. [26] show the volatility spillovers in major agricultural futures mar-

kets for corn, wheat, and soybeans. They find that these agricultural markets are highly inter-

connected, exhibiting internal and external risk contagion effects across countries. As major

trading partners, the US and China hold significant positions in the agricultural commodity

markets. The US markets stand as global leaders in activity, while the Chinese markets are

experiencing rapid growth [27]. Therefore, the interaction between these two markets is quite

important, as it can influence other markets [6].

Scholars have conducted extensive research on price information spillovers between agricul-

tural commodity futures markets in China and the US with respect to return and volatility [6, 8,

10]. Most studies claim that the US has pricing power [28]. Some also find bidirectional spillovers

between the US and China, in which the US substantially influences China more than the opposite

[18, 29–31]. In addition, Liu et al. [7] and Jiang et al. [9] show that the spillovers in soybean futures

markets from China to the US gradually increase. Some other studies emphasize China’s pricing

power—for example, Lee et al. [32] show that China dominates information spillovers to the US

in the corn and soybean markets. These studies using return and volatility fail to capture the risk

contagion under extreme market conditions and treat the downside and upside co-movement

equally. A few studies have shown the existence of extreme risk spillovers between these two mar-

kets [33, 34]. However, they fail to capture the structural changes in dependence in crises.

In the context of extreme shocks, the risk spillover between commodity markets attracts

particular attention [11, 12, 35, 36]. Cheng et al. [37] delve into the volatility linkages between

energy and agricultural commodities during the US-China trade war, underscoring commod-

ity markets’ heightened interconnectivity and responsiveness to trade disputes. Li et al. [38]

investigate how geopolitical risk, economic policy uncertainty, and climate policy uncertainty

influence the commodity markets in America and China. Iqbal et al. [39] reveal the character-

istics of linkages in commodity markets during crises such as COVID-19. Wang et al. [40]

investigate the influence of geopolitical risk on systemic risk in commodity markets in the
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context of the Russia-Ukraine war. Zhu et al. [41] also point out the high volatility of commod-

ity futures during uncertain times. These studies all highlight that the risk spillovers are likely

intensified by extreme crisis events.

The research methods on risk contagion/spillover effects among financial markets mainly

fall into two categories. The first consists of traditional methods such as correlation coefficients

[42], co-integration tests [43], Granger-causality tests [44], vector autoregressive models [45],

and generalized autoregressive conditional heteroskedasticity (GARCH) models [46]. The sec-

ond comprises methods based on copula models [14, 47–53]. In comparison to the traditional

methods, the second type of methods can well capture the time-varying, asymmetric, and non-

linear tail dependence structure between markets, which arises from fat tails and heteroskedas-

ticity. However, conventional copula models do not consider the potential changes in the

dependence structure during periods of financial stress. They assume that the dependence

structure between financial assets is constant regardless of market conditions. In response to

this limitation, Markov regime-switching copula models have been developed [16–18, 54].

These models are highlighted for their ability to eliminate the need to temporally determine

the point of change in the dependence structure, as emphasized by Boubaker and Sghaier [55].

In summary, previous studies focus on the return and volatility spillovers in commodity

markets (including the US and Chinese agricultural future markets). However, they have paid

less attention to the tail dependence between these markets as well as the extreme/tail risk spill-

overs under extreme market conditions. Despite the fact that significant crisis events could

trigger severe market shocks and intense regime-switching behavior, the interdependence

between stable and crisis periods is still not distinguished, let alone the driving mechanisms

during crises. To make an effort to fill this gap, we use the copula-CoVaR approach to capture

the time-varying, asymmetric, and nonlinear characteristics of tail dependence between mar-

kets. Moreover, we apply the Markov regime-switching framework to differentiate the depen-

dence between normal and crisis times. This model assumes that the dependence structure

changes over time depending on the underlying market conditions, thus providing a more

accurate estimate of risk spillovers during periods of financial stress. Lastly, we test the influ-

encing mechanism of extreme risk spillover effects during the recent crises.

3. Methodology

In this section, we introduce our models in three steps. First, based on da Silva Filho et al. [16],

Ji et al. [17], and Jiao and Ye [18], we develop a Markov regime-switching copula model to

depict the tail dependence. Second, we measure the extreme risk spillover effects by calculating

ΔCoVaR based on the chosen optimal copula functions. Third, we analyze the determinants of

extreme risk spillovers based on a panel data model.

Note that the Markov-switching time-varying dependence approach proposed by da Silva

Filho et al. [16] is well-justified in our study because it captures the changes in the structure of

inter-market dependence well. This method adds a hidden Markov chain to the equation of

the time-varying dependence parameter. As dependencies are not static but evolve over time

and across different market states or regimes, incorporating the Markov-regime switching into

the copula-CoVaR model can reflect the complex behavior of markets well and is crucial for

understanding correlations in stressful and calm periods. In this respect, it provides a more

accurate and nuanced understanding of market dynamics.

3.1 Markov-switching time-varying dependence modeling

3.1.1 Marginal distribution. In the fitting models of the return series, we apply the auto-

regressive moving average (ARMA) model to describe the mean equation and use GARCH-
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family models to describe the volatility equation. The ARMA (m, s)-GACRH (p, q) model is

expressed as

ri;t ¼ mi þ
Xm

k¼1
φi;kri;t� k þ

Xs

k¼1
�i;k�i;t� k ð1Þ

�i;t ¼ zi;t
ffiffiffiffiffiffi
hi;t

q
ð2Þ

hi;t ¼ oi þ
Xp

k¼1
a0i;k��

2

i;t� k þ
Xq

k¼1
b0i;k � hi;t� k ð3Þ

where ri,t is the return series; �i,t is the disturbance term; zi,t is the standardized residual; hi,t is

the conditional variance; μi, φi,k, ϕi,k, ωi, α’i,k, and β’i,k are estimated parameters, satisfying

ωi>0, α’i,k�0, β’i,k�0 and 0 <
Xp

k¼1
a0i;k þ

Xq

k¼1
b0i;k < 1.

The optimal lags of the mean and variance equations are determined by Bayesian informa-

tion criteria (BIC). In the estimation progress, we also include the extension forms of the

GACRH model, including simple GARCH, exponential GARCH (EGARCH), Glosten-Jagan-

nathan-Runkle GARCH (GJR-GARCH), integrated GARCH (IGARCH), threshold GARCH

(TGARCH), absolute value GARCH (AVGARCH), nonlinear GARCH (NGARCH), nonlin-

ear-asymmetric GARCH (NAGARCH), and asymmetric power ARCH (APARCH). Further-

more, all models allow for different marginal distributions, for example, normal, Student’s t,

generalized error distribution (GED), or their skewed versions [56]. When selecting the most

appropriate GARCH specification for each series, we follow an adjusted version of the BIC

proposed by Antonakakis et al. [57]: BICadjusted ¼ � 2 � lnðLÞ þ k � lnðTÞ, where L represents

the maximum of the likelihood function and k denotes the number of insignificant parameters

and the number of significant misspecification tests (including sign bias, the weighted Li-Mak

test, the 1% value-at-risk (VaR) test, the 1% conditional VaR test, and the 1% duration based

VaR test).

3.1.2 Copula functions. The probability integral transformations of zi,t and zj,t are

denoted by u and v, respectively. According to Sklar’s theorem, a bivariate copula used to

model the tail dependence between zi,t and zj,t can be expressed by a copula function C(u,v)

and the two marginal distribution functions u ¼ Fzi
ðzi;tjy1Þ and v ¼ Fzj

ðzj;tjy2Þ:

Fzizj
ðzi;t; zj;tjFt� 1; θÞ ¼ Cðu; vjFt� 1; ycÞ ¼ CðFzi

ðzi;tjy1Þ; Fzj
ðzj;tjy2ÞjFt� 1; ycÞ ð4Þ

Considering a time-varying copula model embedded in two-regime switching [16], Eq (4)

can be rewritten as

Fzizj
ðzi;t; zj;tjst;Ft� 1; θÞ ¼

X2

j¼1

Cðu; vjst ¼ j;Ft� 1; ycÞ � Prðst ¼ jjFt� 1Þ

¼ Cðu; vjst;Ft� 1; θÞ ¼ Cðu; v; rt;st
Þ

ð5Þ

where θ ¼ ðy0
1
; y
0

2
; y
0

cÞ. The copula model specifications used to describe the tail dependence

are detailed in Table 1.

