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Abstract

Depression is a serious mental health disorder affecting millions of individuals worldwide.

Timely and precise recognition of depression is vital for appropriate mediation and effective

treatment. Electroencephalography (EEG) has surfaced as a promising tool for inspecting

the neural correlates of depression and therefore, has the potential to contribute to the

diagnosis of depression effectively. This study presents an EEG-based mental depressive

disorder detection mechanism using a publicly available EEG dataset called Multi-modal

Open Dataset for Mental-disorder Analysis (MODMA). This study uses EEG data acquired

from 55 participants using 3 electrodes in the resting-state condition. Twelve temporal

domain features are extracted from the EEG data by creating a non-overlapping window of

10 seconds, which is presented to a novel feature selection mechanism. The feature selec-

tion algorithm selects the optimum chunk of attributes with the highest discriminative

power to classify the mental depressive disorders patients and healthy controls. The

selected EEG attributes are classified using three different classification algorithms i.e.,

Best- First (BF) Tree, k-nearest neighbor (KNN), and AdaBoost. The highest classification

accuracy of 96.36% is achieved using BF-Tree using a feature vector length of 12. The pro-

posed mental depressive classification scheme outperforms the existing state-of-the-art

depression classification schemes in terms of the number of electrodes used for EEG

recording, feature vector length, and the achieved classification accuracy. The proposed

framework could be used in psychiatric settings, providing valuable support to

psychiatrists.
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1 Introduction

Depression refers to a complex and multifaceted mental health disorder that can affect human

health. Depression arises from a persistent deficiency of hormones in the human brain referred

to as “dopamine,” which plays a crucial role in various positive processes within the human

brain, including self-balance and motivation. Depression has varying degrees of intensity,

ranging from mild to moderate to severe [1]. Depression leads to severe health issues like sleep

disorders, chronic fatigue, weakened immune system, weight fluctuations, and digestive prob-

lems. Depression is a prevalent state impacting individuals of all age groups, genders, and eth-

nicity across the globe. Every year, about 13% of children, 46% of teenagers, and 19% of adults

worldwide suffer from mental illness [2]. As per the statistics reported by World Health Orga-

nization (WHO) in the year 2021, approximately 280 million people worldwide are living with

depression, accounting for 4.4% of the world’s community [3, 4]. By 2023, depression the most

widely spread disease globally, is propelled to be the second highest contributor to transience

and disability.

Emotional, physical, and cognitive well-being is relentlessly influenced by depression [5].

Typical indicators associated with depression include melancholy, diminished enthusiasm or

enjoyment, alterations in eating or sleeping behaviors, trouble in focusing, sensations of insig-

nificance or repentance, and contemplations of self-imposed harm or self-annihilation. Fur-

thermore, the social and professional performance of an individual is also substantially

impaired by continuous exposure to depressive circumstances [6]. This can lead to decreased

time efficiency and increased truancy in the workplace. In addition to these factors, more pro-

longed exposure to depression can trigger the risk of developing other chronic diseases which

can cause economic crises both directly (medical expenses of the treatment) and indirectly

(decreased efficacy of an individual). WHO estimated that stress, depression, and anxiety dis-

orders cost $1 trillion yearly to the global economy due to the severe degradation in the pro-

ductivity of individuals [7].

The primary challenge concerning the recognition of depression lies in the social stigma

related to mental health conditions. Subsequently, a substantial number of individuals under-

going depression fail to receive the best possible treatment. Therefore, the probe of suitable

and efficient schemes to diagnose depression is an evolving area of research. The latest innova-

tions in instrument or sensor technology present new prospects for diagnosing depression.

Depression is frequently accompanied by additional mental health conditions, including anxi-

ety, substance abuse, and eating disorders which can complicate the diagnoses and treatment,

hence necessitating a holistic approach to tackle various conditions concurrently.

The identification of depression characteristically depends on clinical evaluation, including

interviews and questionnaires governed by healthcare professionals. These questionnaires help

mental health specialists gather information about a person’s symptoms, seriousness, and

overall functioning, which aids in making a judgment. Some of the commonly employed ques-

tionnaires include Patient Health Questionnaire (PHQ-9) [8], Beck Depression Inventory

(BDI) [9], Hamilton Rating Scale for Depression (HAM-D) [10], Montgomery-Åsberg

Depression Rating Scale (MADRS) [11], and Geriatric Depression Scale (GDS) [12].

There are numerous physiological sensors that have been investigated for the estimation of

depression. Some of the common physiological measures employed for the recognition of

depression include electroencephalography (EEG) [13], electrocardiography (ECG) [14], heart

rate variability (HRV) [15], galvanic skin response (GSR) [16], actigraphy [17], and speech sig-

nals [18]. Physiological sensors used for analyzing depression offer several compensations over

traditional questionnaires developed by psychologists. In contrast to questionnaires, which

stack on subjective self-reporting, physiological sensors can provide more precise and
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dependable data. Physiological sensors allow for real-time analysis of a person’s physiological

situation. This uninterrupted monitoring can capture fluctuations in physiological parameters

that may indicate the presence or gravity of depression, even when the subject is not deliber-

ately aware of it.

Questionnaires, on the other hand, provide a snapshot of a person’s self-reported indicators

at a specific time instant. Moreover, physiological sensors have the prospective to detect early

signs of depression before the warning sign become evident to the individual or are reported

via questionnaires. This early detection can lead to timely intermediations and prevent the

progression of the condition. Furthermore, questionnaires can be persuaded by various biases

and hence are not capable of accurately communicating one’s feelings. Physiological sensors

evade these biases by directly measuring objective physiological markers, providing a more

robust assessment of a person’s mental state.

EEG signals have several advantages over other physiological indicators when it comes to

the detection of depression. Prior research works have indicated that EEG can be employed as

an effective instrument in the detection and assessment of depression [19–22]. EEG measures

the activity of the brain directly by recording the electrical signals produced by neurons. This

makes it an effective instrument for investigating brain function and spotting irregularities

coupled with depression. Moreover, EEG has a very high temporal resolution, meaning it can

portray variations in brain activity in real-time with millisecond precision [23–25]. This is fun-

damental for sensing rapid fluctuations and dynamics of brain activity connected to emotional

processing, which can be influential in understanding depression. Furthermore, EEG is a non-

invasive procedure that implies placing electrodes on the scalp, yielding it an unharmed and

affluent method for determining brain activity. It does not involve any surgical procedures or

the use of ionizing radiation, contrasting with some other neuroimaging procedures. In terms

of cost, EEG apparatus is reasonably economical compared to other neuroimaging equipment

such as functional magnetic resonance imaging (fMRI) [26]. This makes it handier and cost-

lucrative for large-scale studies and clinical purposes. EEG gadgets can be made compact and

wearable, letting measurements to be recorded beside clinical settings, such as in a patient’s

home or natural setting. This flexibility supports long-term examination and evaluation of

depression symptoms, providing a more thorough estimation of the situation. Over and above

that, EEG data has the potential to be used for personalized solutions. EEG signals can be used

to recognize distinctive patterns or markers coupled with different subtypes of depression or

treatment responses [27]. This can help in adapting treatments to individual patients, leading

to more efficient and personalized intrusions.

