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Abstract

Accurate analysis of the strength of steel-fiber-reinforced concrete (SFRC) is important for

ensuring construction quality and safety. Cube compression and splitting tensile tests of

steel fiber with different varieties, lengths, and dosages were performed, and the effects of

different varieties, lengths, and dosages on the compressive and splitting properties of sec-

ondary concrete were obtained. It was determined that the compression and splitting

strengths of concrete could be effectively improved by the addition of end-hooked and milled

steel fibers. The compressive and splitting strengths of concrete can be enhanced by

increasing the fiber length and content. However, concrete also exhibits obvious uncertainty

owing to the comprehensive influence of steel fiber variety, fiber length, and fiber content. In

order to solve this engineering uncertainty, the traditional RBF neural network is improved

by using central value and weight learning strategy especially. On this basis, the RBF fuzzy

neural network prediction model of the strength of secondary steel fiber-reinforced concrete

was innovatively established with the type, length and content of steel fiber as input informa-

tion and the compressive strength and splitting tensile strength as output information. In

order to further verify the engineering reliability of the prediction model, the compressive

strength and splitting tensile strength of steel fiber reinforced concrete with rock anchor

beams are predicted by the prediction model. The results show that the convergence rate of

the prediction model is increased by 15%, and the error between the predicted value and

the measured value is less than 10%, which is more efficient and accurate than the tradi-

tional one. Additionally, the improved model algorithm is efficient and reasonable, providing

technical support for the safe construction of large-volume steel fiber concrete projects,

such as rock anchor beams. The fuzzy random method can also be applied to similar engi-

neering fields.
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1. Introduction

Compared with primary concrete, secondary concrete is widely used in mass hydraulic con-

crete because of its lower hydration heat. The crack problem of mass concrete not only affects

project quality but also leads to security risks [1–5]. The addition of fibers to a concrete sub-

strate is an important method of improving the brittleness characteristics of concrete and con-

trolling the crack width. Steel-fiber concrete was the earliest application involving the addition

of fibers, and thereby, it led to its fastest development [6–10]. Contemporary research, both

domestically and internationally, is focused primarily on steel-fiber concrete with smaller

coarse aggregates, with regulations in place to support its engineering applications. For

instance, the Technical Regulations for fiber concrete structure CECS38:2004 to JG/T472-2015
steel fiber concrete stipulate that the maximum aggregate size should not exceed 20 mm and 25

mm, respectively [11–13]. Nonetheless, there is a scarcity of research on steel fiber-reinforced

concrete with low strength and coarse aggregate sizes exceeding 25 mm. Initial studies indi-

cated that larger aggregates might impede the uniform distribution of fibers, thereby diminish-

ing the material’s reinforcing capabilities. Notably, in 1994, Huang Chengkui [14]

demonstrated through experimental studies that incorporating 35 mm long steel fibers can

result in a secondary steel fiber concrete that matched the original in static, bending, and

fatigue strengths. In recent years, Han’s research group [15–21] has also confirmed that steel

fiber has a certain strengthening and toughening effect on secondary concrete through rele-

vant tests.

As the basic mechanical properties of concrete, compressive strength and splitting tensile

strength are considered as the main bases for determining the bearing capacity and cracking

resistance of concrete in structural design. Jinrong et al. [22] conducted a test study on the

compressive and splitting tensile strengths of aged steel fiber secondary concrete with a bow

length of 30, 35, and 60 mm and length of 32 mm. They determined that when compared with

primary steel fiber concrete, the modified could not only effectively reduce the amount of

cement, adiabatic temperature rise, and dry shrinkage, but also enhanced crack resistance.

Simultaneously, it was determined that the ratio of fiber length to aggregate size (lf/Dmax) was

approximately 3/2, steel fiber content was 1.5%, and length of 60-mm splitting tensile strength

was the largest. Shi Guozhu’s research [23] on 60-mm end-hook steel fiber secondary concrete

suggested that longer fibers enhance the toughening effect, with an optimal fiber volume frac-

tion of 1% yielding the best results in terms of cleavage, bending resistance, and toughness.

Zhao Mengmeng [24] conducted experiments on steel fiber concrete with various fiber lengths

at a volume fraction of 1% and concluded that for C30 concrete, when lf/Dmax ratio ranged

from 1.25 to 3, there was an effective synergy between steel fiber length and the maximum par-

ticle size of the coarse aggregate. This resulted in the splitting tensile strength first increasing

and then decreasing with the lf/Dmax ratio, with the most significant increase in splitting

strength ratio observed. Chen’s experiments [25] aligned with Zhao’s filitting tensile strength

depending on the concrete grade; for C30 steel fiber-reinforced concrete, an increase in fiber

length led to reduced strength, whereas for C60 concrete, strength increased with longer fibers.

Khaleel Ibrahim & Movahedi Rad [26] studied the plastic properties of beams reinforced by

carbon fiber reinforced polymer (CFRP) by using probabilistic design method which takes

into account random concrete properties, carbon fiber reinforced polymer (CFRP) properties

and complementary strain energy values.The study on the optimal plastic behavior of RC

beams strengthened by carbon fiber polymers offers valuable insights into reliability-based

design approaches. Despite these studies, there is a dearth of consistent data specifically on the

compressive and splitting tensile strengths of secondary steel fiber reinforced concrete. Addi-

tionally, the aforementioned research does not fully account for the variability of uncertainty
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in strength distribution that might occur in actual engineering applications, which could lead

to discrepancies in results and potentially compromise safety.