In the copula model, the dependence parameter rt;st
is subject to an ARMA (1, q) process

[58], in which the intercept term of c0;st
depends on the regime st [16]:

rt;st
¼ Lðc0;st

þ c1rt� 1 þ c2FVtÞ ð6Þ

where Λ(•) is the modified logistic transformation to ensure that the parameter rt;st
varies in
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(−1, 1); ψ0, ψ1 and ψ2 represent dependence, persistence, and adjustment, respectively. More-

over, st~Markov(Prob), and st = 0 and st = 1 assume the two states/regimes: low and high

dependence, respectively. Prob is a 2×2 transition matrix ð
Prob00 Prob10

Prob01 Prob11

Þ. Then, following Ji

et al. [17], we combine the low and high dependence regimes in one equation to match with

Eq (6):

rt ¼
X2

j¼1

rt;st¼j
� Prðst ¼ jjFtÞ ð7Þ

In the modeling of Markov-switching time-varying (MSTV) Gaussian, the forcing variable

is FVt ¼ 1=q
Xq

j¼1
�
� 1
ðut� jÞ � �

� 1
ðvt� jÞ where q is an arbitrary window length. In the MSTV

Student-t copula, the quantile function ϕ−1(x) is substituted by t� 1
W
ðxÞ with ϑ degrees of free-

dom. For the MSTV Clayton, rotated Clayton, Gumbel, and rotated Gumbel copula,

FVt ¼ 1=q
Xq

j¼1
jut� j � vt� jjÞ. For the MSTV Symmetrized Joe-Clayton (SJC) copula, we can

express the upper-tail (ρU,t) and lower-tail (ρL,t) dependence parameters as

rU;t ¼ LðcU;0;st
þ cU;1rt� 1 þ cU;2

1

q

Xq

j¼1
jut� j � vt� jjÞ ð8Þ

rL;t ¼ LðcL;0;st
þ cL;1rt� 1 þ cL;2

1

q

Xq

j¼1
jut� j � vt� jjÞ ð9Þ

3.1.3 Estimations. We utilize the inference for margins (IFM) method to estimate the

parameter θ ¼ ðy0
1
; y
0

2
; y
0

cÞ. At first, we estimate y
0

1
and y

0

2
by

ŷ i ¼ argmax
yi

XT

t¼1

logðfi;tðzi;tjFt� 1; yiÞÞ; i ¼ 1; 2 ð10Þ

Table 1. Copula specifications.

Copula Function

Gaussian CNðu; v;rÞ ¼ �ð�
� 1
ðuÞ; �� 1

ðvÞÞ
Student-t CSTðu; v; r;WÞ ¼ tðt� 1

W
ðuÞ; t� 1

W
ðvÞÞ

Gumbel CGðu; v; rÞ ¼ expf� ½ð� lnðuÞÞr þ ð� lnðvÞÞy�1=rg
Rotated Gumbel CRGðu; v; rÞ ¼ uþ v � 1þ CGð1 � u; 1 � v; rÞ
Clayton CCLðu; v; rÞ ¼ maxfðu� r þ v� r � 1Þ

� 1=r
; 0g

Rotated Clayton CRCLðu; v; rÞ ¼ uþ v � 1þ CCLð1 � u; 1 � v; rÞ
Symmetrized Joe-Clayton (SJC) For Joe-Clayton (also known as the BB7 copula),

CJCðu; vjrU ; rLÞ ¼ 1 � ð1 � f½1 � ð1 � uÞk�� g þ ½1 � ð1 � vÞk�� g � 1g
� 1=g
Þ

1=k
,

where k ¼ 1=log
2
ð2 � rUÞ; g ¼ � 1=log

2
ðrLÞ. So,

CSJCðu; vjrU ;rLÞ ¼ 0:5 � ðCJCðu; vjrU ;rLÞ þ CJCð1 � u; 1 � vjrU ; rLÞ þ uþ v � 1Þ

Note: ϕ(�) is standard Gaussian distribution function; t(�) is Student t distribution function.

https://doi.org/10.1371/journal.pone.0299237.t001
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Next, the dependence parameters are estimated by

ŷc ¼ argmax
yc

XT

t¼1

logðctðût; v̂tjFt� 1; ycÞÞ ð11Þ

Under regular conditions, the IFM estimator ŷ ¼ ðŷ1; ŷ2; ŷcÞ is considered asymptotically

normal [58]. So,

ffiffiffiffi
T
p
ðŷ � yÞ ! Nð0;G� 1ðyÞÞ ð12Þ

where G(θ) is a Godambe information matrix.

3.2 Extreme risk spillover modeling

VaR measures the maximum loss an investor could suffer by taking a short or long position at

the 1−α confidence level. CoVaR, introduced by Adrian and Brunnermeier [59], captures the

VaR of one market condition on the distress of another market and quantifies the risk spillover

effects between markets. Let CoVaRijj
b;t denote the VaR of the market i conditional on market j

being under distress at time t. Furthermore, following Girardi and Ergün [46] and Mainik and

Schaanning [60], we change the conditioning event rjt ¼ VaRj
a

as rjt � VaRj
a

(rjt � VaRj
a
) for

downside (upside) risk spillovers, thus taking into account more severe distress.

Then, we can calculate the downside and upside extreme risk spillovers in US-Chinese agri-

cultural futures markets by

Prðrit � CoVaRijj
b;tjr

j
t � VaRj

a;tÞ ¼ b ð13Þ

Prðrit � CoVaRijj
b;tjr

j
t � VaRj

a;tÞ ¼ b ð14Þ

where α and β denote the significance levels; Pr(•) is the probability function; VaRi
a

is the α
quantile of the return series rjt . Based on the copula functions in Eq (5), Eqs (13)–(14) can be

reformulated as

CðFrit
ðCoVaRijj

b;tÞ; Frjt
ðVaRj

a;tÞÞ ¼ ab ð15Þ

1 � Frit
ðCoVaRijj

b;tÞ � Frjt
ðVaRj

a;tÞ þ CðFrit
ðCoVaRijj

b;tÞ; Frjt
ðVaRj

a;tÞÞ ¼ ab ð16Þ

where C(•) denotes the optimal copula function; the marginal distribution functions Frjt
and Frit

are fitted by the return series rjt and rit , respectively. When calculating the downside CoVaR, we

use α = β = 5%. When calculating the upside CoVaR, we use α = β = 95%. The 5% and 95%

quantiles represent the risk levels of a portfolio commonly employed by investors and portfolio

managers.

Therefore, to exclude the dependence driven by the common factors, we use DCoVaRijj
b;t ,

the difference between market i’s VaR conditional on market j being in extreme scenarios rjt �
VaRi

a
(rjt � VaRi

a
) and normal scenarios rjt � VaRi

50%
(rjt � VaRi

50%
), to estimate the “net” risk

spillovers from market j to market i. Thus, the downside/upside extreme risk spillovers from

market j to market i are defined as

DCoVaRijj
b;t ¼ CoVaRijj;a

b;t � CoVaRijj;50%

b;t ð17Þ
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3.3 Influencing mechanism modeling

Extensive literature has revealed the driver factors of agricultural commodity price volatility,

such as market fundamentals (including supply/demand shocks), trade, speculation, investor

sentiment, and macro conditions [61–63]. Specifically, we use the S&P 500 Volatility Index

(VIX), developed by the Chicago Board Options Exchange (CBOE), to reflect investors’ risk

perceptions [64]. Economic policy uncertainty (EPU) and geopolitical risk (GPR) are also seen

as important macro factors that affect the commodity markets [38, 40]. In addition, Nigatu

et al. [62] and Akram [65] highlight the vital role of economic growth and exchange rates in

driving fluctuations in commodity prices.

The deepening of financial internationalization has linked commodities markets across

countries. Financial linkages may also be critical to risk contagion. Following Huang and Liu

[66], we use the international capital inflows to study their impact on risk transmission, where

the international capital includes the total financial assets, such as stocks and bonds, purchased

by foreign investors. Specifically, a significant international capital inflow into agricultural

commodity markets can lead to increased investment and speculation, which directly influ-

ence agricultural commodity prices. Therefore, international capital inflow is used as an indi-

cator of financial shocks in agricultural commodity markets. Furthermore, trade globalization

has strengthened economic ties between countries, thus providing a risk contagion channel

for shocks [67]. This paper uses trade policy uncertainty (TPU) to serve as a proxy for trade

shocks in both countries [68]. TPU reflects the level of uncertainty in tariffs, quotas, embar-

goes, or other trade policies, which may directly affect agricultural imports and food

availability.

In addition, following Nigatu et al. [62], the changes in crop production and biofuel prices

are used to reflect the supply and demand shocks in the agricultural commodity market. Spe-

cifically, the changes in crop production reflect supply fluctuations of agricultural commodi-

ties, which may affect the quantity of agricultural products available in the market. On the

other hand, biofuels are often produced from agricultural raw materials, so the changes in bio-

fuel prices may affect the demand for these agricultural products. For example, crops such as

corn and oilseeds are commonly used in biofuel production; an increase in biofuel prices may

lead to increased demand for these agricultural products [69].

In sum, we consider macro factors, supply, demand, trade, and financial shocks to explain

the risk spillovers between the US and China. The panel regression model is constructed as

DCoVaRjji
b;k;t ¼ a0 þ θZþ ak þ φt þ uk;t ð18Þ

where α0, αk, φ, and θ are the parameters to be estimated; αk, t and uk,t represent individual

fixed effect, time trend term, and random error term, respectively; DCoVaRjji
b;k;t denotes the

extreme risk spillovers from country i to j at time t for the commodity k; Z is a vector of

explanatory variables. These regression variables are detailed in Table 2.

4. Data and stylized facts

4.1 Data

This study uses the daily closing prices of continuous futures contracts from January 10, 2006,

to December 31, 2022. We consider three types of agricultural commodities that play an essen-

tial role in the food system: grain (soybean, wheat, and corn), sugar, and soybean oilseeds (soy-

bean oil and soybean meal). Grain is recognized as the food source for millions of people.

Sugar is the main sweetener in food and beverages. Soybean oilseed is a source of valued pro-

tein in livestock production, as well as a source of vegetable oil for human food. Note that rice
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is also the focus of global food markets. However, the rice futures in the Chinese market are

listed late and less active, so they are not included in our analysis. Our final sample includes

commodities with large trading volumes and significant influence in China and the US.