Our study proposes an EEG-based mechanism for detecting mental depressive disorder,

utilizing the publicly available Multi-modal Open Dataset for Mental-disorder Analysis

(MODMA). EEG data from 55 participants, collected in the resting-state condition with 3 elec-

trodes, is analyzed. Temporal domain features are extracted through non-overlapping 10-sec-

ond windows and subjected to a novel feature selection mechanism. The algorithm identifies

the most discriminative attributes, crucial for classifying mental depressive disorder patients

and healthy controls. Classification is performed using three algorithms: Best-First (BF) Tree,

k-nearest neighbor (KNN), and AdaBoost. Remarkably, the BF-Tree achieves the highest accu-

racy of 96.36%, surpassing existing state-of-the-art schemes in electrode usage, feature vector

length, and overall classification accuracy.

2 Related work

In the last decade, several techniques have employed EEG signals for the recognition of depres-

sion. A review of the studies conducted for depression detection using EEG signals has been
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presented in [28]. In [1], the authors have conducted a study to classify depression patients

and healthy controls using EEG data from three electrodes. The proposed scheme was able to

distinguish depressed and healthy individuals with an accuracy of 72.25%. A study focusing on

the detection of depression using geometric features of the EEG signals is furnished in [29].

The binary particle swarm optimization algorithm was used for feature selection and an accu-

racy of 98.79% was achieved using the kNN classifier. A depression detection scheme using a

content-based ensemble method (CBEM) for EEG signal and eye movement data is discussed

in [30]. The proposed method was evaluated on two different datasets comprising of data for

36 and 34 subjects, with a resulting accuracy of 82.5% and 92.65%, respectively.

A pervasive approach for depression detection using EEG signals is materialized in [31].

The authors used EEG data recorded in the rest-state as well as under sound stimulations

recorded via using three electrodes. An accuracy of 79.27% is achieved for discriminating

depression patients from healthy subjects using kNN classifiers. Moreover, it was also found

that the absolute power of the theta band was the most significant characteristic for detecting

depression conditions. Another study to examine the long-lasting effect of depression using

EEG signals is put forward in [32]. Linear and non-linear features from the EEG signals were

delivered to the ensemble voting classifier which predicted an accuracy of 82.55%. A depres-

sion classification mechanism using spatial features from the EEG data in response to a cogni-

tive task consisting of positive and negative emotional facial expressions is described in [33].

The depression classification accuracy of 84% and 85.7% is achieved for positive and negative

stimuli, respectively.

A machine learning framework for major depressive disorder using EEG signals is shown

in [34]. The authors of the study were able to reach an accuracy of 83.3% for depression classi-

fication using the kNN classifier. A deep neural network-based classification framework for

classifying depression is portrayed in [35]. An accuracy of 93.5% and 96.0% is achieved using

the features from the left and right hemispheres, respectively. A seven-electrode EEG-based

study aimed at the detection of depression in response to positive emotion-eliciting images is

discussed in [36]. The core idea of the study was to establish the fact that depression is associ-

ated with blunted positive emotions and there would be a significant difference between EEG

data of healthy and depressed individuals which would help in depression classification. The

highest accuracy of 83.64% is achieved using a conformal kernel support vector machine

classifier.

A cross-subject depression classification scheme using non-linear features of EEG signals

recorded in the eye-open and eye-closed state is presented in [37]. A classification accuracy of

94.03% is achieved by support vector machine classifier using the fusion of features extracted

from the EEG recorded in the eye-open and eye-closed state. A spatiotemporal feature extrac-

tion approach for diagnosing depression using EEG signals is debated in [38]. Convolutional

Neural Network (CNN) and Gated Recurrent Unit (GRU) were engaged to extract the features

from the recorded EEG data and an accuracy of 89.63% is attained for the proposed frame-

work. A 1D-CNN and GRU network-based deep learning model has been developed for

depression detection using EEG data in a study conducted in [39]. An accuracy of 99.33% and

97.98% is achieved for depression detection on a public and private EEG-based dataset,

respectively.

In most of the studies available in the literature, the procedure of gathering EEG data uti-

lizes caps and headsets that had a substantial number of electrodes placed closely together.

This crowded arrangement of electrodes leads to a huge computational burden when treating

the acquired data, rendering it impractical for everyday use. Most studies cited in available lit-

erature take on datasets that were gathered by the researchers themselves and are not open to

the public for further research purposes. In this study, we have employed a publicly available
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EEG-based MODMA (A multi-modal open dataset for mental-disorder analysis) dataset avail-

able at http://modma.lzu.edu.cn/data/index/ for our analysis. The MODMA dataset encom-

passes resting-state EEG data collected from 55 participants (29 healthy and 26 depressed

individuals), using three frontal electrodes. This paper aims at the classification of recorded

EEG signals for mental depressive disorder patients and healthy controls. Furthermore, the

study delves into inspecting the impact of feature selection to improve the capability of the

proposed system to discriminate between healthy and depressed individuals. A set of twelve

temporal features is derived from the captured EEG data. Subsequently, a correlation-based

approach is exercised to opt for the most appropriate subset of features by performing channel

and feature selection. To the best of our knowledge, there has not been any EEG-based

research that has inspected the influence of temporal domain characteristics on the wearable

3-electrode EEG MODMA dataset. The primary advancements brought about by this research

are,

1. A framework to distinguish between individuals who are mentally healthy and those who

are experiencing depression by analyzing the temporal domain features of the EEG signals

obtained during a resting state is developed.

2. The effects of the feature selection technique specifically designed for human depression

detection using EEG signals classification are examined.

The rest of the paper is constituted as follows. Section III explains the important stages of

the proposed framework for distinguishing between mentally healthy individuals and those

with depression. In Section IV, the experimental consequences and performance evaluations

of the proposed method are presented. Section V offers a comparative analysis of the achieved

results with the existing cutting-edge approaches found in previous research. Finally, Section

VI concludes the paper along with future work.

3 Proposed methodology

Fig 1 presents the depression detection framework developed in this study. It encompasses

four phases, namely pre-processing, feature extraction, feature selection, and classification.

The details regarding each of these blocks are expanded in the sub-sections below.

3.1 EEG signal acquisition

The proposed depression classification framework is based on MODMA [40], which is a pub-

licly available EEG dataset. Although we did not collect the EEG data ourselves, the subsequent

subsections provide comprehensive explanations of the data acquisition process for the sake of

completeness. The choice of dataset for the proposed depression classification scheme is

mainly motivated by the existing literature citing the association of frontal area of the brain

with the psychological activities like thoughts, emotions, anxiety, stress and depression [41–

45] and the idea to keep the number of electrodes to a minimum value, focusing on improve-

ment of the classification accuracy of the existing depression classification schemes. In one of

the classical studies regarding functional lobe function and dysfunction, it has been reported

that depression is most closely related to frontal lobe of the brain [46]. Another study pre-

sented in [47], reported the fact that there exists a relationship between the pre-frontal EEG

electrodes and depression diagnoses. Furthermore, a sizable number of studies available in the

literature have advocated the fact that frontal EEG electrodes play an important role in diagno-

ses of mental depressive disorders [48–50]. Therefore, Fp1, Fp2 and Fpz electrode signals have

been extensively used for the diagnoses of depression. Fp1 and Fp2 are located on the left and

right side of the forehead, respectively where they are positioned between the front and polar
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Fig 1. An illustration of the proposed EEG-based mental depressive disorder detection framework.

https://doi.org/10.1371/journal.pone.0299127.g001
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regions of the brain. However, FpZ is positioned at the midline of the forehead i.e., it is located

between Fp1 and Fp2, representing the central frontal region of the brain.