In view of the uncertainty distribution of steel fiber reinforced concrete strength in practical

engineering, some scholars try to use intelligent algorithms to make comprehensive analysis in

order to improve efficiency. Oveys et al. [27] presents an investigation into the bond strength

of travertine, granite, and marble, to a concrete substrate using a shear-splitting test. Based on

the findings, a novel fuzzy logic approach was proposed to predict the bond strength. Wang

et al. [28] established random forest (RF) to predict UCS by analyzing and comparing five tra-

ditional models: RF, multiple regression analysis (MR), backpropagation neural network

(BPNN), extreme learning Machine (ELM) and support vector regression (SVR). Pouria et al.

[29] compared traditional backpropagation algorithms (LM), differential evolution (DE), and

particle swarm optimization (PSO). On this basis, artificial neural network (ANN) technology

is combined with a robust optimization technique PSOTD to predict the CS of RHA concrete.

Through the analysis of these documents, it is found that most of the current intelligent algo-

rithm models of engineering prediction only focus on randomness or fuzziness of engineering,

and do not consider the two comprehensively. This will cause results to deviate from reality.

Therefore, in view of the influence of different types, lengths and quantities of steel fibers on

the performance of secondary steel fiber reinforced concrete, the traditional RBF neural net-

work is improved, and the optimized fuzzy RBF neural network is established to be a more

effective tool for the performance prediction of steel fiber reinforced concrete.

2. Materials

In the experimental setup, C25 concrete-often designated for hydraulic structures—served as

the matrix concrete. The mix retained consistent ratios with standard non-fiber-reinforced

concrete, substituting large aggregates partially with steel fibers and other components. The

details of the mix design are presented in Table 1. The materials utilized for the concrete mix

included P.O42.5 ordinary Portland cement, natural river sand with a fineness modulus of

2.65, and coarse aggregate sizes ranging from 5 to 20 mm and 20 to 40 mm, in a mass ratio of

4:6. The supplementary cementitious material was grade I fly ash, and the chemical admixture

used was PCA-I type water-reducing agent, with the water sourced from the Mechanics labo-

ratory taps at Hohai University. Three different shapes of steel fibers—shear, end hook, and

milled Harix-type—were sourced from Hebei Zhitai Steel Fiber Company. The specific details

and experimental conditions related to the fibers are documented in Tables 2 and 3, and their

geometrical shapes are illustrated in Figs 1 and 2. Nine sets of concrete specimens were

Table 1. Mix ratio of secondary steel fiber reinforced concrete.

Strength class Cement (mc) Water-binder ratio Sand ratio (%) Fly ash content (%) Water reducing agent content (%)

Slump (cm)

C25 276 0.43 44 18 1.3 5–9

https://doi.org/10.1371/journal.pone.0299149.t001

Table 2. Fiber parameters and dosage.

Fiber type Average length (mm) Equivalent diameter (mm) Slenderness ratio Tensile strength N (mm2) Volume fraction

(%)

End-hooked 60 0.75 80 1150 0/0.5/1.0/1.5/2

50 0.75 65 1150 1.0

35 0.55 65 1250 1.0

Shear type 38 1.4 27 800 1.0

Milling type 32 0.9 35 700 1.0

https://doi.org/10.1371/journal.pone.0299149.t002
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Table 3. Mix ratio of secondary steel fiber reinforced concrete.

ID Water-binder ratio Sand ratio(%) Dosage of concrete materials (kg/m3)

Steel fiber Water Cement Sand Particle size stone(5~20mm) Particle size stone(20~40mm)

F0 0.43 44 0 145 276 832 424 636

J310 0.43 44 78.5 145 276 811 424 609

X310 0.43 44 78.5 145 276 811 424 609

D310 0.43 44 78.5 145 276 811 424 609

D510 0.43 44 78.5 145 276 811 424 609

D605 0.43 44 39.25 145 276 822 424 623

D610 0.43 44 78.5 145 276 811 424 609

D615 0.43 44 117.75 145 276 801 424 596

D620 0.43 44 157 145 276 790 424 582

https://doi.org/10.1371/journal.pone.0299149.t003

Fig 1. Physical diagram of three different types of steel fibers.

https://doi.org/10.1371/journal.pone.0299149.g001
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prepared for testing. The mechanical properties of interest, namely cube compressive strength

and splitting tensile strength, were assessed using standard 150 mm cubic specimens, with six

replicates per set. The preparation process involved mixing the components in a forced-action

mixer, consolidating the mix on a vibrating table, demoulding after 24 hours, and subsequently

curing the specimens in a controlled environment for 28 days. For the testing phase, the proce-

dures aligned with the GB-T5008-2019 Standard for Testing Methods of Mechanical Properties
of Ordinary Concrete. The application of load to the specimens is conducted using an electro-

hydraulic servo universal testing machine. The compressive loading device is shown in Fig 3,

and the split-pull loading device is shown in Fig 4.