Sugar and soybean oil futures in the Chinese markets started trading on January 6, 2006,

and January 9, 2006, respectively. Due to the unavailability of the data, this paper selects Janu-

ary 10, 2006, as the starting point of the sample. The prices of soybean, corn, soybean meal,

and soybean oil futures are downloaded from the Dalian Commodity Exchange (DCE, China)

and the Chicago Board of Trade (CBOT, US). The prices of sugar futures are downloaded

from the Zhengzhou Commodity Exchange (ZCE, China) and the Intercontinental Exchange

(ICE, US). The prices of wheat futures come from ZCE and CBOT.

Before conducting the analysis, we adjust the currency unit of all Chinese futures prices by

US dollars to ensure comparability between the two countries. Moreover, we use the trading

schedule of the DCE as the benchmark. All missing values of the futures prices are filled with

the prices of the previous trading day. The log return Rt is calculated by Rt ¼ lnðPt=Pt� 1Þ,

where Pt is the closing price of futures. Here, t is the local time for the US and China. Note that

Beijing is about 13 hours earlier than Chicago, and trading and non-trading time in China is

Table 2. Variables used in the regression analysis.

Variables Labels Description

Explained variables:
Extreme risk spillovers DCoVaRjji

b;k;t
Spillovers from market i to j at time

t for commodity k.

Explanatory variables:
Macro factors VIXt The S&P 500 volatility index,

developed by the CBOE. It reflects

the investors’ risk perceptions.

GEPUt Global economic policy uncertainty

index based on current-price GDP

measures, developed by Davis [70].

It reflects the economic policy

environment at the global level.

GPRt Global geopolitical risk index,

constructed by Caldara and

Iacoviello [71]. It reflects the

geopolitical environment at the

global level.

EXRt USD/RMB exchange rate.

GDPi,t, GDPj,t The degree of economic

development, measured by the

Gross Domestic Product (GDP)

Index. It is monthly and suitable for

our analysis.

Financial shocks Flowi!j,t, Flowj!i,t International capital inflow from

country i (j) to j (i). It is in the form

of the first difference of logarithms

in regressions.

Trade shocks TPUi,t, TPUj,t Trade policy uncertainty, developed

by Davis et al. [72] and Baker et al.

[73].

Supply-side shocks Pducik ;t , Pducjk ;t The natural logarithm of crop

production in market i (j) for each

commodity.

Demand-side shocks Biofuelt The natural logarithm of biofuel

prices, measured by the S&P

Biofuels Spot Index.

https://doi.org/10.1371/journal.pone.0299237.t002
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nearly the opposite of the US (see Fig 1). Therefore, estimations of risk spillovers from China

to the US are based on Ri;China
t and Ri;US

t , and risk spillovers from the US to China are based on

Ri;China
tþ1 and Ri;US

t .

In the section on regression analysis, we use monthly observations of mechanism variables.

The data on biofuel prices and VIX are obtained from the Bloomberg database. The data on

the market supply, the GDP index, the exchange rate, and international investment are taken

from the WIND Financial database. The data on GEPU, GPR, and TPU are available at

https://www.policyuncertainty.com.html. To build a regression, we average the extreme risk

spillovers by month. The final sample for regression includes 204 months and six commodi-

ties, totaling 1224 observations. Any missing values for crop production are filled with the val-

ues from the previous month.

4.2 Stylized facts

Fig 2 depicts the dynamics of agricultural futures prices. It shows that these prices have experi-

enced cycles of boom and crash. Moreover, the price dynamics between China and the US are

highly correlated. Besides, the periods are noteworthy during the GFC (August 9, 2007–April

2, 2009), the climate disasters (2010–2014), the US-China trade war (January 22, 2018–Decem-

ber 31, 2022), the COVID-19 pandemic (December 31, 2019–December 31, 2022), and the

Russia-Ukraine war (February 24–December 31, 2022). According to the Global Report on

Food Crises in 2021, conflict, extreme weather, and economic shocks are the three key driving

factors of acute food insecurity. This paper focuses on extreme risk spillovers in agricultural

futures markets in crises with significant economic and geopolitical shocks; the impact of

extreme weather shocks is not discussed in depth in the subsequent analysis.

During the GFC, agricultural futures prices in China and the US fluctuated wildly. The prices

rose rapidly and then fell after the introduction of bailout measures in various countries. In

2010–2014, the forward movement of prices might be related to market supply shocks caused by

extreme climate disasters. For example, in 2011–2012, a drought in the US, France, Germany,

Brazil, Argentina, and other countries led to a reduction in crop yields, thus driving price fluctua-

tions. During the US-China trade war, agricultural futures prices in the US and China initially

rose (except for sugar and soybean oil) and then oscillated at a low level. After the outbreak of

COVID-19, the two countries’ markets also showed highly volatile. The COVID-19 pandemic

affected all six commodities and brought a tremendous price increase. In February 2022, the Rus-

sia-Ukraine war caused a further rise in the prices of US and Chinese agricultural futures.

Remarkably, most prices reached new peaks, surpassing the levels seen during the GFC.

The descriptive statistics of the log return series of agricultural commodity futures in the

US and China are presented in Table 3. We find that the average returns of all agricultural

futures are close to zero. Regarding volatility, the standard deviation of returns is generally

larger in the US than in the Chinese markets, implying that the US futures markets are

Fig 1. Trading hours in the US and China.

https://doi.org/10.1371/journal.pone.0299237.g001
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generally riskier. The skewness and kurtosis statistics and the Jarque-Bera (JB) normality test

results suggest that the distribution of all return series exhibits more asymmetry, thicker tails,

and higher peaks compared to the Gaussian distribution.

The results of unit-root tests suggest that all return series exhibit statistical stationarity at

the 5% significance level. Furthermore, the Ljung-Box test statistics show significant serial

autocorrelation in most squared return series. In addition, we find that most return series have

ARCH effects. Hence, it is appropriate for us to adopt the ARMA-GARCH model to capture

the characteristics of asymmetry, fat tails, and volatility persistence for the return series.

The correlations of returns in the US-China pair markets are presented in Table 4. It shows

significant correlations for all commodity futures using all samples. These findings indicate

that trading information in the daytime in one market can act as necessary “overnight” news

affecting the other market. This motivates our analysis of the bidirectional risk spillovers

between Chinese and US markets in the next section. Furthermore, we find their correlations

are generally more substantial during the GFC. After the US-China trade war, the correlations

go down. During the COVID-19 pandemic and the Russia-Ukraine war in 2022, correlations

between the pair markets increase again. Therefore, it will be necessary to consider the poten-

tial changes in the dependence structure during periods of financial stress.

5. Empirical results

5.1 Estimation of dependence-switching copula models

This section uses ARMA-GARCH models to estimate the marginal distributions of the return

series. The lags of ARMA and GARCH-family models are determined by BIC. The final

Fig 2. Dynamics of US-Chinese agricultural futures prices. In the figure, the solid red line represents the dynamic

trend of futures prices in the US, while the blue dashed line represents the dynamic of futures prices in China. The

shaded areas correspond to various crisis periods.

https://doi.org/10.1371/journal.pone.0299237.g002
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estimation results are shown in Table 5. The results show that the coefficients of α’ and β’ are

generally significant, indicating heteroscedastic and long-term memory effects for the volatility

in the futures markets. The estimated results of the shape parameters of US agricultural futures

are larger than those of Chinese futures. It indicates that the US markets tend to have a heavier

tail and a higher probability of extreme risk than the Chinese markets.

Based on the standardized residuals estimated by these marginal distribution models, we fur-

ther employ copula models to capture their dependence. We choose the optimal copula functions

based on the log-likelihood values to describe the tail dependence, as displayed in Table 6. The

results for copula model estimations are shown in Table 7. This study estimates the copula model

using the IFM method, where the standard errors are computed through the Godambe matrix.

The results show that most parameters exhibit significant deviations from 0. In the copula model,

we categorize the regimes in Eq (6) as low and high dependence, with 0 indicating low depen-

dence and 1 indicating high dependence. The notable disparity observed in the intercept terms

between the 0 and 1 states provides evidence supporting the shift from low to high dependence.

Table 3. Descriptive statistics for the returns.

Soybean Wheat Sugar Corn Soybean Meal Soybean Oil

Panel A: Chinese markets
Mean 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002

Std. Dev. 0.0118 0.0099 0.0117 0.0082 0.0143 0.0140

Skewness 0.0546 0.0779 0.1993 0.3986 −0.9249 −0.3179

Kurtosis 32.2822 51.6376 7.2665 16.2614 11.6518 6.8955

Min −0.1655 −0.1508 −0.0773 −0.0659 −0.1641 −0.1161

Max 0.1775 0.1386 0.0991 0.0919 0.0762 0.0702

Obs 4129.0000 4129.0000 4129.0000 4129.0000 4129.0000 4129.0000

JB 147518*** 406988*** 3159*** 30365*** 13466*** 2680***
ADF −66.5296*** −64.6618*** −64.6952*** −66.2264*** −65.6583*** −65.3950***
PP −66.5296*** −64.6618*** −64.6952*** −66.2264*** −65.6583*** −65.3950***
Q (5) 22.4432 27.2997 23.3204 34.3233** 24.9362 48.0453***
Q2 (20) 30.8719* 50.9337*** 644.9905*** 39.4929*** 148.1482*** 965.2056***
ARCH (10) 13.1996 47.9922*** 217.0153*** 30.6981*** 48.6770*** 308.7696***
Panel B: US markets
Mean 0.0002 0.0002 0.0001 0.0003 0.0002 0.0003