3.1.1 Participants. A total of 55 participants which included 26 (15 males and 11 females)

subjects who have been diagnosed with depression and 29 (19 males and 10 females) subjects

who are healthy were recruited for the experiment. Both the depressed and normal partici-

pants belonged to the age bracket of 18-53 years. None of the participants were consuming any

medicine and were right-handed. None of the individuals participating in the experiment had

any medical or neurological disease. Furthermore, the participants were told to abstain from

coffee for at least 2 hours and from alcohol for at least 24 hours prior to the experiment. Prior

to EEG recording, all participants received detailed information regarding the objectives and

protocols of the experiment for data acquisition. Furthermore, all experimental procedures

were steered in compliance with pertinent rules and regulations. Written informed consent

was obtained from all participants prior to the experiment. The study design were approved by

the local Ethics Committee for Biomedical Research at the Lanzhou University Second Hospi-

tal in accordance to the Code of Ethics of the World Medical Association (Declaration of

Helsinki).

3.1.2 Experimental protocol. The dataset embraced for the current study consists of clini-

cally diagnosed depression patients and normal healthy individuals. The patients whose EEG

data has been acquired have been carefully selected by the professional psychiatrists in the hos-

pital. EEG data of the participants were recorded in rest-state using a custom-designed headset

consisting of three electrodes i.e., Fp1, Fpz, and Fp2. Unlike traditional electrodes, the ones

used in this study were dry and did not require the application of conductive gel at frequent

intervals during data recording. The selection of these electrodes was persuaded by the strong

connection of emotional processes to the pre-frontal region of the human brain. Furthermore,

these electrodes were positioned in a location on the scalp that was not obstructed by the hair,

thus ensuring a high-quality EEG signal. In addition to these three electrodes, a reference is

also needed for the optimal recording of the EEG signals. This reference electrode is placed on

the mastoid position in this study. The mastoid is a bone positioned behind the ear, and it is

part of the temporal lobe. This mastoid bone is frequently employed as a reference point for

the EEG electrodes. Electrodes placed on the mastoid aids to establish a reference for recording

the brain activity. This reference is required to measure the voltage differences among different

brain regions in a precise manner [51]. To curtail the prospective effect of eye movement on

the gathered EEG data, the participant’s eyes were deliberately closed right through the record-

ing process. Additionally, a cautious attempt was made to preserve coherent lighting condi-

tions to lower the influence of visual stimuli on brain activity. Fig 2 shows the electrode

placement for Fp1, Fpz, and Fp2 according to 10-20 electrode positioning system.

3.2 Pre-processing

Pre-processing of EEG signals is a critical stride in investigating and interpreting human brain

activity. It implicates a series of techniques to eliminate noise, artifacts, and other unnecessary

components from the raw EEG data, allowing for better scrutiny and analysis of the underlying

brain signals. It consists of two steps i.e., noise removal and segmentation. Average reference

was applied by computing the average of all electrode signals and subtracting it from each elec-

trode’s signal. This average reduced common noise across the electrodes. Moreover, a notch

filter of 50 Hz is applied to the recorded EEG signals to remove power-line interference caused

by electrical sources. The choice of notch filter of 50 Hz to curtail powerline interference in the

recorded EEG signal is originated from the fact that the EEG recording of the MODMA data-

set was performed from patients in Lanzhou University Second Hospital, Gansu, China, and
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the frequency of power lines in China is 50 Hz. A similar technique to remove the power line

noise from the MODMA dataset has been employed in depression classification studies in [40,

51, 52]. Furthermore, the EEG data was passed through a third-order smoothing filter to trun-

cate the noisy peaks occurring due to eye blinks and movements, and muscular activity.

MODMA dataset consists of 90 seconds of EEG recording from each of the 55 participants.

However, in the current study, we have only utilized a 40-second chunk of recorded EEG data.

Moreover, we have segmented the data using a 10-second non-overlapping sliding window for

the purpose of feature extraction.

The optimal window size for EEG signals in depression classification varies depending on

the specific study and the features extracted from the data. In one of the studies available in the

literature, a 1.5-second window size was chosen for EEG signals of participants, which pro-

vided the best results in terms of classification accuracy for depression classification [53].

Another study investigated the classification of EEG-emotion signals using wavelet entropy

and support vector machines, achieving an accuracy of 65% for both valence and arousal using

signal segments of 3 to 12 seconds [54]. The mental stress classification scheme presented in

[55] reported an optimum window size of 3-12 seconds. A review of studies on depression

diagnosis using EEG signals found that various window sizes have been used in studies ranging

from 1 to 24 seconds [56]. A window size of 10 seconds has also been reported to achieve good

classification accuracy for depression classification in a range of studies [57, 58]. In our pro-

posed depression classification scheme, we experimented with different window sizes ranging

from 1-12 seconds with a step size of 1. The best results for classifying the depressed and

healthy subjects were achieved using a window segment of 10 seconds which we have reported

in the manuscript.

Moreover, the values of 1-12 shown along the columns in pre-processing part of Fig 1 of

the manuscript depicts the number of features extracted from each of the Fp1, Fp2, FpZ elec-

trode resulting in a total of 12 x 3 = 36 features. On the other hand, the rows showing value of

Fig 2. The positioning of the three electrodes and the portable EEG device designed for collecting pervasive EEG signals.

https://doi.org/10.1371/journal.pone.0299127.g002
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1 to 220 depict the number of instances computed for the experiment. The total number of

participants in this study is 55 and the EEG data from each participant is comprised of 40 sec-

onds. As mentioned earlier, in this study, we have selected a window size of 10 seconds, thus

each participant has 4 chunks of data i.e., 10 seconds x 4 = 40 seconds. Therefore, the number

of instances for 55 participants is 55 x 4 = 220 instances constituting a final feature vector of

dimension 220 x 36 which is used for feature extraction.

3.3 Feature extraction

Next to pre-processing of the EEG data, feature extraction is performed. A set of twelve time

domain statistical features are extracted from each channel of the cleaned EEG signal. These

features include maximum and minimum amplitude, mean, standard deviation, kurtosis,

skewness, peak-to-peak signal value, peak-to-peak time, mean of absolute values of first and

second difference, energy, and entropy. Temporal domain features are often simpler and more

straightforward to interpret. Temporal domain features are more robust to noise and artifacts

present in EEG signals. By focusing on the temporal aspects of the signal, these features may

capture relevant patterns while minimizing the impact of irrelevant noise. Calculating tempo-

ral domain features is generally computationally more efficient than frequency or wavelet

domain analysis. Temporal domain features provide a holistic view of the signal over time,

capturing global characteristics. This can be advantageous in scenarios when the goal is to

identify overall trends or patterns e.g., depression screening. Some of these features have been

employed in studies aimed at the discrimination of healthy and depressive patients using EEG

signals [31, 59]. Furthermore, many of these features have been used in a variety of EEG based

studies which include motor imagery [60], sleep stage classification [61], eye movement classi-

fication [62], and epilepsy detection [63]. The effectiveness of these features has been exhibited

in the classification of various states, leading to the conviction that they can also be valuable in

the classification of depression.

