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Abstract

In vitro models of Mycobacterium tuberculosis (Mtb) infection are a valuable tool for examin-

ing host-pathogen interactions and screening drugs. With the development of more complex

in vitro models, there is a need for tools to help analyze and integrate data from these mod-

els. To this end, we introduce an agent-based model (ABM) representation of the interac-

tions between immune cells and bacteria in an in vitro setting. This in silico model was used

to simulate both traditional and spheroid cell culture models by changing the movement

rules and initial spatial layout of the cells in accordance with the respective in vitro models.

The traditional and spheroid simulations were calibrated to published experimental data in a

paired manner, by using the same parameters in both simulations. Within the calibrated sim-

ulations, heterogeneous outputs are seen for bacterial count and T cell infiltration into the

macrophage core of the spheroid. The simulations also predict that equivalent numbers of

activated macrophages do not necessarily result in similar bacterial reductions; that host

immune responses can control bacterial growth in both spheroid structure dependent and

independent manners; that STAT1 activation is the limiting step in macrophage activation in

spheroids; and that drug screening and macrophage activation studies could have different

outcomes depending on the in vitro culture used. Future model iterations will be guided by

the limitations of the current model, specifically which parts of the output space were harder

to reach. This ABM can be used to represent more in vitro Mtb infection models due to its

flexible structure, thereby accelerating in vitro discoveries.

Introduction

Tuberculosis (TB) continues to be a global public health crisis, responsible for 1.4 million

deaths in 2021 alone [1]. TB is caused by Mycobacterium tuberculosis (Mtb). Mtb is introduced

to its host upon inhalation of contaminated respiratory droplets, allowing direct entry into the
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lungs. Bacteria are deposited in the well-ventilated lower lobes of the lung, where alveolar mac-

rophages phagocytose them [2]. Mtb is subsequently able to survive and replicate within the

endosomes of these macrophages [3]. As the infection progresses, infected macrophages

release chemokines and cytokines, which recruit other immune cells (e.g., monocytes, T cells,

B cells, NK cells, dendritic cells, and neutrophils) to form a granuloma. A granuloma is gener-

ally comprised of a core of infected macrophages, surrounded by monocytes, epithelioid mac-

rophages, foamy macrophages, neutrophils, multinucleated giant cells, and finally a

lymphocytic cuff with an outer fibrous capsule [4]. The timing and spatial organization of key

host-pathogen interactions within these granuloma structures, and how these interactions

contribute to bacterial survival or elimination, remains incompletely understood. This is in

part due to the complexity of the granuloma structure itself, which makes it difficult to under-

stand, measure, and/or predict host-pathogen interactions and their impact on infection

progression.

Many systems have been used to explore granulomas in TB; each having its own benefits

and limitations. While much has been revealed about granuloma structure from humans stud-

ies, such studies are invasive or indirect and are often lacking in time points required to evalu-

ate granuloma dynamics. Additionally, TB granulomas in humans can only really be studied at

later stages when the infection has been established and diagnosed [5]. Animal studies such as

non-human primate (NHP), rabbit, zebrafish, and mouse models are very useful and allow

more control and direct observation of infection and granuloma formation than in humans.

Mouse models benefit from the wide availability of commercial immunological reagents,

genetic tools, and transgenic and knock-out strains, but most mouse strains struggle to recre-

ate the structure of granulomas seen in humans [6,7]. Zebrafish have a natural pathogen pair-

ing, can model active and persistent disease states, allow genetic perturbations of host and

pathogen, and are conducive for imaging due to their transparent larval stage [8,9]. However,

they only form non-necrotic, cellular granulomas and their natural pathogen Mycobacterium
marinum is not identical to Mtb [8,9]. Rabbits and guinea pigs can form necrotic and non-

necrotic mature granulomas [6,7]. These models have been limited in the past by the availabil-

ity of immunological reagents, but recently more commercially available immunological

reagents like antibodies against rabbit analytes have been developed [6,7,10,11]. NHP models

most closely recreate human pathology, with heterogeneous clinical outcomes and granuloma

structures [12,13]. But NHP models are expensive, time-intensive, and limited by the availabil-

ity of animal facilities [6,7]. Overall, it is difficult to do certain genetic manipulations, collect

data at many time points, and control the exact cellular and environmental makeup in these in
vivo models.