Std. Dev. 0.0160 0.0226 0.0212 0.0202 0.0195 0.0161

Skewness −1.6657 −0.0716 0.2975 −2.6461 −1.6142 −0.5638

Kurtosis 19.8648 15.2042 9.5492 49.7667 19.9551 10.6888

Min −0.2235 −0.2289 −0.1243 −0.3986 −0.2509 −0.1874

Max 0.0740 0.2581 0.2210 0.1088 0.1094 0.0762

Obs 4129.0000 4129.0000 4129.0000 4129.0000 4129.0000 4129.0000

JB 50841*** 25627*** 7440*** 381095*** 51250*** 10389***
ADF −64.4242*** −66.3991*** −65.0505*** −65.0769*** −66.0024*** −63.7729***
PP −64.4242*** −66.3991*** −65.0505*** −65.0769*** −66.0024*** −63.7729***
Q (5) 39.6696*** 48.4027*** 16.7301 25.6060 23.3707 24.7219

Q2 (20) 165.2570*** 591.5012*** 150.8207*** 21.8149 252.9679*** 886.8916***
ARCH (10) 73.8959*** 431.0398*** 67.8981*** 19.5752** 140.7390*** 333.7734***

Note: JB represents the Jarque-Bera test for normality; ADF and PP respectively denote the estimates of the Augmented-Dickey-Fuller and Phillips-Perron unit root

tests; Q (5) and Q2 (20) are the Ljung-Box tests for serial correlation in returns and squared returns; ARCH(10) is the Engle’s Lagrange multiplier test for autoregressive

conditional heteroskedasticity (ARCH) of order 10

***, **, and * denote significance at 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0299237.t003
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The smoothed probabilities for the regimes of low and high dependence are shown in Figs

3 and 4. The sum of the probabilities associated with low and high dependence is always one at

any given time. For the dependence between Ri;China
t and Ri;US

t , the smoothing probabilities for

soybean futures can be roughly divided into two intervals: higher dependence before 2014 and

lower ones after 2014. The dependence is in the transition period in 2010–2012 and 2016–

2018. For wheat, dependence is high before 2015 and low after 2015. For sugar, the depen-

dence between the US and Chinese markets is high before 2009 and low after 2009. Notably,

the smoothing probability of high dependence on soybean, wheat, and sugar gradually

increases in 2022. This may be related to the co-movements brought about by the events of the

Russia-Ukraine conflict. Furthermore, the smoothing probability for corn, soybean meal, and

soybean oil shifts frequently between low and high dependence, with high dependence remain-

ing dominant after the Russia-Ukraine conflict in 2022.

For the dependence between Ri;China
tþ1 and Ri;US

t , the dependence for soybean futures tends to

be low after 2014. For sugar and corn, the high dependence remains dominant after 2020. In

addition, the smoothing probabilities shift frequently between high and low dependence for

wheat, soybean oil, and soybean meal. Our findings confirm that the dependence structure

shows two distinct regimes for all commodity futures.

Figs 5 and 6 show the time-varying tail dependence between the US and Chinese markets.

The dependence between agricultural futures in the two markets is almost positive, indicating

that they tend to move in the same direction. Furthermore, the tail dependence parameters

exhibit lower values in the low dependence state and higher values in the high dependence

state, in line with the results for smoothing probabilities. In addition, we find that the depen-

dence between China and the US generally shows high dependence during the GFC, the

COVID-19 pandemic, and the Russia-Ukraine war in 2022. This finding is consistent with the

original intention of the copula model with Markov switching regimes.

5.2 Analysis of extreme risk spillovers

First, this section discusses the significance of extreme risk spillover effects, as shown in

Table 8. Regarding downside risk spillovers, except for corn, CoVaR values for both markets

are smaller than the benchmark CoVaR (CoVaR50), confirming the existence of downside risk

Table 4. Pearson correlations of returns in the US-China pair markets.

Soybean Wheat Sugar Corn Soybean Meal Soybean Oil

Panel A: between Ri;China
t and Ri;US

t

All sample 0.1732*** 0.0858*** 0.1136*** 0.1129*** 0.2075*** 0.2645***
GFC 0.3530*** 0.1347*** 0.1399*** 0.2310*** 0.2432*** 0.3476***
US-China trade war 0.0239 0.0051 0.0863* 0.0239 0.0956** 0.0619

COVID-19 pandemic 0.0386 0.1321*** 0.0553 0.1350*** 0.3198*** 0.3203***
Russia-Ukraine war in 2022 0.1354* 0.2095*** 0.1205* 0.2623*** 0.3311*** 0.3874***
Panel B: between Ri;China

tþ1 and Ri;US
t

All sample 0.2424*** 0.1317*** 0.3241*** 0.1365*** 0.2944*** 0.3292***
GFC 0.3519*** 0.1497*** 0.1969*** 0.1041** 0.2889*** 0.3584***
US-China trade war 0.1210** 0.1897*** 0.2571*** 0.0251 0.1257*** 0.2612***
COVID-19 pandemic 0.1763*** 0.0907** 0.4783*** 0.2270*** 0.3017*** 0.3275***
Russia-Ukraine war in 2022 0.3085*** 0.0466 0.4897*** 0.2263*** 0.2561*** 0.2293***

Note: This table only reports the correlations of the same type of commodities between the US and China

***, **, and * denote significance at 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0299237.t004
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spillovers between the US and Chinese markets. As for the upside risk spillovers, the CoVaR

values are larger than the benchmark CoVaR in both markets for all six commodities. Further-

more, based on the Kolmogorov-Smirnov (K-S) test statistics, we find that ΔCoVaR values are

significantly unequal to zero. It confirms the significance of the upside/downside extreme risk

spillovers in Chinese and US pair markets for all six commodities (except for corn). This find-

ing highlights the importance of managing extreme risk spillovers between these markets.

Neglecting to address these risk spillovers in cross-country markets may lead to underestimat-

ing fluctuations in these markets.

Second, the dynamics of upside/downside extreme risk spillovers (measured by ΔCoVaR)

are shown in Figs 7–10. Generally, the ΔCoVaRs are highly volatile during crises, and the spill-

over dynamics differ among these commodities. For example, the upside and downside

extreme risk spillovers between the two markets generally grow during the GFC. Significantly,

Table 5. Estimations of the marginal distribution models.

Soybean Wheat Sugar Corn Soybean Meal Soybean Oil

Panel A: Chinese markets
μ 0.0001 0.0000 −0.0000 0.0002*** 0.0001 −0.0000

(0.8013) (0.3617) (−0.0016) (2.6786) (0.7129) (−0.3454)

ω 0.0000 −0.1519*** −0.1171*** 0.0001 0.0002*** 0.0001***
(1.4178) (−26.8003) (−22.6717) (0.3681) (4.2318) (4.1108)

α’ 0.0486** 0.0503*** −0.0012 0.0975 0.0624*** 0.0610***
(2.3775) (2.7838) (−0.1153) (0.8629) (14.0485) (17.4033)

β’ 0.9502*** 0.9813*** 0.9871*** 0.9330*** 0.9462*** 0.9517***
(58.2017) (3795.6958) (1723.8108) (10.2575) (684.4850) (9245.0848)

γ 0.2562*** 0.1189***
(7.1507) (5.7285)

Skewness 0.9469***
(50.4252)

Shape 3.0358*** 2.1000*** 1.0289*** 2.7462*** 3.5883*** 0.8196***
(11.6322) (156.7234) (19.4039) (18.0888) (17.6322) (19.8397)

Panel B: US markets
μ 0.0004* 0.0002 −0.0002 0.0004 0.0002 0.0001

(1.6562) (0.9034) (−0.5425) (1.5624) (0.9426) (0.3125)

ω 0.0000 0.0003*** 0.0002*** 0.0000 0.0002* 0.0000***
(1.2022) (6.7580) (4.2247) (0.4823) (1.9211) (5.9815)

α’ 0.0597*** 0.0552*** 0.0550*** 0.0697* 0.0653*** 0.0413***
(7.0609) (15.1745) (17.0626) (1.7868) (3.1830) (17.4162)

β’ 0.9417*** 0.9423*** 0.9504*** 0.9168*** 0.9414*** 0.9559***
(94.8130) (6149.1946) (10148.1640) (54.1047) (47.1816) (1297.3212)

γ

Skewness 0.9444*** 1.0909***
(48.1692) (47.6935)

Shape 4.4866*** 5.4310*** 1.1888*** 4.0897*** 4.0733*** 7.5764***
(14.3887) (10.5944) (26.9262) (6.8182) (14.6145) (8.3816)

Note: This table reports the results of maximum likelihood estimates. μi, ωi, α’i,k, β’i,k, and γ are parameters in Eqs (1) and (3), denoting the constant of the mean

equation, constant of variance equation, ARCH effects, GARCH effects and asymmetric effects, respectively. The values in parenthesis are the t statistics

***, **, and * denote significance at 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0299237.t005
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Fig 3. Smoothed probabilities for the regimes of dependence between Ri;China
t and Ri;US

t .

https://doi.org/10.1371/journal.pone.0299237.g003

Fig 4. Smoothed probabilities for the regimes of dependence between Ri;China
tþ1 and Ri;US

t .

https://doi.org/10.1371/journal.pone.0299237.g004
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the upside risk spillovers from the US to China in soybean and wheat futures substantially

increase even though China adopted agricultural price stabilization policies in 2008. During

the US-China trade war, the risk spillovers between the two countries tend to increase first and

then be low, especially for soybean and sugar. China was a major importer of US soybeans,

and Chinese soybean consumption was highly dependent on the US markets before 2018.