For specimen preparation, all components except the steel fibers were initially combined in

a forced mixer, where they underwent wet mixing for one minute. Subsequently, steel fibers

were introduced, and the mixing continued for an additional 2 min. The resultant concrete

mix is depicted in Fig 5, showcasing a uniform distribution of steel fibers. The mix demon-

strated favourable cohesion and water retention properties. However, a minor degree of fiber

clumping was observed when the fiber content reached 2%. This mixture was then poured into

plastic moulds for shaping. The compaction process involved the use of a vibrating table,

which ensured the mix was densely packed and free of voids.

Fig 2. Geometry of three different types of steel fibers.

https://doi.org/10.1371/journal.pone.0299149.g002

PLOS ONE Compressive and split-tensile strength of secondary steel fiber reinforced concrete based on RBF model

PLOS ONE | https://doi.org/10.1371/journal.pone.0299149 February 29, 2024 5 / 31

https://doi.org/10.1371/journal.pone.0299149.g002
https://doi.org/10.1371/journal.pone.0299149


After 28 days of curing, take out the steel fiber concrete specimen, wipe the specimen clean

and check the flatness and perpendicularity of the specimen. Taking the side of the specimen

as the bearing surface, the concrete cube compression test was carried out. A steel plate was

added between the test plate and the specimen, and a steel ball seat was placed between the

lower plate and the steel plate. Set the loading speed of the testing machine to 0.4MPa /s, and

start the testing machine for testing. When the upper pressure plate was in contact with the

specimen, adjust the ball seat to make the specimen under uniform pressure. The whole test

process was automatically loaded by the host machine, and the failure load was recorded when

the specimen was broken. The test is precisely set to 0.01KN.

The splitting tensile test was carried out by drawing parallel positioning lines at the center

of the two opposite sides of the specimen. Place the fixture in the center of the lower clamping

plate of the testing machine. Then the specimen was centered in the fixture, and finally the pad

was placed in the position of the positioning line of the upper and lower pressure surface of the

specimen. Set the loading speed of the testing machine to 0.035MPa/s, and start the testing

machine to carry out the splitting tensile test. When the upper pressure plate was close to the

specimen, adjust the ball seat to make the specimen under uniform pressure. The whole test

Fig 3. Compressive loading device.

https://doi.org/10.1371/journal.pone.0299149.g003
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process was automatically loaded by the host machine, and the failure load was recorded when

the specimen was broken. The test is precisely set to 0.01KN.

3. Test methods and analysis

3.1. Routine analysis

In line with the data processing guidelines stipulated by the GB-T5008-2019 Standard for Ordi-
nary Concrete Mechanical Properties Test Method, if one of the three recorded values—either

the maximum or minimum—deviates by more than 15% from the median, the maximum and

minimum values are discarded. The remaining median value is then adopted as the represen-

tative strength value for that set of specimens. The calculations for compressive strength, split-

ting tensile strength, and strength gain are conducted according to the protocols detailed in

Table 4.

From the data presented in Table 4, it is evident that the addition of steel fibers leads to a

modest enhancement in the compressive strength of concrete cubes, with an increase of up to

Fig 4. Split-pull loading device.

https://doi.org/10.1371/journal.pone.0299149.g004
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approximately 30%. However, the impact on splitting tensile strength is much more pro-

nounced, with improvements reaching up to 95%. This significant difference is largely due to

the nature of the tensile test, which involves pulling out the fibers, necessitating a greater load

to achieve failure. Despite the relatively modest gains in compressive strength with steel fiber

reinforcement, the failure mode of the concrete is significantly distinct from that of non-fiber-

reinforced matrix concrete. After reaching the peak load, steel fiber-reinforced concrete is

capable of bearing additional load, demonstrating a form of post-crack load-bearing capacity.

Conversely, matrix concrete without fibers typically exhibits a sudden and brittle failure upon

reaching its maximum load.

Fig 5. Steel fiber reinforced concrete mix.

https://doi.org/10.1371/journal.pone.0299149.g005
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3.1.1. Analysis of cube compressive strength test results. Figs 6–8 illustrate the compar-

ative analysis of the cubic compressive strength (ffc) of steel fiber-reinforced concrete,

highlighting the effects of varying the type of steel fibers, their lengths, and their volume frac-

tions, against the compressive strength of ordinary concrete. As depicted in Fig 6, the cube

compressive strength for all three steel fiber-reinforced concretes, with fibers approximately

35 mm in length and at a 1% volume fraction, shows an increase in strength compared to the

matrix concrete. Notably, the milled steel fiber-reinforced concrete exhibits the most substan-

tial enhancement, with a 27% increase as detailed in Table 5. This improvement is attributed

to the unique shape of the milled fibers—radial distortion with hooks and anchor tails at both

ends—facilitating effective stress transfer under compression. However, the shear steel fibers,

characterized by their larger diameter and lower slenderness ratio, contribute less to the com-

pressive strength than the matrix concrete. This outcome suggests that shear steel fibers may

not be optimal for concrete components designed primarily to withstand compressive forces.

Fig 7 reveals that the compressive strength of concrete cubes reinforced with 1% volume frac-

tion of end-hook steel fibers, regardless of their length, was superior to that of the matrix con-

crete. This indicates a consistent beneficial effect of end-hook steel fibers on the compressive

strength of the concrete cubes. As shown in Fig 8, when the 60mm end-hook steel fiber rein-

forced concrete content is 1.5%, the strengthening effect is the best. It can be seen that the steel

fiber has limited effect on the compressive strength of concrete cube. Therefore, it is not rec-

ommended to use high-content steel fiber to improve the compressive strength.