Details about the extracted set of features and their mathematical representation are pro-

duced in the sub-sections below.

3.3.1 Maximum amplitude. The maximum amplitude in an EEG signal corresponds to

the highest value attained by the waveform during a specific time interval. The maximum

amplitude feature can be an effective measure for characterizing the magnitude of brainwave

activity at a certain point in time, and it can provide insights into brain functioning, abnormal-

ities, or specific events of interest in EEG analysis. Mathematically it is represented as,

semax ¼ maxfse½n�g; ð1Þ

where semax signifies the highest recorded value of the EEG signal se[n] acquired by electrode e.

The value of electrode e can have a value of Fp1, Fpz, or Fp2.

3.3.2 Minimum amplitude. The minimum amplitude in an EEG signal refers to the mini-

mal value reached by the voltage or amplitude of the recorded brain waves. The minimum

amplitude feature can be of interest in several settings, such as recognizing specific patterns or

abnormalities in the EEG signal. It can offer insights into the presence of certain brain activi-

ties, abnormalities, or changes in brain states. Mathematically minimum amplitude is repre-

sented by,

semin ¼ minfse½n�g; ð2Þ

where semax signifies the lowest recorded value of the EEG signal se[n] acquired by electrode e.

3.3.3 Mean value. The mean value of an EEG signal is found by computing the average or

arithmetic mean of the voltage values over a precise time interval or within a restricted set of
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data points. It provides a measure of the central tendency of the EEG signal during that phase.

In mathematical terms, the mean value is denoted as,

semean ¼
1

N

XT

i¼1

se½n�; ð3Þ

where semean represents the mean value for EEG data obtained from electrode e, and N is the

total number of samples in a particular time interval.

3.3.4 Standard deviation. The standard deviation is a statistical measure that supplies

information about the variability or dispersion of the signal’s amplitude values. It put a figure

on how much the data points vary from the mean value. Higher standard deviation values

imply larger variability, whereas lower values advocate more coherent or stable brain activity.

In mathematical terms, it is expressed as,

sestd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XT

i¼1

ðse½n� � semeanÞ
2

s

; ð4Þ

where sestd represents the standard deviation value for EEG data obtained from electrode e.
3.3.5 Kurtosis. Kurtosis is a statistical marker that assesses the shape of a distribution. In

the context of EEG signals, kurtosis can be used as a characteristic to illustrate the distribution

of amplitudes or frequencies. A positive kurtosis value specifies a distribution with heavier

tails and a sharper peak, while a negative kurtosis value signifies a distribution with lighter tails

and a flatter peak compared to a normal distribution. EEG signals with high kurtosis may spec-

ify the phantom of abnormal brain activity, whilst signals with low kurtosis may denote more

standard or Gaussian-like brain activity.

seK ¼ E½
½ðse½n� � semeanÞ

4
�

½ðse½n� � semeanÞ
2
�
2
�; ð5Þ

where seK represents the kurtosis value for EEG data obtained from electrode e, and E corre-

sponds to the expected value.

3.3.6 Skewness. Skewness is a statistical property that depicts the asymmetry of a proba-

bility distribution. From the perspective of EEG signals, skewness can grant information about

the shape and symmetry of the signal’s amplitude distribution. Understanding the skewness of

EEG signals can offer insights into the underlying neural activity patterns. Positive skewness

might reveal the occurrence of surges or high-amplitude events, while negative skewness

might imply the domination of low-amplitude activity.

seskew ¼
1

N

XT

i¼1

½
se½n� � semean

sestd
�
3
; ð6Þ

where seskew represents the skewness of the data from electrode e.
3.3.7 Peak to peak signal value. The peak-to-peak signal value is a characteristic fre-

quently used to characterize the amplitude of an EEG signal. The peak-to-peak value is evalu-

ated by finding the absolute difference between the highest and lowest points in a given time

window of the EEG signal. This measure presents an indication of the range of amplitudes

present in the signal during that time interval. The peak-to-peak signal value can offer an

understanding of the overall amplitude of the EEG signal, which can be indicative of the

strength of brain activity during specific events or states. In mathematical terms, it can be
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expressed as.

Sep2p ¼ semax � semin ; ð7Þ

where Sep2p is signal peak to peak value.

3.3.8 Peak to peak time. The peak-to-peak time feature of an EEG signal refers to the

duration between the positive and negative peaks of a single wave or cycle in the signal. It

assesses the time interval from the highest peak to the lowest trough of the waveform. In EEG

analysis, peak-to-peak time can provide valued information about the temporal characteristics

of the brain activity being recorded. By examining the peak-to-peak time, researchers and cli-

nicians can gain insights into the timing and dynamics of neural activity. A mathematical

representation of the peak-to-peak time is given by,

tep2p ¼ tepos � teneg ; ð8Þ

where tep2p represents the peak-to-peak time, and tepos and teneg presents the time at which EEG

signal reaches its positive and negative peak, respectively.

3.3.9 Mean of absolute values of first difference. The mean of the absolute values of the

first difference feature of an EEG signal refers to a measure of the average magnitude of the

changes between sequential samples in the EEG signal. This feature is often used to quantify

the variability in the signal. Mathematically it is represented as,

MADfe
¼

1

N

X
jse½nþ 1� � se½n�j; ð9Þ

whereMADfe
represents the mean of absolute values of first difference.

3.3.10 Mean of absolute values of second difference. The mean of the absolute values of

the second difference feature of an EEG signal can provide information about the overall rate

of change in the signal. The second difference feature of an EEG signal refers to the discrete

second derivative of the signal. Mathematically it is elaborated as,

MADse
¼

1

N

X
jse½n� � 2 ∗ se½n � 1� þ se½n � 2�j; ð10Þ

whereMADse
represents the mean of absolute values of second difference.

3.3.11 Energy. The energy of an EEG signal corresponds to the quantity of signal energy

present within a specific time interval. Higher energy values imply a larger magnitude signal,

which may link to intensified brain activity. The mathematical representation of energy is

given by,

Ee ¼
1

N

XN

i¼1

se½n�; ð11Þ

3.3.12 Shannon entropy. Shannon entropy estimates the average amount of information

or vagueness in a signal. It aims to enumerate the randomness or unpredictability of the EEG

signal. Higher entropy values indicate a more complex or irregular signal. Shannon entropy is

mathematically explained by,

SEe ¼
XN

i¼1

PieðlogðPieÞÞ; ð12Þ
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where SEe is the Shannon entropy for electrode e, and Pie represents the probability of the ith

bin of a particular time interval for electrode e.

3.4 Feature selection

The extracted features are concatenated to compose a feature vector which is then subjected to

a feature selection process using the correlation-based feature selection (CFS) method. CFS is

an algorithm for feature selection to recognize the most significant and useful features for a

given problem. CFS aims to find a split of features that are highly associated with the target

variable while being minimally correlated with each other. The correlation-based feature selec-

tion algorithm aims to achieve an equilibrium between high correlation with the target variable

and low redundancy among the selected features. Selecting a subset of relevant features, can

enhance model performance, mitigate overfitting, and augment interpretability. In the current

study, the feature selection is applied individually to the features extracted from each electrode

of the headset and then the common features among the majority of electrodes are selected for

the purpose of depressive vs normal subject classification. Fig 3 presents the proposed feature

selection methodology for the current study.