Therefore, the increase in risk spillover effects from the US on the Chinese soybean is the most

evident after the outbreak of the US-China trade war.

Following the COVID-19 pandemic, the extreme risk spillovers between the US and Chi-

nese markets increase sharply. Primarily, the downside risk spillovers for soybean futures from

the US to China increase significantly due to China’s high dependence on international mar-

kets. In February 2022, the outbreak of the Russia-Ukraine war also aggravates the extreme

Fig 5. Dynamics of dependence between Ri;China
t and Ri;US

t . The horizontal lines in the figure are static dependence

parameters. For the MSTV SJC copula model, the red line indicates the upward tail dependence, and the purple line

indicates the downward tail dependence. In the figure, the periods for the GFC, the US-China trade war, the COVID-

19 pandemic, and the Russia-Ukraine war are shaded.

https://doi.org/10.1371/journal.pone.0299237.g005

Table 6. The selected optimal copula based on log-likelihood values.

Type Best copula selection Type Best copula selection

Panel A: between Ri;China
t and Ri;US

t Panel B: between Ri;China
tþ1 and Ri;US

t

Soybean MSTV SJC Soybean MSTV SJC

Wheat MSTV Gaussian Wheat MSTV t

Sugar MSTV SJC Sugar MSTV SJC

Corn MSTV rotated Gumbel Corn MSTV SJC

Soybean Meal MSTV SJC Soybean Meal MSTV t

Soybean Oil MSTV SJC Soybean Oil MSTV Gaussian

https://doi.org/10.1371/journal.pone.0299237.t006
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Table 7. Estimated parameters of copula model.

Panel A: between Ri;China
t and Ri;US

t

Soybean Sugar Soybean Meal Soybean oil Wheat Corn

MSTV SJC copula MSTV Gaussian /rotated Gumbel copula

cU;0;st¼0 −10.0377 −9.8402*** −4.9641*** −4.3947*** c0;st¼0 0.0917 0.1778

(−0.2537) (−2.7489) (−3.1513) (−4.7480) (0.9073) (0.9921)

cL;0;st¼0 −9.9935 −9.2813** −4.9951*** −2.4204 c0;st¼1 0.5057*** 0.4497***
(−0.1693) (−2.0996) (−3.1989) (−0.7129) (5.2687) (3.0998)

cU;0;st¼1 0.4274 −6.9998 −3.5287*** −2.6470*** ψ1 −2.0018*** −0.1920**
(0.0033) (−1.4622) (−3.2219) (−4.1206) (−379.1784) (−2.0163)

cL;0;st¼1 −0.6469 −2.0200 −1.7246 1.4317 ψ2 0.1524 0.2883

(−0.0159) (−1.4445) (−1.2050) (1.0517) (1.1916) (0.9146)

ψU,1 0.0006 3.2537* 4.9954 3.4956

(0.0000) (1.6656) (1.0825) (0.9566)

ψU,2 0.0004 −4.6450 1.4683 −4.7916***
(0.0000) (−0.2700) (0.5915) (−2.7792)

ψL,1 −11.1452 12.5685 2.4412 1.3946

(−0.0237) (1.3226) (0.6054) (0.9225)

ψL,2 0.4255 0.4175 1.8547 −9.6505

(0.0295) (0.3987) (0.6858) (−1.5812)

Prob00 0.6598 0.6750 0.6743 0.6749 Prob00 0.6599 0.6243

(0.0023) (0.3998) (0.5923) (0.4267) (0.5297) (0.4643)

Prob11 0.6598 0.6750 0.6747 0.6749 Prob11 0.6599 0.6225

(0.0026) (0.8564) (1.1012) (0.5742) (0.5176) (0.0595)

Panel B: between Ri;China
tþ1 and Ri;US

t

Soybean Sugar Corn Wheat Soybean Meal Soybean Oil

MSTV SJC copula MSTV t copula MSTV Gaussian copula

cU;0;st¼0 −4.5908 −2.5564*** −9.8665 c0;st¼0 0.4530 −0.0113** c0;st¼0 0.2957

(−0.2051) (−4.6192) (−0.3100) (0.2079) (−1.9755) (1.5765)

cL;0;st¼0 −3.0923 −2.8777** −7.4342 c0;st¼1 1.2186* 0.2015*** c0;st¼1 1.2034*
(−0.1022) (−2.4578) (−0.6941) (1.7936) (5.2553) (1.9423)

cU;0;st¼1 −2.7618 −1.9774*** −5.6588

ψ1

−2.0243*** 1.9706*** ψ1 0.2610

(−0.6534) (−13.7448) (−0.1503) (−10.0436) (67.9961) (0.2630)

cL;0;st¼1 −0.7970 −0.4228 0.5571 ψ2 −0.1297 0.0326** ψ2 −0.2522*
(−0.0555) (−0.7463) (0.0464) (−0.2183) (2.2654) (−1.7082)

ψU,1 4.8671 4.2690*** −9.6818

(0.0472) (16.1223) (−0.2155)

ψU,2 −4.9864 −4.8210*** −1.1538

(−0.1040) (−5.0831) (−0.0689)

ψL,1 0.9236 −0.7161 13.1413 Wst¼0 1.6558 7.3104***
(0.0206) (−1.5921) (0.1546) (0.1124) (6.0895)

ψL,2 2.1478 2.4645 −9.3029 Wst¼1 −1.4420** 0.3721

(0.0421) (0.7563) (−0.1695) (−2.0476) (0.5210)

Prob00 0.6747 0.6747 0.6749 Prob00 0.6746 0.6653*** Prob00 0.6729

(0.0316) (0.8237) (0.0416) (0.0344) (2.9524) (1.6409)

Prob11 0.6747 0.6747 0.6749 Prob11 0.6747 0.6630*** Prob11 0.6726*
(0.0176) (1.0908) (0.0679) (0.0280) (2.7111) (1.7251)

Note: ψ0, ψ1 and ψ2 represent dependence, persistence, and adjustment, respectively. The subscripts st = 0 and st = 1 assume the low and high dependence, respectively.

The subscripts U and L denote the upside and downside tail, respectively. The values in parenthesis are t statistics

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0299237.t007
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risk spillovers between these two markets, especially for wheat futures. Disruptions in agricul-

tural production and transportation in Russia and Ukraine (they contribute 19% of the world’s

wheat supply) have led to dramatic volatility in global agricultural futures markets, increasing

the magnitude of extreme risk spillover effects for wheat futures. On March 21, 2022, Argen-

tina, the world’s leading exporter of soybean meal and soybean oil, announced that it would

raise export taxes on soybean meal and soybean oil to control inflation due to the Russia-

Ukraine war. This drives the increase of extreme risk spillovers for soybean oil and soybean

meal futures. These findings align with Lien et al. [11] and Just and Echaust [12], who also

highlight the increase in risk spillovers during turbulent times.

Third, we explore the asymmetry from directional and upside/downside aspects, as shown

in Tables 9 and 10. Note that the downside extreme risk spillovers from China to the US are

insignificant for corn, so there is no need to include them in comparison. Table 9 shows that,

for all commodities, upside risk spillovers in the two countries’ markets are more prominent

than downside risk spillovers. These results suggest that US-Chinese agricultural futures mar-

kets tend to boom rather than crash jointly. It differs from the stock markets, which tend to

crash together [74]. Low prices could lead to losses for long-position investors, while extremely

high agricultural commodity prices could cause losses for short-position investors and jeopar-

dize food security [12]. Thus, upward co-movements in US-Chinese markets may be of more

significant concern than downward, highlighting the importance of preventing food insecurity

caused by cross-border risk spillovers.

From Table 10, the results show that upside risk spillover effects for soybean, wheat, and

corn futures are more prominent from the US to China than from China to the US. Also, the

Fig 6. Dynamics of dependence between Ri;China
tþ1 and Ri;US

t . The horizontal lines in the figure are static dependence

parameters. For the MSTV SJC copula model, the red line indicates the upward tail dependence, and the purple line

indicates the downward tail dependence. In the figure, the periods for the GFC, the US-China trade war, the COVID-

19 pandemic, and the Russia-Ukraine war are shaded.

https://doi.org/10.1371/journal.pone.0299237.g006
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downside risk spillovers for soybean meal and soybean oil are more significant from the US to

China than the opposite. Generally, the US always plays a leading role in main grain futures

markets, consistent with Chen and Weng [31]. Furthermore, China also plays an increasingly

vital role in cross-country risk spillovers, such as the upside risk spillover for sugar, soybean

meal and soybean oil futures. Overall, the risk spillover effects in the two markets are bidirec-

tional, asymmetric, highly volatile, and susceptible to extreme crises.

5.3 Driving factors of extreme risk spillovers in crises

This section conducts a panel data regression analysis to explore which factors drive the

extreme risk spillovers in crises. First, we perform monthly averaging of the daily extreme risk

spillover to ensure that its data frequency is consistent with the mechanism variables. Thus, we

Table 8. Summarization of the VaR, CoVaR, and ΔCoVaR for agricultural futures.