3.1.2. Analysis of splitting tensile strength results. Figs 9–11 show the relationship

between the splitting tensile strength (fft) of steel fiber-reinforced concrete and splitting tensile

strength of ordinary concrete matrix with changes in the steel fiber variety, length, and con-

tent. Fig 9 shows that, when compared to the matrix concrete, the inclusion of steel fibers of

similar lengths at a uniform content level generally enhances the splitting tensile strength

across all fiber types except for shear steel fiber-reinforced concrete. Notably, the shear steel

fibers yield the most significant improvement, with a 49% increase in strength. Meanwhile, as

indicated in Fig 10, the splitting tensile strength for concrete with 1% volume of end-hook

steel fibers of various lengths is considerably higher than that of the matrix concrete. The peak

tensile strength is observed with fibers measuring 50 mm, registering a 90% increase, which

surpasses the performance of the D610 standard. The test findings suggest that the optimal lf/
Dmax ratio, where lf is the fiber length and Dmax is the maximum aggregate size, is 1.25. Fig 11

further illustrates that for 60-mm end-hook steel fiber-reinforced concrete at a 1.5% fiber vol-

ume fraction, the splitting tensile strength reaches its maximum, with the increase rate at 95%.

Table 4. Analysis of compressive and splitting tensile strength test results of specimens.

Different working

conditions

Average compressive strength

fcSF (MPa)

Compressive strength gain ratio

fc
SF/fc

Average splitting tensile

strength

ftSF (MPa)

Split tensile strength gain ratio

ft
SF/ft

F0 30.3 1 2.41 1

J310 28.4 0.94 2.36 0.98

X310 38.4 1.27 3.15 1.31

D310 35.7 1.18 3.58 1.49

D510 39.3 1.30 4.57 1.90

D605 35.0 1.16 3.17 1.32

D610 38.0 1.26 4.10 1.71

D615 39.5 1.31 4.68 1.95

D620 37.5 1.24 3.92 1.63

https://doi.org/10.1371/journal.pone.0299149.t004
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However, at a 2% volume fraction, the incidence of larger unvibrated and uncompacted voids

increases, leading to poor encapsulation of fibers by the cement paste, which detrimentally

affects the splitting tensile strength. Comprehensive analysis of compressive and splitting ten-

sile strengths suggests that the optimal fiber length for low-strength secondary steel fiber-rein-

forced concrete is 50 mm, with a content of 1%. At this specification, the strengthening effect

is observed to be most beneficial. It is advised against using high-volume fractions of steel

fibers as this can lead to clumping issues.

Fig 12 presents the regression analysis results for the splitting tensile strength of three dif-

ferent end-hook steel fiber-reinforced concretes. The analysis highlighted that when the vol-

ume fraction of 60-mm long steel fibers reached 2%, there was a notable formation of fiber

clusters, which led to a reduction in strength. Consequently, to enhance the accuracy of the sta-

tistical analysis, data pertaining to the D620 specimen were excluded. The regression yielded

an influence coefficient (αt) of 0.85 for the splitting tensile strength of end-hook steel fiber-

reinforced concrete. This coefficient is a measure of the effect that the end-hook steel fibers

Fig 6. Relationship between compressive strength and fiber varieties of concrete cube.

https://doi.org/10.1371/journal.pone.0299149.g006
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have on the tensile strength of the concrete. Notably, the calculated αt value of 0.85 exceeds the

influence coefficient of 0.76 recommended by the specification JG-T472-2015 Steel Fiber Rein-
forced Concrete, where the maximum particle size of coarse aggregate is limited to 25 mm. The

implication of these findings is that the tensile strength and toughness of low-strength second-

ary concrete can be significantly improved through the addition of end-hook steel fibers. Fur-

thermore, the actual test values for tensile strength exceeded those of the specified standard

values, suggesting that end-hook steel fibers are particularly effective in enhancing these prop-

erties in concrete.

3.2. Uncertainty analysis

3.2.1. Uncertainty analysis of cube compressive strength results. The compressive

strength is calculated according to Formula (1) of the code:

fc
SF
¼
F
A

ð1Þ

where fcSF denotes the compressive strength of the steel-fiber concrete; F denotes the failure

load of the specimen, and A denotes the bearing area of the specimen. The calculated results

for each specimen group are listed in Table 5.

Figs 13–15 depicts the variability in compressive strength across three types of fiber-rein-

forced concrete specimens. In Fig 13, a comparison between different fiber types within the

concrete matrix highlights the considerable variability in compressive strength of the non-

fiber-reinforced matrix concrete. This variability is attributed to the inconsistent dispersion of

large-particle aggregates within the matrix. In contrast, the milled steel fiber-reinforced con-

crete, which features shorter, flakier fibers, displays a more uniform dispersion, resulting in

lower variability and more reliable compressive strength values. Fig 14 compares the compres-

sive strengths of end-hook fiber-reinforced concrete of varying lengths to that of the matrix

concrete. The results indicate that the addition of fibers tends to reduce the uncertainty in

compressive strength measurements, suggesting a more consistent behaviour of the material

under compressive loads. Lastly, Fig 15 demonstrates that there is a higher degree of uncer-

tainty in the compressive strength when the fiber content is either too low or too high.