The left hemisphere of the brain processes positive emotions, whereas the right hemisphere

processes negative emotions. Since depression belongs to negative emotion, therefore more

features are contributed Fp2 electrode, which is located on the right hemisphere. Individuals

exhibiting greater activity in the right frontal lobe tend to experience more intense negative

emotions compared to those with higher activity in the left frontal lobe [64–66]. In a study

conducted in [67],it has been reported that alpha asymmetry among individuals with major

depression suggests heightened activity in the right parietal lobe compared to the left. Con-

versely, those with “pure” depression exhibit reduced activity in the right parietal lobe. There-

fore, the different feature selection from each of the left and right hemisphere is inline with the

finding of the many existing studies in the literature thus supporting our feature selection

strategy.

3.5 Classification

In our proposed depression detection study, three different classification algorithms are used

for classification which includes k-nearest neighbors, AdaBoost, and Best-First (BF) Tree. A

concise overview of each of the classifiers is elaborated in the sub-sections below.

3.5.1 K-nearest neighbors. The k-NN algorithm is a straightforward, but helpful super-

vised machine learning algorithm used for both classification and regression tasks. It is a non-

parametric algorithm, meaning it makes no assumptions about the underlying data distribu-

tion. The central idea behind the k-NN algorithm is to predict the value of a new data point by

glancing at its k-nearest neighbors in the training dataset. The algorithm works out the dis-

tances amongst the new data point and all the existing data points in the training set and picks

the k closest neighbors. The value of k chosen in this study is k = 3. In literature, the effective-

ness of the kNN algorithm for EEG-based studies has already been established in a wide range

of studies [68, 69].

3.5.2 Adaptive boosting. Adaptive boosting, also known as AdaBoost, is a machine learn-

ing algorithm that is used for classification and regression tasks. It is an ensemble approach

that concatenates multiple weak learners to construct a strong learner. The principal theory

behind AdaBoost is to iteratively train a sequence of weak classifiers on diverse subsets of the

training data. A weak classifier is a model that runs marginally better than a random guess,

such as a decision tree with restricted depth. Each weak classifier is trained by assigning more

weightage to the misclassified samples from the preceding classifiers. AdaBoost gives weights
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to each training sample during training, primarily setting them equally. After each weak classi-

fier is trained, the weights of misclassified samples are raised, while the weights of accurately

classified samples are reduced. This focuses the later weak classifiers on the samples that are

challenging to classify correctly. In the final step, AdaBoost joins the weak classifiers by giving

weights to them based on their performance. The classifiers with higher accuracy are given

more weightage, and their predictions are merged to make the final prediction. The fused clas-

sifier is called the strong learner. AdaBoost classifier has been used in a wide range of EEG-

based mental state classification studies especially depression [32, 70].

3.5.3 Best-First Tree. The Best-First (BF) Tree is a machine-learning algorithm employed

for decision tree induction. It is an expansion of the conventional decision tree algorithm,

which fuses the best-first search approach with the concept of pruning to enhance efficacy and

precision. In the BF-Tree algorithm, the best-first search strategy is utilized to determine the

Fig 3. Feature selection scheme for the proposed mental depressive disorder using EEG signals.

https://doi.org/10.1371/journal.pone.0299127.g003
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arrangement in which the attributes are assessed at each node of the decision tree. At each

node, the algorithm decides on the attribute that gives the highest potential for information

gain or drop in impurity, based on some valuation metric such as entropy or Gini index. The

BF-Tree algorithm also encompasses pruning methods to thwart overfitting and improve the

generalization ability of the decision tree. Pruning involves increasing the decision tree to its

maximum size and then iteratively eliminating nodes that do not impact substantially the over-

all accuracy of the tree. This helps to simplify the tree structure and lower the risk of overfitting

the training data. The BF-Tree algorithm continues the best-first search and pruning proce-

dure up until a stopping criterion is met, such as reaching a certain depth or when further

splitting does not provide significant improvement in the evaluation metric. BF-Tree has been

used in a wide range of EEG-based mental state classification studies in the literature [71–73].

4 Experimental results

This section presents the experimental results for the proposed depression recognition frame-

work using the EEG data recorded in resting state condition via a three-electrode recording

system.

4.1 Subjects labeling

The dataset primarily contains data from individuals diagnosed with clinical depression and

corresponding individuals with no depression, who serve as the healthy group. The choice of

patients was done meticulously by expert psychiatrists in hospital settings to warrant precise

diagnoses. Indoor and outdoor patients diagnosed with major depressive disorder (MDD)

were collected from Lanzhou University Second Hospital in Gansu, China, based on recom-

mendations from clinical psychiatrists. On the other hand, healthy participants were recruited

using advertisements. The MDD patients were identified using a structured Mini-Interna-

tional Neuropsychiatric Interview (MINI) instrument that has been extensively used for the

diagnosis of depression and has been established as an effective criterion for major depression

diagnosis according to the Diagnostic and Statistical Manual of Mental Disorders [74]. More-

over, as a second filtering criterion to choose the patients of depression, Patient Health Ques-

tionnaire [75] was used to assess the depression level, and a scoring threshold of 5 was set for

consideration as a patient going through depressive disorders. Moreover, even if a subject ful-

fills the criterion for being depressive, that subject was excluded from the study if going

through a cerebral ailments or brain organ impairment and having a serious physical disease

and severe suicidal inclinations. Moreover, the healthy subjects were also verified for any fam-

ily history of mental disorders, and they were excluded from the study if any such condition

occurs. Based on these criteria, EEG data of 55 subjects which include 26 subjects (15 males

and 11 females belonging to the age bracket of 16–56-year-old) diagnosed with depression, as

well as 29 healthy subjects (19 males and 10 females within the age brackets of 18–55-year-old)

was recorded.

4.2 Feature selection

In the proposed study, the feature selection is achieved using the CFS method. The CFS

method is applied to the extracted feature vector from each electrode (i.e., Fp1, Fpz, and Fp2)

individually to obtain the selected subset of features. Table 1 presents the selected subset of fea-

tures obtained from each EEG electrode. It can be observed from the table that for Fp1, the

CFS algorithm selects 3 out of 12 features i.e., minimum amplitude, mean of absolute values of

first and second difference. Similarly, for the Fpz electrode, the selected 4 features out of 12

include maximum and minimum amplitude and mean of absolute values of the first and
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second difference. Moreover, for the Fp2 electrode, the selected features include maximum

amplitude, mean of absolute values of first and second difference, and average peak-to-peak

signal value.

Next to this, a strategy is developed to select the common features based on the majority

rule. i.e., the features appearing in the selected feature subset of at least two out of three elec-

trodes. It can be observed from Table 1 that maximum and minimum amplitude and mean of

absolute values of first and second difference are the features that are common in the selected

feature subset of at least 2 out of 3 electrodes. Table 2 shows the common features obtained

using the proposed strategy. The proposed feature selection strategy is compared to the early

feature fusion (i.e., combining the features from all the electrodes and then performing feature

selection to it) and late feature fusion (i.e., applying feature selection to features of all the elec-

trodes individually and then fusing the selected features) schemes and superior results was

achieved using the proposed feature selection mechanism.