Downside Upside

VaR CoVaR50 CoVaR5 ΔCoVaR VaR CoVaR50 CoVaR95 ΔCoVaR
Panel A: VaR in Chinese markets and risk spillovers from the US to China
Soybean −2.7858 −3.3166 −8.2063 −4.8896*** 2.8038 −3.3351 2.3609 5.6960***

(1.0308) (1.2028) (2.9856) (1.7831) (1.0308) (2.7560) (0.8511) (3.4016)

Wheat −5.1111 −5.9361 −19.5669 −13.6308*** 5.1160 −40.7045 3.8438 44.5484***
(1.6801) (1.9769) (6.5224) (4.5455) (1.6801) (33.1296) (1.2817) (33.6756)

Sugar 0.0479 0.0300 0.0023 −0.0277*** 3.4251 0.0006 3.0852 3.0846***
(0.0142) (0.0093) (0.0007) (0.0086) (1.0159) (0.0004) (0.9054) (0.9052)

Corn −2.1504 −2.3955 −6.4354 −4.0399*** 2.1890 −11.2407 1.7219 12.9626***
(0.7517) (0.8489) (2.2694) (1.4206) (0.7517) (3.9754) (0.6011) (4.5336)

Soybean Meal −1.2654 −1.2929 −1.3805 −0.0876*** 2.4776 −1.4485 2.0772 3.5257***
(0.3419) (0.3500) (0.3730) (0.0237) (0.6589) (0.4164) (0.5883) (0.9748)

Soybean Oil 0.2074 0.1553 0.0292 −0.1262*** 3.8289 0.0105 3.5663 3.5558***
(0.0761) (0.0599) (0.0116) (0.0482) (1.3953) (0.0061) (1.2885) (1.2841)

Panel B: VaR in US markets and risk spillovers from China to the US
Soybean −1.4382 −1.4631 −1.5741 −0.1111*** 2.7679 −1.5389 2.1181 3.6570***

(0.4596) (0.4706) (0.5037) (0.0336) (0.8518) (0.5218) (0.6865) (1.2008)

Wheat −2.1473 −2.1344 −2.2914 −0.1570*** 4.0140 −2.3060 2.6295 4.9354***
(0.5907) (0.5888) (0.6302) (0.0446) (1.0853) (0.6333) (0.7351) (1.3583)

Sugar 0.0114 0.0038 −0.0156 −0.0193*** 6.5629 −0.0162 5.1296 5.1457***
(0.0074) (0.0056) (0.0002) (0.0054) (1.7621) (0.0001) (1.4063) (1.4063)

Corn −4.0158 4.2942 9.0566 4.7624*** 4.0868 −0.7992 0.7102 1.5094***
(1.6154) (1.6968) (3.5939) (1.8971) (1.6154) (0.3402) (0.2668) (0.6031)

Soybean Meal −3.8227 −4.1627 −8.8594 −4.6967*** 3.8638 −3.3068 3.2045 6.5113***
(1.2585) (1.3686) (2.9076) (1.5391) (1.2585) (1.2888) (1.0391) (2.3081)

Soybean Oil −2.8216 −3.1379 −5.5902 −2.4523*** 2.8348 −5.5081 2.4560 7.9641***
(0.9703) (1.1253) (1.9738) (0.8491) (0.9703) (3.5644) (0.8625) (4.3723)

Note: This table presents the average and the standard deviations (in parenthesis). The values in the table have been multiplied by a factor of 100. CoVaR50 denotes the

CoVaR conditional on a regular market. CoVaR5 and CoVaR95 denote the CoVaR conditional on a distressed market with 5% and 95% quantile levels, respectively. The

significance test of ΔCoVaR is performed based on the Kolmogorov-Smirnov (K-S) test. It is a non-parametric statistical test used to determine whether a sample of data

follows a specific distribution. The hypothesis test is
H0 : CoVaRijj

b;t ¼ CoVaRijj
50;t

H1 : CoVaRijj
b;t 6¼ CoVaRijj

50;t

8
<

:
***, **, and * indicate that the K-S test is significant at the 1%, 5%, and 10% levels,

respectively.

https://doi.org/10.1371/journal.pone.0299237.t008
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Fig 7. Up ΔCoVaR from the US to Chinese agricultural futures markets. All values of ΔCoVaR have been multiplied

by a factor of 100.

https://doi.org/10.1371/journal.pone.0299237.g007

Fig 8. Up ΔCoVaR from the Chinese to US agricultural futures markets. All values of ΔCoVaR have been multiplied

by a factor of 100.

https://doi.org/10.1371/journal.pone.0299237.g008
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Fig 9. Down ΔCoVaR from the US to Chinese agricultural futures markets. All values of ΔCoVaR have been

multiplied by a factor of 100.

https://doi.org/10.1371/journal.pone.0299237.g009

Fig 10. Down ΔCoVaR from the Chinese to US agricultural futures markets. All values of ΔCoVaR have been

multiplied by a factor of 100. In the figure, we remove the dynamics of the risk spillovers for corn futures because their

risk spillovers are not statistically significant.

https://doi.org/10.1371/journal.pone.0299237.g010
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obtain 204 monthly observations for each commodity from January 2006 to December 2022.

Table 11 summarizes all variables in the regression analysis. The statistical measures provided

include sample size, mean, standard deviation, as well as minimum value, percentiles (25th,

50th, and 75th), and maximum value for each variable.

Table 12 shows the Pearson correlations between these variables. It shows significant corre-

lations between the extreme risk spillovers and macro factors, such as VIX and exchange rates.

Moreover, TPU, crop production, and biofuel prices are also somewhat related to the risk spill-

over effects. In addition, the dependent variables (except for the same variables but for differ-

ent counties) have low correlations. This suggests that these variables are relatively

independent and may have unique impacts on the agricultural commodity markets. This also

helps to avoid the issue of multicollinearity in regression analysis.

Next, we conduct the regression analysis. Considering the between-group heteroskedasti-

city, the contemporaneous correlation between groups, and the within-group autocorrelation,

we use the Feasible Generalized Least Squares (FGLS) regression method to estimate our mod-

els. We also include the individual fixed effects and a time trend term in the long-run panel

data model. The regression has no missing values, indicating a balanced panel with 204

months and six commodities. The regression results using all total samples are shown in

Table 13. Columns (1)–(2) denote the risk spillovers from the US to China, and columns (3)–

(4) denote the opposite direction. Columns (1) and (3) indicate the upside risk spillovers; col-

umns (2) and (4) indicate the downside side.

Table 9. K-S test for the asymmetry of upside and downside risk spillovers.

H0 : DCoVaRijj
5%;t ¼ DCoVaRijj

95%;t

H1 : DCoVaRijj
5%;t > DCoVaRijj

95%;t

H0 : DCoVaRijj
5%;t ¼ DCoVaRijj

95%;t

H1 : DCoVaRijj
5%;t < DCoVaRijj

95%;t

The US! China China! The US The US! China China! The US

Soybean 1.0000*** 1.0000*** 0.0000 0.0000

Wheat 1.0000*** 1.0000*** 0.0000 0.0000

Sugar 1.0000*** 1.0000*** 0.0000 0.0000

Corn 1.0000*** 0.0000

Soybean meal 1.0000*** 1.0000*** 0.0000 0.0000

Soybean oil 1.0000*** 1.0000*** 0.0000 0.0000

Note: This table presents the K-S test statistics

***, **, and * significant at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0299237.t009

Table 10. K-S test for the asymmetry of risk spillovers from the US to China and from China to the US.

H0 : DCoVaRCHNjUSA
β;t ¼ DCoVaRUSAjCHN

β;t

H1 : DCoVaRCHNjUSA
β;t > DCoVaRUSAjCHN

β;t

H0 : DCoVaRCHNjUSA
β;t ¼ DCoVaRUSAjCHN

β;t

H1 : DCoVaRCHNjUSA
β;t < DCoVaRUSAjCHN

β;t

Downside Upside Downside Upside

Soybean 1.0000*** 0.0000 0.0000 0.4886***
Wheat 1.0000*** 0.0000 0.0000 1.0000***
Sugar 0.4755*** 0.7013*** 0.0000 0.0000

Corn 0.0000 0.9942***
Soybean meal 0.0000 0.6650*** 1.0000*** 0.0000

Soybean oil 0.0000 0.6187*** 1.0000*** 0.0000

Note: This table presents the K-S test statistics

***, **, and * significant at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0299237.t010
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The results show that in columns (1), (3), and (4), the coefficients of VIXt are statistically

significant at the 10% level. It means that when investor panic is more severe, the intensity of

the risk spillover effects is more significant. However, most other variables are insignificant at

a 5% significance level. One possible reason is that driving factors of extreme risk spillovers

vary over time, leading to the insignificance of these influencing factors when using the overall

sample. In particular, the risk diffusion channels may differ between the “stable” (low depen-

dence) and “crisis” (high dependence) regimes. Thus, clarifying the drivers of extreme risk

spillovers during crises is imperative.

Next, we detail the risk spillover mechanisms in crises. Table 14 shows the regression

results during the GFC. It indicates statistically significant coefficients for both VIXt and Flo-
wUSA!CHN,t in columns (1) and (2). It indicates that the macro factors and financial shocks sig-

nificantly influence the risk spillovers from the US to China. The US subprime mortgage crisis

resulted in global financial market chaos coupled with the depreciation of the US dollar, and

the market panic sharply increased. When market panic intensifies, and concerns about food

security escalate, price information from one market can immediately be transmitted to other

markets, thus exacerbating the magnitude of risk spillovers. Moreover, massive speculative

capital in the international markets moves into international commodity futures markets, such

as agricultural commodities [75, 76]. As a result, flows of international capital and a rise in

investor panic could accelerate cross-border extreme risk spillovers and endanger a country’s

food security. This is a profound lesson from the 2007–2009 GFC, consistent with the conclu-

sions of von Braun and Torero [77].