Table 5. Compressive strength test results of specimens.

Different working conditions Sample 1

fcSF (MPa)

Sample 2

fcSF (MPa)

Sample 3

fcSF (MPa)

F0 33.7 24.9 30.3

J310 28.5 28.4 28.2

X310 37.7 39.2 38.2

D310 38.2 36.4 32.5

D510 40.2 40.5 37.2

D605 32.9 37.3 34.7

D610 38.1 38.2 37.8

D615 40.7 41.0 36.9

D620 40.0 33.7 38.7

Note: The specimen number F0 indicates the matrix concrete without fiber; D, X, and J denote the end-hook type,

milling type, and shearing type, respectively; for example, D605 indicates that the end-hook-type fiber length is 60

mm and the volume fraction is 0.5% of the specimen; and D310 indicates that the end-hook-type fiber length is 35

mm and volume fraction is 1.0% of the specimen.

https://doi.org/10.1371/journal.pone.0299149.t005
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3.2.2. Uncertainty analysis of splitting tensile strength results. The splitting tensile

strength is calculated according to the standard Formula (2).

ft
SF
¼

2F
pA
¼ 0:637

F
A

ð2Þ

where ftSF denotes the splitting tensile strength of the steel fiber-reinforced concrete, F denotes

the failure load of the specimen, A denotes the area of the splitting surface of the specimen.

The calculated results for each specimen group are listed in Table 6.

Figs 16–18 displays the splitting tensile strengths for three types of fiber-reinforced concrete

samples. In Fig 16, the comparison between various fiber-reinforced concretes and the baseline

Fig 7. Relationship between compressive strength and fiber length of concrete cube.

https://doi.org/10.1371/journal.pone.0299149.g007
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matrix concrete demonstrates a pronounced variability in splitting tensile strength for the

matrix concrete lacking fibers. The introduction of fibers is shown to mitigate this variabil-

ity, leading to a more uniform distribution of strength values. Fig 17 examines the relation-

ship between fiber length in end-hook fiber concrete and splitting tensile strength, relative

to the standard matrix concrete. It is apparent that increasing the length of the fibers tends

to decrease the uncertainty in splitting tensile strength, implying that longer fibers contrib-

ute to a more consistent tensile response in the concrete. Lastly, Fig 18 indicates that both

low and high fiber content levels correspond with greater uncertainty in splitting tensile

strength.

Fig 8. Relationship between compressive strength and fiber content of concrete cube.

https://doi.org/10.1371/journal.pone.0299149.g008
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4. RBF fuzzy neural network prediction model for strength of

secondary steel fiber reinforced concrete

Considering the variable nature of the mechanical properties in steel fiber-reinforced concrete,

solely depending on experimental data fitting is inadequate for providing precise and compre-

hensive compressive and splitting tensile strength values for practical engineering applications.

Consequently, this study employs an enhanced artificial intelligence algorithm model to con-

duct the inaugural predictions of compressive and splitting tensile strength for steel fiber-rein-

forced concrete under uncertain engineering conditions [30].

Fig 9. Relationship between splitting tensile strength and fiber varieties of concrete cube.

https://doi.org/10.1371/journal.pone.0299149.g009
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4.1. RBF model and improvement

In 1988, Bromhead and Lowe applied the RBF into neural network models. Through iterative

interpolation, they established a structured three-layer topology consisting of an input layer, a

hidden layer, and an output layer. The RBF neural network model is distinguished by its orga-

nized architecture, efficient training processes, and robust convergence properties, making it

extensively utilized in addressing nonlinear engineering challenges [31]. The architecture of

the model is depicted in Fig 19.

Fig 10. Relationship between splitting tensile strength and fiber length of concrete cube.

https://doi.org/10.1371/journal.pone.0299149.g010
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When traditional RBF neural networks solve engineering problems, the numbers of input

and output parameters are not strictly set. For example, for RBF neural networks with multiple

inputs and single outputs, the output function can be expressed as follows:

y ¼
XK

k¼1

okφkðxiÞ ð3Þ

where Xi represents each input variable of the network, K denotes the number of neurons in

the hidden layer, ωk represents the interpolation weight of the KTH neuron, and φk denotes

Fig 11. Relationship between splitting tensile strength and fiber content of concrete cube.

https://doi.org/10.1371/journal.pone.0299149.g011
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the corresponding neuron output value. Based on the radial homogeneity principle of the

interpolation distance,

φkðxÞ ¼ expð� kx � mkk=sk
2Þ ð4Þ

where σk and μk denote the training variance and central values of the network model, respec-

tively. Therefore, by combining the above two formulae, the total output expression of the RBF

neural network can be obtained as follows:

y ¼
XK

k¼1

okexpð� kx � mkk=sk
2Þ ð5Þ

A traditional RBF neural network uses the interpolation distance of the radial basis function

to iterate the final output value and achieve certain results in solving general mathematical

problems. However, in view of uncertainties, such as force field distribution and material

Fig 12. Statistical analysis of the splitting tensile strength of steel fiber reinforced concrete.

https://doi.org/10.1371/journal.pone.0299149.g012
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uniformity in practical engineering problems, traditional radial basis function interpolation is

powerless [32,33]. Therefore, to adapt to this uncertainty, the traditional RBF neural network

must be improved as follows:

(1) Fuzzy improvement of central value learning strategy

Through fuzzy clustering analysis, the nonuniform coefficient is fused, and central value

learning is decomposed into several different parts for simultaneous processing to optimise

the Euclidean shortest distance generated during the radial basis function iteration as follows:

~cðxÞ ¼ argmin~rkkxðnÞ � ckðnÞk; k ¼ 1; 2; � � �m ð6Þ

Where ~rk denotes the non-uniform coefficient, and ~cðxÞ denotes the fuzzy matching centre

of the input.