Furthermore, the features which have been selected in the proposed depression screening

framework using our feature selection strategy have been tested for statistical significance by

applying t-test on each feature for depressed and non-depressed groups. The p-value obtained

from the t-test results confirmed that 11 out of the selected 12 features are statistically signifi-

cant having a p-value < 0.05. The violin plot for each feature shown in Fig 4 shows the statisti-

cal significance in the visual manner, confirming the results obtained from t-test.

4.3 Classification performance

Classification among depressed and healthy individuals is performed using three different clas-

sification algorithms which include BF-Tree, kNN, and AdaBoost. The classification results of

Table 2. Common EEG features identified from the selected subset of features for each electrode.

Features Mathematical Representations

Maximum Amplitude semax
¼ maxfse½n�g;

Minimum Amplitude semin
¼ minfse½n�g;

Mean of absolute values of first difference MADfe
¼ 1

N

P
jse½nþ 1� � se½n�j

Mean of absolute values of second difference MADse
¼ 1

N

P
jse½n� � 2 ∗ se½n � 1� þ se½n � 2�j

https://doi.org/10.1371/journal.pone.0299127.t002

Table 1. Selected features for each individual EEG electrode obtained from correlation-based feature selection

technique.

EEG Electrodes Selected Subset of Features

Fp1 Minimum Amplitude.

Mean of absolute values of first difference.

Mean of absolute values of second difference.

Fpz Maximum Amplitude.

Minimum Amplitude.

Mean of absolute values of first difference.

Mean of absolute values of second difference.

Fp2 Maximum Amplitude.

Mean of absolute values of first difference.

Mean of absolute values of second difference.

Mean Value.

Peak to Peak Signal Value.

https://doi.org/10.1371/journal.pone.0299127.t001
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the proposed scheme are computed using Weka 3.8 tool [76]. It is imperative to state that our

suggested approach is subject agnostic, meaning the training and testing data are not from the

same subject. The performance of the classification algorithms is evaluated based on metrics of

accuracy, precision, recall, F-measure, and kappa statistics. Accuracy is a metric used to evalu-

ate the rightness of a model’s predictions. It is expressed as the ratio of the number of correct

predictions to the total number of predictions made by the model. Precision enumerates the

proportionality of correctly predicted positive instances out of the total instances that the

model projected as positive. Recall assesses the percentage of true positive predictions i.e., cor-

rectly classified positive instances out of all actual positive instances in the given data. F-mea-

sure is calculated as the harmonic mean of precision and recall. It merges precision and recalls

into a single score. The F-measure goes from 0 to 1, where a value closer to 1 signifies reliable

performance in terms of both precision and recall score. Kappa statistics also branded as

Cohen’s Kappa is an evaluation parameter used to gauge the agreement among predicted and

actual class labels while considering the agreement that could appear by chance alone.

Table 3 showcases the classification performance of the proposed depression classification

framework using three different machine learning classifiers i.e., kNN, AdaBoost, and BF-Tree

classifier. The results are evaluated in four varying feature combinations: no feature selection,

early feature fusion-based feature selection, late feature fusion-based feature selection, and uti-

lization of common features after feature selection. Classification using all features refers to a

situation in which classifiers are applied to complete feature vector which in our case has a

Fig 4. Volin plot for the selected common features obtained from the EEG data of the three electrodes i.e., Fp1, FpZ, Fp2.

https://doi.org/10.1371/journal.pone.0299127.g004
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dimension of 220 x 36, where 220 are the number of instances and 36 are the number of fea-

tures extracted from all the electrodes. This feature combination can be referred to as No Fea-

ture Selection. Secondly, Feature Selected with Early Feature Fusion means that first the

features are extracted from each electrode and then they are combining into a single complete

feature vector which in our study has a dimension of 220 x 36 and then feature selection is

applied to this complete feature vector. The features selected after feature selection are sub-

jected to classification. Thirdly, classification using Feature Selected with Late Feature Fusion

means that the features are extracted from each electrode and feature selection is applied to

each electrode to select the optimum subset of features. Then the selected features are fused/

combined to construct a feature vector on which classification is performed. Common Fea-

tures after Feature Selection refers to a setting in which first, the feature selection is performed

on the extracted features from each electrode separately. After getting the selected features

from each electrode, we choose the common set of features occurring in the majority i.e., 2 out

of 3 electrodes and then those features are extracted from each electrode to construct a feature

vector which is passed onto the classification stage.

It can be observed from the table that the best classification results are yielded when the

common features obtained after applying feature selection to EEG data of each electrode are

used with the BF-Tree classifier. An accuracy of 96.36% is achieved for mental depressive dis-

order vs healthy subjects classification using BF-Tree classifier using a feature vector length

(FVL) of 12. Moreover, precision, recall, F-measure value of 0.964, and kappa statistics value of

0.92 are achieved for the proposed scheme. Moreover, we have incorporated a nested cross-

validation scheme to ensure robust model evaluation and avoid potential biases. Table 4 pres-

ents the results of the proposed scheme using nested cross-validation scheme. It can be

observed that a highest classification accuracy of 97.04% is achieved using BF-Tree classifier,

which is comparable to the results obtained from the aggregated results of each cross-valida-

tion fold. These results using nested cross-validation will enhance the validity and reliability of

our proposed scheme. Fig 5 presents the graphical representation of the classification perfor-

mance of the proposed mental depressive disorder scheme in terms of classification accuracy,

F-measure, and kappa statistics evaluation parameters. It can be observed from the figure that

the highest classification accuracy is attained by the BF-tree classifier when common features

obtained after feature selection are utilized.

Table 3. Performance comparison of the proposed depression classification scheme in terms of classifier used, FVL, accuracy, precision, recall, F-measure, and

kappa statistics using 10-fold cross-validation.

Feature Combination Classifier FVL Accuracy (%) Precision Recall F-measure Kappa

All Features BF-Tree 36 81.81 0.81 0.81 0.81 0.63

KNN 36 74.09 0.74 0.74 0.74 0.47

Adaboost 36 78.63 0.79 0.78 0.78 0.56

Feature Selected with Early Feature Fusion BF-Tree 8 94.09 0.94 0.94 0.94 0.88

KNN 8 90.90 0.91 0.90 0.90 0.81

Adaboost 8 76.81 0.77 0.76 0.76 0.53

Feature Selected with Late Feature Fusion BF-Tree 12 92.72 0.92 0.92 0.92 0.85

KNN 12 90.90 0.90 0.90 0.90 0.81

Adaboost 12 76.81 0.77 0.76 0.76 0.53

Common Features after Feature Selection BF-Tree 12 96.36 0.96 0.96 0.96 0.92

KNN 12 91.36 0.91 0.91 0.91 0.82

Adaboost 12 79.09 0.80 0.78 0.79 0.57

https://doi.org/10.1371/journal.pone.0299127.t003
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The classification results are computed using a 10-fold cross-validation method. This

approach requires arbitrarily partitioning the data into k equal segments. During the training

stage, k-1 segments are utilized, while the remaining segment is retained for testing. This pro-

cess is repeated until all segments have been assessed in the testing phase. For this study, a

value of k = 10 was chosen, resulting in the random division of the data into 10 equal sections.