The coefficients of GDPUSA,t and GPRt are also significant in column (1). It indicates that

the US economic downturn, to some extent, has constrained cross-border investment and

trade activities, thereby partially restraining the upward risk spillover from the US to China.

Table 11. Descriptive statistics of the sample from January 2006 to May 2020.

Variable N Mean Std. Dev. Min P25 P50 P75 Max Fisher-type unit-root test

DCoVaRCHNjUSA
95%;t

1224 12.2611 17.7218 1.7499 3.1123 4.6131 12.5930 264.6062 265.9324***

DCoVaRCHNjUSA
5%;t

1224 −3.8057 5.1974 −29.4208 −5.2433 −1.0873 −0.0797 −0.0138 234.2057***

DCoVaRUSAjCHN
95%;t

1224 4.9471 2.9725 0.8287 3.2559 4.5422 5.9501 26.8439 205.3772***

DCoVaRUSAjCHN
5%;t

1224 −0.4459 3.0273 −11.3369 −2.1948 −0.1302 −0.0186 13.9188 224.0129***
VIXt 1224 1.9858 0.8778 1.0125 1.3971 1.7519 2.3240 6.2639 206.9133***
GEPUt 1224 161.9055 75.9374 48.9513 105.1235 143.5834 204.6024 428.1037 84.9449***
EXRt 1224 6.7345 0.4825 6.0509 6.3613 6.6971 6.8958 8.0654 79.3575***
GPRt 1224 95.5181 27.3422 60.6016 80.5665 89.9050 103.1089 324.2259 243.9859***
GDPUSA,t 1224 0.9988 0.0132 0.9168 0.9968 0.9995 1.0045 1.0185 109.0731***
GDPCHN,t 1224 1.0008 0.0132 0.8606 0.9955 1.0023 1.0066 1.0195 432.5238***
TPUUSA,t 1224 138.6270 238.8726 7.6726 28.2103 51.2160 101.8819 1946.6830 236.7946***
TPUCHN,t 1224 192.4905 233.7867 0.0000 44.0950 105.7950 250.3761 1425.1602 260.5038***
FlowUSA!CHN,t 1224 0.0106 0.4265 −2.2363 −0.1726 0.0232 0.1756 2.1523 432.5238***
FlowCHN!USA,t 1224 0.0122 0.3340 −1.1832 −0.1637 0.0267 0.2069 1.1763 432.5238***
PducUSA,t 1224 4.2672 1.5167 2.1353 2.8519 4.0450 5.8450 6.5546 68.4347 ***
PducCHN,t 1224 4.0537 1.5825 1.5129 2.7685 3.4812 5.3260 7.1890 49.5581***
Biofuelt 1224 0.0134 0.0035 0.0075 0.0107 0.0123 0.0163 0.0215 73.1091***

Note

***, **, and * denotes significance at the 1%, 5%, and 10% levels, respectively. All values of ΔCoVaR have been multiplied by a factor of 100.

https://doi.org/10.1371/journal.pone.0299237.t011
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During the GFC, global geopolitical risk does not experience a sharp change. However, due to

measurement issues with this indicator, the financial crisis events have crowded out the news-

paper reporting of geopolitical events. This may account for the significance of GPRt in col-

umn (1). Besides, the drivers for risk spillovers from China to the US are all insignificant,

except for VIX. This could be attributed to the fact that increased government intervention

and policy measures aimed at mitigating the effects of the financial crisis have eclipsed the

influence of specific drivers for risk spillovers from China to the US.

Table 15 presents the results during the US-China trade war. We find the coefficients of

TPUUSA,t/TPUCHN,t are significant in columns (1)–(4). It indicates that the risk spillovers

Table 13. The regression results for all samples.

(1) (2) (3) (4)

DCoVaRCHNjUSA
95%;t DCoVaRCHNjUSA

5%;t DCoVaRUSAjCHN
95%;t DCoVaRUSAjCHN

5%;t

VIXt 0.0596*** −0.0040 0.0154** −0.0018**
(2.96) (−1.05) (2.26) (−1.82)

GEPUt −0.0006 0.0003 0.0012 −0.0001

(−0.17) (0.46) (0.98) (−0.40)

EXRt 0.3596 −0.0660 −0.0614 −0.0084

(0.55) (−0.38) (−0.26) (−0.20)

GDPUSA,t 2.0195 1.5328 −1.9246 0.2301

(0.11) (0.39) (−0.31) (0.24)

GDPCHN,t −9.7940 2.8051* −2.6230 0.3568

(−1.20) (1.86) (−0.99) (0.93)

GPRt 0.0004 −0.0005 0.0017 −0.0001

(0.09) (−0.62) (1.17) (−0.63)

TPUUSA,t 0.0005 −0.0002**
(0.87) (−2.17)

TPUCHN,t −0.0001 0.0000

(−0.49) (0.31)

FlowUSA!CHN,t 0.0188 −0.0236

(0.12) (−0.92)

FlowCHN!USA,t 0.0215 0.0003

(0.35) (0.03)

PducUSA,t 0.7138 −0.0211

(0.69) (−0.23)

PducCHN,t 0.5453** 0.0103

(2.32) (0.49)

Biofuelt 0.7523 −0.2602 0.3186 −0.0379

(0.72) (−1.02) (0.85) (−0.61)

_cons 2.9303 −2.6470 10.2271 −2.7859**
(0.13) (−0.54) (1.33) (−2.28)

Individual fixed effects Yes Yes Yes Yes

Time trend Yes Yes Yes Yes

N 1224 1224 1224 1020

Wald 360.7653*** 377.0282*** 942.8933*** 565.9782***

Note: The values in parenthesis are t statistics

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. In the case of corn futures, the risk

spillovers from China to the US are insignificant, so this sample is kicked out in the regression.

https://doi.org/10.1371/journal.pone.0299237.t013

PLOS ONE Extreme risk spillovers between US and Chinese agricultural futures markets in crises

PLOS ONE | https://doi.org/10.1371/journal.pone.0299237 March 6, 2024 25 / 34

https://doi.org/10.1371/journal.pone.0299237.t013
https://doi.org/10.1371/journal.pone.0299237


between the US and China are positively related to trade policy uncertainty. The US-China

economic and trade interdependence has been growing since 2001. The annual exports of agri-

cultural and related products from the US to China exceed $24 billion [78]. The trade policy

uncertainty sharply increases during the US-China trade war, thus affecting the trade imports

and intensifying the extreme risk spillovers between them. At this point, the extreme risk spill-

overs during the US-China trade frictions mainly rely on the impact of trade shocks. These

findings highlight the vital role of trade and production shocks in agricultural commodity

markets, consistent with Nigatu et al. [62] and Distefano et al. [67]. In addition,

Table 14. The regression results during the GFC.

(1) (2) (3) (4)

DCoVaRCHNjUSA
95%;t DCoVaRCHNjUSA

5%;t DCoVaRUSAjCHN
95%;t DCoVaRUSAjCHN

5%;t

VIXt 0.6766** −0.0639** 0.0607 −0.0177*
(2.53) (−2.48) (1.62) (−1.80)

GEPUt 0.0356 0.0006 −0.0041 0.0022

(0.62) (0.10) (−0.55) (1.10)

EXRt 153.1965 −8.6532 −14.5668 2.7695

(1.64) (−0.96) (−1.34) (0.95)

GDPUSA,t 3774.9833*** −197.7799 108.1050 −53.0483

(2.62) (−1.42) (0.64) (−1.18)

GDPCHN,t −1.79e+03 167.9465 12.3876 13.0501

(−1.37) (1.33) (0.08) (0.33)

GPRt −0.4879*** 0.0111 −0.0226 0.0068

(−2.89) (0.68) (−1.07) (1.22)

TPUUSA,t −0.0435 −0.0112*
(−0.70) (−1.88)

TPUCHN,t −0.0007 0.0000

(−0.15) (0.03)

FlowUSA!CHN,t 7.3563** −0.7807**
(2.07) (−2.27)

FlowCHN!USA,t 0.2830 −0.1540

(0.76) (−1.57)

PducUSA,t −17.4701 −0.1518

(−0.77) (−0.08)

PducCHN,t 2.2518 0.0221

(1.52) (0.03)

Biofuelt 24.9822 −4.6749 −9.3463 2.3735

(0.55) (−1.07) (−1.62) (1.55)

_cons −3.42e+03*** 125.0283 24.8971 5.2169

(−2.74) (1.04) (0.16) (0.13)

Individual fixed effects Yes Yes Yes Yes

Time trend Yes Yes Yes Yes

N 126 126 126 105

Wald 263.0215*** 1953.1346*** 2432.7309*** 2238.1920***

Note: The values in parenthesis are t statistics

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. In the case of corn futures, the risk

spillovers from China to the US are insignificant, so this sample is kicked out in the regression.

https://doi.org/10.1371/journal.pone.0299237.t014
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macroeconomic factors, financial shocks, supply disruptions, and demand fluctuations offer

an explanation for the risk spillovers from China to the US to some extent.

Table 16 presents the regression results during the period of the COVID-19 pandemic and

the Russia-Ukraine 2022 war. In columns (1)–(2), the coefficients of PducUSA,t are significant,

and so are the coefficients of FlowUSA!CHN,t at the 10% level. These results demonstrate that

international capital flows could also be an important channel for the upside risk spillovers

from the US to China, particularly during the period of the COVID-19 pandemic and the

Table 15. The regression results during the US-China trade war (only including the period before the COVID-19

pandemic).