Fig 13. Compressive strength values of concrete with different fibre varieties.

https://doi.org/10.1371/journal.pone.0299149.g013
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Similarly, the policy centre of the radial basis function should be optimised as follows:

~ckðnþ 1Þ ¼
~ckðnÞ þ Z~rk½xðnÞ � ~ckðnÞ�;~ck ¼ ~cðxÞ

~ckðnÞ ;~ck 6¼ ~cðxÞ
ð7Þ

(

(2) Fuzzy improvement of weight learning strategy

Through the gradient descent method, a random forgetting factor was introduced to

improve the training and learning strategies based on the principle of minimising the output

function value to fuzzy-adjust the output weight of the original model. The original objective

Fig 14. Compressive strength values of concrete with different fibre lengths.

https://doi.org/10.1371/journal.pone.0299149.g014

PLOS ONE Compressive and split-tensile strength of secondary steel fiber reinforced concrete based on RBF model

PLOS ONE | https://doi.org/10.1371/journal.pone.0299149 February 29, 2024 19 / 31

https://doi.org/10.1371/journal.pone.0299149.g014
https://doi.org/10.1371/journal.pone.0299149


function can be modified as follows:

minE ¼
1

2

XN

j¼1

bjej
2 ð8Þ

Where βj denotes the random forgetting factor and ej denotes the error signal. Furthermore,

the shortest Euclidean distance generated by the iteration of the radial basis function can be

expressed as follows:

ej ¼ yj �
Xk

i¼1

~o iexpð� kx � mik=si
2Þ ð9Þ

Fig 15. Compressive strength values of concrete with different fibre content.

https://doi.org/10.1371/journal.pone.0299149.g015

PLOS ONE Compressive and split-tensile strength of secondary steel fiber reinforced concrete based on RBF model

PLOS ONE | https://doi.org/10.1371/journal.pone.0299149 February 29, 2024 20 / 31

https://doi.org/10.1371/journal.pone.0299149.g015
https://doi.org/10.1371/journal.pone.0299149


According to the gradient descent algorithm and RBF neural network radial basis function

iterative steps, the gradient function of the width of the neurons in each hidden layer δi, radial

basis function centre ci, and output weight ωi can be expressed as follows:

rdi
FðxÞ ¼

2oi

di
3
φiðkxj � cikÞkxj � cik

2
ð10Þ

rci
FðxÞ ¼

2oi

di
2
φiðkxj � cikÞkxj � cik ð11Þ

roi
FðxÞ ¼ φiðkxj � cikÞ ð12Þ

Aiming at the uncertainty of the project, a random forgetting factor and nonuniform coeffi-

cient are introduced to improve the values of δi, ci, and as follows:

D~d i ¼ Z~ri
2~o i

di
3

XN

j¼1

bjejφiðkxj � cikÞkxj � cik
2

ð13Þ

D~ci ¼ Z~ri
2~oi

di
2

XN

j¼1

bjejφiðkxj � cikÞkxj � cik ð14Þ

D~oi ¼ Z~r i

XN

j¼1

bjejφiðkxj � cikÞ ð15Þ

where η denotes the training rate of network learning, ~r i denotes the non-uniformity coeffi-

cient, and δi denotes the output of the hidden layer neurons.

4.2. Determination of parameters of RBF prediction model

The comprehensive analysis of extensive laboratory experiments and engineering surveillance

of secondary steel fiber-reinforced concrete has revealed that its compressive and splitting ten-

sile strengths are significantly influenced by three factors with notable variability: the type of

steel fiber, length of the fibers, and volume of fibers. Consequently, the input layer of the

enhanced RBF prediction model is designed to accommodate these three principal

parameters.

Table 6. Test results of splitting tensile strength of specimens.

Different working conditions Sample 1

ftSF (MPa)

Sample 2

ftSF (MPa)

Sample 3

ftSF (MPa)

F0 2.62 1.94 2.41

J310 2.53 2.26 2.28

X310 2.84 3.23 3.37

D310 3.76 3.43 3.54

D510 4.67 4.57 4.47

D605 3.57 3.04 2.90

D610 3.75 4.38 4.18

D615 4.48 4.79 4.78

D620 3.60 4.01 4.13

https://doi.org/10.1371/journal.pone.0299149.t006
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The compressive strength and splitting tensile strength constitute the foundational mechan-

ical characteristics of concrete, serving as crucial indicators for assessing the load-bearing

capacity and crack resistance of secondary steel fiber-reinforced concrete in structural engi-

neering. In this investigation, an advanced RBF fuzzy stochastic prediction model has been

developed to accurately forecast the essential mechanical properties of secondary steel fiber-

reinforced concrete, considering the uncertain variability present in real-world engineering

scenarios. Thus, the output layer parameters of the refined RBF prediction model are desig-

nated as the compressive and splitting tensile strengths.