Fig 6 depicts the performance values obtained via a 10-fold cross-validation test, demonstrat-

ing the efficacy of the proposed depression classification scheme.

The confusion matrix is a graphical demonstration of the performance of a classification

model, presenting a table that confirms the number of true positives, true negatives, false

Table 4. Performance comparison of the proposed depression classification scheme in terms of classifier used, feature vector length (FVL), accuracy, precision,

recall, F-measure, and kappa statistics using Nested cross-validation.

Feature Combination Classifier FVL Accuracy (%) Precision Recall F-measure Kappa

All Features BF-Tree 36 81.36 0.84 0.81 0.81 0.63

KNN 36 56.82 0.57 0.57 0.54 0.12

Adaboost 36 75.91 0.79 0.70 0.73 0.51

Feature Selected with Early Feature Fusion BF-Tree 8 94.27 0.98 0.97 0.97 0.9

KNN 8 93.31 0.99 0.99 0.99 0.98

Adaboost 8 77.27 0.80 0.76 0.76 0.55

Feature Selected with Late Feature Fusion BF-Tree 12 95.45 0.96 0.95 0.95 0.91

KNN 12 94.79 0.99 0.99 0.99 0.98

Adaboost 12 77.27 0.80 0.74 0.76 0.55

Common Features after Feature Selection BF-Tree 12 97.04 0.98 0.97 0.97 0.93

KNN 12 95.22 0.99 0.99 0.99 0.98

Adaboost 12 79.09 0.82 0.77 0.78 0.58

https://doi.org/10.1371/journal.pone.0299127.t004

Fig 5. Performance comparison of the proposed depression classification scheme utilizing the classification accuracy, f-measure, and kappa statistics

evaluation parameter.

https://doi.org/10.1371/journal.pone.0299127.g005
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Fig 6. The graphs of the BF-Tree classification model using 10-fold cross-validation for the EEG signals recorded

in the rest-state for (a) without feature selection (b) feature selection with early feature fusion (c) feature selection

with late feature fusion (d) common features after feature selection.

https://doi.org/10.1371/journal.pone.0299127.g006

PLOS ONE A machine learning based depression screening framework using temporal domain features of the EEG signals

PLOS ONE | https://doi.org/10.1371/journal.pone.0299127 March 27, 2024 19 / 29

https://doi.org/10.1371/journal.pone.0299127.g006
https://doi.org/10.1371/journal.pone.0299127


positives, and false negatives. The confusion matrix allows for the calculation of diverse sets of

evaluation metrics such as accuracy, precision, recall (sensitivity), specificity, and F-measure.

It provides insights into the model’s ability to correctly classify instances and helps in under-

standing the types of errors yielded by the model. Fig 7 presents the confusion matrices for the

three classifiers i.e., BF-Tree, KNN, and AdaBoost classifier. The results are shown for all four

feature combinations as stated in Table 3. It can be observed from the confusion matrices that

BF-Tree realizes better results as compared to KNN and AdaBoost classifier for all the feature

combinations. However, the proposed common feature extraction after the feature selection

approach yields the best classification results for all the classifiers among all the feature combi-

nations techniques. Moreover, BF-Tree has the lowest number of misclassifications for healthy

and mental depressive disorder patients. For the healthy controls, out of 116 instances, 111

were correctly classified and only 5 instances got misclassified. Similarly, for the patients diag-

nosed with mental depressive disorder, 101 out of 104 instances were correctly classified, thus

resulting in only 3 misclassifications thus establishing the effectiveness of the proposed mental

depressive disorder scheme.

The Receiver Operating Characteristic (ROC) Curve is a graphical representation of the

performance of a binary classification model across different discrimination thresholds. It

plots the true positive rate (sensitivity) against the false positive rate (1—specificity) for various

threshold values. The ROC curve typically rises steeply at the beginning, indicating that at

lower thresholds, the true positive rate increases while the false positive rate is also low. As we

move toward the right, the trade-off between sensitivity and specificity becomes more pro-

nounced. Ideally, we want the ROC curve to be as close as possible to the top-left corner of the

plot. This signifies high sensitivity and low false positive rate. Moreover, a higher area under

the ROC curve (AUC-ROC) generally indicates better model performance. The area under the

ROC curve is a single value that summarizes the overall performance of the model across all

possible thresholds. A model with an AUC-ROC of 1.0 is perfect, while a model with an

AUC-ROC of 0.5 performs no better than random chance. Fig 8 presents the ROC curve of the

BF-Tree, KNN, and AdaBoost classifier for our proposed depression screen framework. It can

be observed from the ROC curve that BF-Tree classifier has the highest true positive and the

lowest false positive rate as compared to KNN and AdaBoost classifier, depicting the effective-

ness of the proposed scheme. Moreover, a comparison of the area under the curve (AUC) for

all the classifiers depicts the highest value of AUC of 0.98 for the BF-Tree classifier as com-

pared to KNN and AdaBoost models.

5 Comparison and discussion

The proposed study presents a mental depressive disorder detection scheme using EEG data

recorded in the resting-state condition. This section presents the comparative analysis of the

proposed scheme with the state-of-the-art methods available in the recent literature. Table 5

illustrates a comparative examination of the proposed approach and the currently leading

depression classification approaches that utilize EEG signals. The studies chosen for the pur-

pose of comparison includes [1, 29, 30, 32, 37–39, 56, 77, 78]. These mental depressive disorder

classification studies can be alienated into two categories i.e., mental depressive disorder detec-

tion based on MODMA dataset [1, 38, 39, 56, 78] or other public or private datasets [29, 30,

32, 37, 77]. Our proposed scheme utilized the MODMA dataset recorded using a 3 electrodes

headset best suited for pervasive applications in the resting-state condition hence for a fair

comparison we have chosen a significant number of studies that utilized the MODMA dataset.

The comparison of the proposed scheme with the available mental depression detection
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Fig 7. Confusion Matrices for BF-Tree, KNN, and AdaBoost classifier for (a) without feature selection (b) feature

selection with early feature fusion (c) feature selection with late feature fusion (d) common features after feature

selection.

https://doi.org/10.1371/journal.pone.0299127.g007
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schemes are conducted in terms of classifiers used, number of participants, number of EEG

electrodes, feature vector length, and the accuracy achieved.

Comparing the number of participants for the studies which utilize the MODMA dataset to

our proposed scheme, our study has 55 participants whereas, the maximum number of partici-

pants in MODMA-based studies in the literature is 53. However, the depression detection

studies conducted on other public [37, 77] and private [30] datasets have 49, 12, and 70 sub-

jects respectively. The major limitation of these datasets with a higher number of subjects are

not publicly available for future research. Furthermore, analyzing the number of electrodes uti-

lized for depression detection, it can be observed that our proposed scheme utilizes EEG data

from only 3 electrodes, whereas all other MODMA dataset-based studies have utilized a larger

number of EEG electrodes except [1], which involves EEG data of 3 electrodes. However, it

can be observed that our proposed scheme achieves a higher depression classification accuracy

of 96.36% as compared to the study conducted in [1] which has a classification accuracy of

72.25%. Moreover, for all the other depression detection studies conducted on the MODMA

dataset, the highest classification accuracy of 99.32% is achieved using EEG data from 128 elec-

trodes, which in contrast to our proposed scheme is significantly computationally intensive

Fig 8. Receiver operating characteristic for BF-Tree, KNN, and AdaBoost classifier for the proposed depression screening framework.

https://doi.org/10.1371/journal.pone.0299127.g008
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with only a slight increase in depression detection accuracy. Furthermore, the highest depres-

sion classification accuracy of 98.79% is achieved using a private EEG dataset comprising of 44

subjects and 2 electrodes in a study conducted in [29].