(1) (2) (3) (4)

DCoVaRCHNjUSA
95%;t DCoVaRCHNjUSA

5%;t DCoVaRUSAjCHN
95%;t DCoVaRUSAjCHN

5%;t

VIXt 0.0881 −0.0116 0.0385*** −0.0225***
(0.67) (−0.26) (2.89) (−4.85)

GEPUt −0.0177 0.0055 −0.0027 0.0028***
(−1.03) (0.93) (−1.34) (3.97)

EXRt −3.1446 0.5469 1.6809*** −0.2627*
(−0.79) (0.40) (4.08) (−1.85)

GDPUSA,t −246.5666 −24.4744 228.7875*** −100.4106***
(−0.44) (−0.13) (4.45) (−5.70)

GDPCHN,t −193.7446 148.8450 −175.4692*** 62.0791***
(−0.35) (0.79) (−3.61) (3.77)

GPRt 0.0173 0.0008 0.0095*** −0.0024**
(0.58) (0.08) (3.18) (−2.34)

TPUUSA,t 0.0030** −0.0011**
(2.33) (−2.44)

TPUCHN,t 0.0008*** −0.0003***
(4.09) (−4.65)

FlowUSA!CHN,t −1.2639 0.3840

(−0.75) (0.67)

FlowCHN!USA,t 0.7240*** −0.0201

(2.70) (−0.22)

PducUSA,t −14.1964 5.8911

(−0.69) (0.87)

PducCHN,t 3.5482*** −1.5894***
(3.33) (−2.98)

Biofuelt −18.3530 1.7167 4.2571*** −1.8464***
(−1.41) (0.38) (3.07) (−3.91)

_cons 566.9142 −156.6650 −78.3648* 46.0526***
(1.41) (−1.14) (−1.75) (3.09)

Individual fixed effects Yes Yes Yes Yes

Time trend Yes Yes Yes Yes

N 144 144 144 120

Wald 1659.3721*** 2462.4512*** 2875.1163*** 3946.8509***

Note: The values in parenthesis are t statistics

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. In the case of corn futures, the risk

spillovers from China to the US are insignificant, so this sample is kicked out in the regression.

https://doi.org/10.1371/journal.pone.0299237.t015
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Russia-Ukraine 2022 war, which have exacerbated the tensions in international agricultural

markets. Significantly, the COVID-19 pandemic and the Russia-Ukraine 2022 war have exac-

erbated the tensions in international agricultural markets. An escalation of the conflict could

trigger investor panic and safe-haven demand, leading to investment funds flowing into agri-

cultural markets, thereby increasing the intensity of market volatility and risk spillovers.

Furthermore, the risk spillovers from the US to China also rely heavily on supply-side

shocks. Production and supply chain shortages due to blockades, travel restrictions, and

Table 16. The regression results during the period of the COVID-19 pandemic and the Russia-Ukraine war in

2022.

(1) (2) (3) (4)

DCoVaRCHNjUSA
95%;t DCoVaRCHNjUSA

5%;t DCoVaRUSAjCHN
95%;t DCoVaRUSAjCHN

5%;t

VIXt −0.0052 0.0059 −0.0072 0.0011

(−0.18) (0.59) (−0.56) (0.33)

GEPUt −0.0006 −0.0016 0.0069*** −0.0012**
(−0.12) (−0.90) (3.02) (−1.97)

EXRt 0.2586 −0.1364 −1.4683** 0.3550*
(0.18) (−0.26) (−2.22) (1.93)

GDPUSA,t −20.8412 3.4564 −0.9938 0.1139

(−0.85) (0.40) (−0.11) (0.05)

GDPCHN,t −15.0068** 7.8043*** −1.8198 0.4806

(−2.07) (3.09) (−0.59) (0.59)

GPRt 0.0038 −0.0024 0.0048** −0.0012*
(0.73) (−1.28) (2.03) (−1.93)

TPUUSA,t −0.0011 0.0006

(−0.52) (0.82)

TPUCHN,t −0.0011*** 0.0003***
(−3.10) (2.58)

FlowUSA!CHN,t 0.8456* −0.3083*
(1.76) (−1.86)

FlowCHN!USA,t 0.1784 −0.0503

(0.77) (−0.82)

PducUSA,t −5.9262*** 0.7165***
(−2.91) (2.90)

PducCHN,t 1.6332 −0.1404

(0.98) (−0.90)

Biofuelt 5.3511 −1.6776 −0.1820 0.2539

(1.62) (−1.41) (−0.12) (0.63)

_cons 47.4816* −15.8976* 14.2454 −3.9018

(1.74) (−1.65) (1.16) (−1.24)

Individual fixed effects Yes Yes Yes Yes

Time trend Yes Yes Yes Yes

N 216 216 216 180

Wald 832.0097*** 881.5019*** 468.3347*** 209.2848***

Note: The values in parenthesis are t statistics

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. In the case of corn futures, the risk

spillovers from China to the US are insignificant, so this sample is kicked out in the regression.

https://doi.org/10.1371/journal.pone.0299237.t016
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quarantines after the outbreak of the COVID-19 pandemic have reduced the availability of

food [79–81]. This exacerbates the fluctuations and risk spillovers in these two countries’ mar-

kets. Therefore, during the COVID-19 pandemic and the Russia-Ukraine war in 2022, the risk

spillovers from the US to China highlight the supply-side shocks (the non-financial channel).

These findings are also in line with the ideas of Laborde et al. [82]. Besides, macro factors and

trade shocks have had a significant impact on risk spillovers from China to the US.

In summary, the lessons from the GFC do not apply to the current period of the COVID-19

pandemic. As for the risk spillovers from the US to China, the GFC highlights the financial

channel. The significant volatility in the agricultural futures markets can primarily be attrib-

uted to the financialization of commodities. However, after the outbreak of COVID-19, the

economic isolation and pause triggered short-term disruptions and interruptions in produc-

tion and trade chains. The extreme risk spillovers from the US to China during the COVID-19

pandemic rely mainly on supply-related shocks (the non-financial channel). Besides, despite

the risk spillover mechanisms from China to the US being confused, it is worth emphasizing

that macro factors play an important role in driving shock transmissions.

6. Summary, conclusion and recommendation

This paper captures the extreme risk spillovers between the US and Chinese agricultural com-

modity futures markets during significant crises using a copula-CoVaR model. Moreover, by

incorporating them into a Markov regime-switching framework, we identify a shift in depen-

dence structure during normal (low-dependence) and crisis (high-dependence) times. Finally,

through the analysis of extreme risk spillovers with dependence switching, this research reveals

their underlying drivers, particularly within the contexts of the GFC, the US-China trade war,

and the period of the COVID-19 pandemic and the Russia-Ukraine 2022 war.

We summarize several findings. First, we find significant and asymmetric spillovers of

extreme risk between the US and Chinese markets. Notably, these markets are more likely to

boom than to crash together, highlighting the prevention of a food crisis caused by cross-bor-

der upside risk spillovers. Second, the dependence structure between these markets shows two

distinct regimes in times of stability and crisis. The extreme risk spillover effects are highly vol-

atile and are significantly intensified by the GFC, COVID-19, and the Russia-Ukraine war.

Third, our findings support the role of financial, trade, and supply-side shocks in driving the

risk spillovers from the US to Chinese markets. For example, during the GFC, international

capital flows into Chinese markets from the US (the financial channel) exacerbate the dissemi-

nation of risk from the US to China. The trade shocks account for the changes in extreme risk

spillovers during the US-China trade war. By contrast, the COVID-19 pandemic and conflict

in Ukraine highlight the role of supply-side shocks (the non-financial channel). In addition,

macro factors are also essential in driving risk contagion.

The recommendations arising from these findings are as follows: For investors, this paper

highlights the interconnectivity of agricultural futures markets between the US and China. The

increasing financialization of commodities has led to severe and frequent fluctuations in the

international agricultural futures markets. In this context, investors in the US and China

should anticipate the impact of fluctuations in the other markets on their domestic markets.

They can build up dynamic risk monitoring/early warning mechanisms for their portfolios

and seek diversified protection for their agricultural commodity investments. Furthermore,

investors should respond to trade, supply, and financial shocks arising from local and global

extreme risk events in a timely manner and adjust their asset portfolios promptly.

For policymakers, they should strengthen their risk monitoring frameworks to detect early

signs of extreme risk spillovers between US and Chinese markets. Both countries should
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develop and maintain crisis preparedness plans for their agricultural sectors, including strate-

gies for managing sudden shifts in market dependence structures. Moreover, stricter financial

regulations should be strengthened to avoid the large-scale hot capital flows into the agricul-

tural commodity markets and the investors’ excess speculation, thus avoiding the sharp fluctu-

ations in food markets and the significant threat to food security. In the face of production or

trade distribution shocks, agricultural price support or stabilization policies should also be

introduced to stabilize the agricultural futures markets for both upside and downside distress.

Finally, our study also highlights the cooperation of countries/regions to address the excess

fluctuations in food markets, such as by refraining from food trade protectionism.

This paper is limited to focusing on the extreme risk spillovers between China and the US.

In the future, it may be exciting follow-up work if scholars investigate cross-border extreme

risk spillovers using a global sample and analyze systemic risk spillovers in the global food sys-

tem. It will help to provide a comprehensive understanding of how risks propagate across dif-

ferent regions and markets and offer insights into the interconnectedness and vulnerabilities

of the global food supply chain. Moreover, the impact of extreme risk spillovers in the interna-

tional food markets on global food security could be shed more light on. This line of research

could lead to the development of measures and policies to safeguard food security in the face

of systemic risk and extreme events in the international food markets.
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