Complementary to these in vivo models, more complex in vitro cellular cultures have been

developed to both dissect biological mechanisms and test new therapies (reviewed in Elkington

et al. [14]). In vitro models assemble mixtures of cells and bacteria in controlled ways in 2D

(e.g. at the bottom of culture plates) or 3D (e.g. embedded in collagen matrices). Such complex

in vitro cultures allow for mechanistic investigations that might not be feasible in the in vivo
context. In vitro models can be particularly helpful because all cellular components can be con-

trolled, and the models are tractable, meaning they can be more easily manipulated and

observed than in vivo models. In vitro models are also cheaper and higher throughput than in
vivo models.

Elkington et al. suggest certain criteria for an ideal in vitro TB model including the use of

human cells and virulent Mtb; allowing incorporation of fibroblast, epithelial cells, and physio-

logical extracellular matrix; being modular to allow many different biological questions to be

answered; and, ideally, being 3-dimensional (3D) [14]. However, increasing complexity isn’t

necessary in all cases and can make models lower throughput and more expensive. Ideally, in
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vitro models could be tailored to the biological question at hand, but could still be compared

across experimental systems. In vitro models could then be optimized to include only the nec-

essary components, allowing the maintenance of inexpensive, high-throughput models. None-

theless, results from many disparate models can still be synthesized to form robust

conclusions.

We recently developed an in vitro biomimetic 3D spheroid granuloma model [15]. Briefly,

patient-derived alveolar macrophages are infected with BCG, and magnetic nanospheres are

used to levitate the cells. Autologous adaptive immune cells isolated from peripheral blood

mononuclear cells (PBMCs) were added at 48 hours into the 6-day culture. A traditional

monolayer in vitro model is also cultured comprised of the same cells without structure or

magnetic nanospheres. When comparing this granuloma model to the corresponding tradi-

tional monolayer culture, we found the spheroid model was better able to control bacteria. Dif-

ferences in bacterial count between these models can be quantified and are due to the different

model setups, but how the spatial aspects impact immune response is unclear. These two mod-

els provide a good test case to evaluate the possibility of translating between different in vitro
models and identify the key mechanisms at work in the different models.

This data not only motivates a need to understand the mechanistic differences between

these two models, but also highlights a need to more broadly look at the complexity and spati-

ality of in vitro models. As we move towards more complex in vitro models, organoids, com-

plex cell mixtures, etc., it is important that we 1) understand and quantify the impact of the

structural organization of the cultures, 2) develop tools that can analyze these more complex in
vitro models, and 3) develop tools that enable us to compare and translate between in vitro
models. Computational models are well-suited to address all of these tasks.

Mechanistic modeling has been applied to TB since 1962, and agent-based models (ABMs)

in particular have been used in the context of TB since 2004 [16–18]. ABMs of granuloma for-

mation in the non-human primate (NHP) lung have been iterated many times to look at the

impacts of TNF-α [19–21], Mtb metabolism [22], macrophage (MF) polarization [23], and

more [24–29]. The contributions of mechanistic modeling to the understanding of TB disease

have been reviewed by Kirschner et al. 2017 and Pitcher et al. 2020 [17,30]. Notable contribu-

tions include the importance of IL-10 in infection outcome, something that was not predicted

by mouse models, and the complex, dynamic balance of pro- and anti-inflammatory signals

necessary to contain infection and limit pathology [17,31]. In this work, we apply these agent-

based approaches to in vitro models rather than in vivo systems. This means that all compo-

nents included in the in vitro model can be accounted for, the in vitro models can be more eas-

ily observed and perturbed, and we can use one simulation framework with different

initializations to represent, and translate between, multiple in vitro models.

Computational models can aid the analysis of in vitro model data in two ways. First, if dif-

ferences between in vitro models are small, or can be accounted for with computational model

structure alone, the computational model can be calibrated to data from multiple in vitro mod-

els by only adjusting initializations to represent each in vitro model. Second, if a single compu-

tational model structure or parameter set cannot reproduce data from different in vitro
models, this would indicate that the in vitro models are inherently different, and the computa-

tional models could generate hypotheses for these inherent differences.