In terms of feature vector length, our proposed scheme employed only 12 features from 3

EEG electrodes whereas all other earlier studies have used feature vector length greater than 12

except the studies conducted in [1, 38, 56]. It could be observed from the results of the study in

[1], that even though the feature vector length used for classification was 12 with 3 electrodes

but the classification accuracy achieved was only 72.25% which is significantly lower than our

proposed methodology. This is because the features used in the proposed depression screening

method are statistically significant for depression identification as indicated by the p-values of

the t-test and Violin plot presented in Fig 4. Therefore, these features yield a better depression

classification performance as compared to the earlier studies. Moreover, another study dis-

cussed in [38] achieved a depression classification accuracy of 99.33% by utilizing a feature

vector length of 12 with 128 EEG electrodes. The classification accuracy of this study is higher

as compared to our proposed scheme but with a huge number of EEG electrodes thus signifi-

cantly increasing the computational complexity of the scheme whereas our proposed system

was able to achieve an accuracy of 96.36% with only 3 EEG electrodes. Furthermore, another

study expounded in [56] developed a feature vector of 10 by utilizing the EEG data from 128

electrodes and achieving a depression classification accuracy of 97% which is slightly above the

accuracy of our proposed scheme but with a significantly higher number of EEG electrodes.

We have evaluated the features of our proposed scheme on different datasets mentioned in

Table 5 to assess the generalizability of our approach. There are three different datasets used in

the studies mentioned in Table 5 of the manuscript, which include MODMA, MPHC and Pri-

vate dataset. MODMA is the same dataset which we have used in our study, and the results

obtained for our scheme are highest among all the MODMA dataset-based studies mentioned

in the Table in terms of number of electrodes, feature vector length and number of subjects.

Moreover, we could not obtain the private dataset mentioned in [29, 30, 32] to evaluate the fea-

tures of our scheme on it. However, we assessed the generalizability of our extracted features

on the MPHC dataset. Evaluating the features derived from our proposed scheme on the

MPHC dataset, an accuracy of 90.15% and 88.65% is achieved using BF-Tree classifier with a

Table 5. Performance evaluation of the anticipated scheme with state-of-the-art approaches for human mental depressive disorder classification using EEG.

Ref, Year Classifier Dataset No. of Subjects No. of Electrodes FVL Accuracy

[56], 2023 CNN MODMA 53 128 10 97%

[78], 2023 KNN MODMA 13 13 256 83.96%

[37], 2023 SVM MPHC dataset 49 19 1176 94.03%

[32], 2022 KNN Private Dataset 20 18 162 95%

[38], 2022 CNN MODMA 53 128 - 89.63%

[39], 2022 CNN-GRU MODMA 53 128 12 99.33%

[29], 2021 KNN Private Dataset 44 2 13 98.79%

[30], 2020 CBEM Private Dataset 34 16 304 92.65%

[1], 2020 KNN MODMA 43 3 12 72.25%

Proposed (10-fold), 2023 BF-Tree MPHC 49 3 12 90.15%

Proposed (Nested CV), 2023 BF-Tree MPHC 49 3 12 88.65%

Proposed (10-fold), 2023 BF-Tree MODMA 55 3 12 96.36%

Proposed (Nested CV), 2023 BF-Tree MODMA 55 3 12 97.04%

* CV: Cross-Validation

https://doi.org/10.1371/journal.pone.0299127.t005
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feature vector length of 12 using only 3 electrodes using 10-fold and nested cross-validation,

respectively, whereas in comparison, the study mentioned in [37] achieved an accuracy of

94.03% using 19 electrodes and a feature vector length of 1176 features. Our features produced

comparable classification accuracy by using a smaller number of electrodes and feature vector

length, advocating the fact that the extracted features can be used for computing the generaliz-

able depression classification results. This additional experimentation enhanced the validity of

our results and provided a more comprehensive understanding of the method’s performance

across diverse scenarios.

Hence it can be clinched that our proposed depression classification framework was able to

discriminate the mental depressive disorder patients from the healthy controls with an accu-

racy of 96.36% using EEG data from only 3 electrodes and a small feature vector length of 12,

thus dropping the computational cost of the system as equated to the existing depression clas-

sification studies offered in the literature which were able to realize the comparable accuracy

with a substantial amount of computational burden. Furthermore, the results of the proposed

mental depressive disorder classification scheme were computed on a publicly available

MODMA dataset which was logged in the clinical settings under the direction of medical

experts thus adding to the legitimacy of the EEG recording and making it easier for the future

researcher to replicate the existing results.

Our study utilized a publicly available dataset that predominantly focused on the frontal

lobe area of the brain. While we acknowledge the importance of considering the influence of

all brain lobes for a comprehensive understanding, our rationale for the dataset selection was

driven by specific research objective of enhancing the classification accuracy of the depression

classification scheme while keeping the number of EEG electrodes minimum. The frontal lobe

of the human brain, being implicated in various cognitive functions and often associated with

complex behaviors, served as a primary area of interest for our investigation. By concentrating

on this specific region, we aimed to provide a detailed exploration of its significance within the

scope of our research questions. However, we acknowledge the limitation posed by the exclu-

sion of information from other lobes. To address this concern, detailed analyses encompassing

a broader range of brain areas in future research endeavors need to be performed. This

approach will facilitate a more holistic understanding of the brain’s functional dynamics and

its potential impact on our findings. It is important to note that while our dataset choice may

introduce a certain degree of bias toward the frontal lobe, we believe that our focused examina-

tion of this region contributes valuable insights to the existing literature regarding depression

classification. Nevertheless, we recognize the necessity of extending our investigations to

incorporate a more diverse dataset in subsequent studies to offer a more comprehensive per-

spective on brain functioning.

6 Conclusion

The rise in the use of ubiquitous devices facilitates us to exploit EEG wearable headsets for rec-

ognizing depression. This paper presents a mental depression detection framework using EEG

recording of 55 subjects in the resting-state condition using three frontal-lobe electrodes i.e.,

Fp1, Fp2, and Fpz. The selected set of 4 features include minimum and maximum amplitude

and mean of absolute values of first and second difference are obtained from each of the EEG

electrodes. The highest classification accuracy of 96.36% is achieved using the BF-Tree classi-

fier with a feature vector length of 12, which is considerable in comparison to techniques exist-

ing already in the literature. However, in the future, frequency domain features extracted from

the recorded EEG data can be involved to get a more comprehensive understanding of the

neural patterns occurring in the human brain. Nevertheless, by developing extensive datasets
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sourced from diverse ethnic backgrounds, it is likely to produce more powerful models. These

models could then be employed to recognize depression and other neurological disarrays at an

early stage by investigating EEG signals.
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