According to the existence theorem of the Kolmogorov neural network mapping, the

model can approximate any function when the number of hidden layer neurons is 2m+1 (m
denotes the number of input layer parameters). Therefore, according to the actual situation of

the improved RBF model in this study, it is more appropriate to set the number of hidden-

layer neurons to seven [34,35].

Fig 16. Splitting tensile strength values of concrete with different fibre varieties.

https://doi.org/10.1371/journal.pone.0299149.g016
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5. Rresults of project prediction

5.1. RBF fuzzy neural network engineering prediction

To accurately determine the compressive strength and splitting tensile strength of secondary

steel fiber-reinforced concrete for engineering applications, this study considered a variety of

steel fibers in terms of type, length, and volume used in hydraulic mass concrete projects across

East China as input variables. Utilizing a trained RBF neural network model, a fuzzy random

estimation was conducted for the mechanical properties of secondary steel fiber-reinforced

concrete [36]. The forecast outcomes are documented in Tables 7 and 8, with corresponding

visualizations of RBF prediction results displayed in Figs 20 and 21. The learning rate for the

network was established at 0.2, the forgetting factor at 0.17, and the training objective for error

was set below 10%. To preserve the universality of the model’s input variables, steel fibers were

Fig 17. Splitting tensile strength values of concrete with different fibre lengths.

https://doi.org/10.1371/journal.pone.0299149.g017
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categorized numerically wherein the cutting type of the steel fiber was set to one, milling type

was set to two, and end-hook type was set to three.

5.2. Analysis of prediction effect

Analysing the data from Tables 6 and 7, along with the insights from Figs 20 and 21, it is evi-

dent that the improved RBF fuzzy neural network, after training with sample data from steel

fiber reinforced concrete, provides predictions for both compressive strength and splitting ten-

sile strength that are more aligned with values measured in engineering practice than those cal-

culated using standard formulas. The prediction error of the model is maintained below 10%.

This demonstrates that the model has effectively captured the uncertain relationship between

the input factors and the output properties, and thus, it can be reliably utilized to forecast the

compressive strength and splitting tensile strength of secondary steel fiber-reinforced concrete

in practical engineering scenarios.

Fig 18. Splitting tensile strength values of concrete with different fibre content.

https://doi.org/10.1371/journal.pone.0299149.g018
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Fig 19. RBF neural network.

https://doi.org/10.1371/journal.pone.0299149.g019

Table 7. Results of training and learning of prediction model for compressive strength of secondary steel fiber reinforced concrete.

ID Input parameter Predicted value and error

Steel fiber variety Fiber length (m) Fiber content (%) Predicted compressive strength (MPa) Compressive strength measured value (MPa)

Error (%)

1 Shear type (1) 38 0.5 24.18 23.13 4.54

2 Shear type (1) 38 1 26.77 25.53 4.86

3 Shear type (1) 38 1.5 28.61 29.02 -1.41

4 Milling type (2) 32 1 32.08 31.04 3.35

5 Milling type (2) 32 1.5 41.32 42.68 -3.19

6 Milling type (2) 32 2 38.95 37.82 2.99

7 End-hooked (3) 35 0.5 30.77 28.75 7.03

8 End-hooked (3) 35 1 35.90 37.70 -4.77

9 End-hooked (3) 35 1.5 38.95 38.08 2.28

10 End-hooked (3) 35 2 46.16 48.51 -4.84

11 End-hooked (3) 40 0.5 31.84 30.67 3.81

12 End-hooked (3) 40 1 36.65 37.09 -1.19

13 End-hooked (3) 40 1.25 39.84 38.56 3.32

14 End-hooked (3) 40 2 37.42 39.92 -6.26

15 End-hooked (3) 50 0.5 35.38 36.07 -1.91

16 End-hooked (3) 50 1 36.29 34.54 5.07

17 End-hooked (3) 50 1.5 44.96 46.09 -2.45

18 End-hooked (3) 50 2 38.88 38.18 1.83

19 End-hooked (3) 60 0.5 36.84 38.86 -5.20

20 End-hooked (3) 60 1 41.75 43.87 -4.83

21 End-hooked (3) 60 1.25 41.96 38.61 8.68

22 End-hooked (3) 60 1.5 42.43 45.01 -5.73

https://doi.org/10.1371/journal.pone.0299149.t007
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5.3. Comparison of algorithm efficiency

The comparative analysis of the improved RBF fuzzy neural network algorithm, conventional

RBF algorithm, and least squares method was conducted to predict compressive strength and

splitting tensile strength, utilizing a dataset of 200 iterations. The results of this comparison are

depicted in Fig 22. The experimental setup was hosted on a platform with the following specifi-

cations: an Intel Core i5-6500 CPU, 128 GB of RAM, an 800 GB hard drive, and a 1000M net-

work card. The operating system used was Windows 10 SP3, and the computations were

performed using MATLAB 2010B as the development environment.

Observations indicate that as the number of iterations increases, the improved RBF fuzzy

neural network algorithm demonstrates faster convergence (increased by 15%) with smaller

error margins (less than 10%). It exhibits superior robustness, efficiency, and convergence

capabilities in comparison to the conventional RBF algorithm and the least squares method.

6. Conclusions

1. The milled steel fibers, owing to their unique shape, enhanced the compressive strength

more effectively than the end-hook steel fibers. The performance of end-hook steel fibers

showed an initial increase in compressive strength with the augmentation of fiber length

and content. Notably, when the fiber length exceeded 50 mm and content surpassed 1%,

the benefit of additional fibers diminished. It was observed that milled steel fiber enhanced

compressive strength significantly more than the end-hook steel fiber. For the end-hook

Table 8. Results of training for prediction model of splitting tensile strength of secondary steel fiber reinforced concrete.

ID Input parameter Predicted value and error

Steel fiber variety Fiber length (m) Fiber content (%) Predicted compressive strength (MPa) Compressive strength measured value (MPa)

Error (%)

1 Shear type (1) 38 0.5 2.09 2.22 -5.86

2 Shear type (1) 38 1 2.54 2.6 -2.31

3 Shear type (1) 38 1.5 3.12 2.86 9.09

4 Milling type (2) 32 1 2.55 2.52 1.19

5 Milling type (2) 32 1.5 3.08 3.28 -6.10

6 Milling type (2) 32 2 3.66 3.98 -8.04

7 End-hooked (3) 35 0.5 3.19 3.36 -5.06

8 End-hooked (3) 35 1 3.82 3.78 1.06

9 End-hooked (3) 35 1.5 4.39 4.09 7.33

10 End-hooked (3) 35 2 5.01 5.38 -6.88

11 End-hooked (3) 40 0.5 3.93 3.68 6.79

12 End-hooked (3) 40 1 4.5 4.64 -3.02

13 End-hooked (3) 40 1.25 4.29 4.55 -5.71

14 End-hooked (3) 40 2 4.86 5.13 -5.26

15 End-hooked (3) 50 0.5 3.78 4.09 -7.58

16 End-hooked (3) 50 1 4.5 4.2 7.14

17 End-hooked (3) 50 1.5 4.87 4.93 -1.22

18 End-hooked (3) 50 2 5.56 6.07 -8.40

19 End-hooked (3) 60 0.5 4.23 4.01 5.49

20 End-hooked (3) 60 1 4.40 4.04 8.91

21 End-hooked (3) 60 1.25 5.31 5.41 -1.85

22 End-hooked (3) 60 1.5 4.89 5.11 -4.31

https://doi.org/10.1371/journal.pone.0299149.t008
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steel fiber, the compressive strength initially rose with increments in fiber length and con-

tent, yet this trend reversed beyond certain thresholds. Specifically, a fiber length greater

than 50 mm and a content exceeding 1% resulted in diminishing returns regarding addi-

tional fiber enhancements.

2. The inclusion of steel fibers resulted in a pronounced improvement in splitting tensile

strength as opposed to compressive strength. This enhancement initially increased with the

addition of longer fibers and higher dosages but eventually plateaued and declined. Optimal

reinforcement was achieved with fibers measuring 50 mm in length and with lf/Dmax ratio

of 1.25 for the given dosage. In comparison, when the fiber content was at 1.5% and the

length at 60 mm, the performance gains were less notable. In concrete of lower strength

grades, the failure mode often involves the pulling out and rupture of fibers, thus the influ-

ence of fiber length and dosage on the mechanical properties is more pronounced.

Fig 20. Analysis of compressive strength prediction effect of RBF model.

https://doi.org/10.1371/journal.pone.0299149.g020
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3. Considering the variables of steel fiber type, length, and content, the compressive and split-

ting tensile strengths of concrete exhibit considerable variability. To address this, an

enhanced RBF fuzzy neural network prediction model was developed by refining the learn-

ing strategies for central value and weight adjustments. This model uses the type, length,

and content of steel fibers as input variables and outputs predicted values for compressive

and splitting tensile strength. The establishment of this RBF fuzzy neural network model

offers a novel approach for analysing the uncertain characteristics of the mechanical

strengths of secondary steel fiber-reinforced concrete.

4. The RBF fuzzy neural network model was employed to forecast the compressive and split-

ting tensile strengths of steel fiber-reinforced concrete. The predictive convergence rate of

the model is increased by 15%, accuracy was corroborated by a less than 10% deviation

between forecasted and actual measurements, which surpasses the precision of

Fig 21. Analysis of splitting tensile strength prediction effect of RBF model.

https://doi.org/10.1371/journal.pone.0299149.g021
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conventional formulas. Moreover, the refined algorithm of the model demonstrates high

efficiency and accuracy, offering reliable technical backing for the secure implementation

of substantial steel fiber concrete ventures, including rock anchor beams and similar

constructions.

5. Since the test data of secondary steel fiber reinforced concrete is not comprehensive

enough, the RBF fuzzy neural network model has not fully utilized the advantages of predic-

tion. Next, the model will be further optimized by supplementing test data under different

engineering conditions and citing literature data under similar conditions.
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Fig 22. Comparison chart of algorithm efficiency.

https://doi.org/10.1371/journal.pone.0299149.g022
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