In this work, we use one computational agent-based modeling framework to recreate the

results from both the 3D spheroid and the corresponding traditional culture in vitro models [15].

We use these computational models to characterize the evolution of single spheroid and tradi-

tional cultures and quantify the heterogeneity of the host response within and between different

spatial organizations. Finally, uncertainty analysis is used to identify similarities and differences

between the spheroid and traditional in vitro models, and potential use cases are discussed.
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Methods

Experimental methods

The data we use for calibration is derived from a biomimetic 3D spheroid model of a granu-

loma and the corresponding traditional culture (Fig 1) [15]. The experimental data that we use

here were collected and published in a prior manuscript [15], and no new human samples or

experimental measurements were collected for this manuscript. Briefly, HIV-negative patients

with high suspicion of TB were recruited. Bronchoscopies were performed by qualified clini-

cians and nursing staff according to international guidelines [32] to obtain bronchoalveolar

lavage fluid samples. Immediately after bronchoscopy, peripheral blood was collected by veni-

puncture into two 9mL sodium heparinized (NaHep) vacutainers. Alveolar macrophages were

isolated from bronchoalveolar fluid, and PBMCs were isolated from peripheral blood using

the Ficoll-Paque isolation method described previously [15]. Alveolar macrophages were cul-

tured at a density of 4x105 cells per well in a 24-well low-adherence culture plate and infected

with Mycobacterium bovis Bacille Calmette-Guerin (BCG) at a multiplicity of infection (MOI)

of 1 for 4 hours. Afterward, extracellular bacteria were removed by supplementing media with

an antimycotic antibiotic (penicillin/streptomycin/amphotericin B) for 1 hour, followed by

successive washes. The 3D spheroids were made by treating alveolar macrophages with bio-

compatible NanoShuttle (Greiner Bio-One) and levitating them using the magnetic levitating

drive. After 48 hours, 6x105 autologous CD3+ T cells are added per well. The traditional cul-

ture is made using the same cells and the same ratios but without NanoShuttle treatment and

subsequent magnetic levitation.

Fig 1. In vitro and in silico spheroid and traditional models. Peripheral blood and bronchoalveolar lavage fluid were collected from patients and recombined

in vitro into spheroid and traditional experimental cultures. These cultures are modeled in silico with spheroid and traditional simulations. Created with

BioRender.com.

https://doi.org/10.1371/journal.pone.0299107.g001
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Granuloma structures were mechanically disrupted by gentle pipetting after 6 days of cul-

ture. The day-6 timepoint was selected as the timepoint whereby the structure first demon-

strated good stability and the time whereby we expect to detect measurable T cell immune

responsiveness. The stability was determined by verifying that the macrophage plus T cell rim

remains intact despite the removal of the magnet. Cell count and cell viability were determined

using the trypan blue exclusion method after adherent cells were removed. Colony-forming

unit (CFU) counts were determined by lysing mechanically disrupted cells and plating serial

dilutions on Middlebrook 7H11 agar plates (BD Biosciences). After 21 days of growth, the col-

onies were manually counted. 3D spheroids were also fixed, embedded in tissue-freezing

medium OCT (Tissue-Tek; USA), and cryosectioned. A section from the middle of the struc-

ture was stained with antibodies for CD3+ and CD206+ cells and imaged using a Carl Zeiss

LSM 880 Airyscan with Fast Airyscan Module confocal microscope (Plan-Apochromat x63/

1.40 oil DIC UV-VIS-IR M27 lens objective). The image of the traditional cell culture was

acquired with light microscopy at 40x magnification. For full methods please reference Kotze

et al. 2021.

Model structure

Our model simulates the interactions between macrophages, CD4+ T cells, CD8+ T cells, bac-

teria, and two simplified cytokines within an in vitro environment. The simulation is con-

structed as a hybrid multiscale model with a cellular level agent-based model hybridized to a

partial differential equation model of diffusion for the two cytokines (TNFα-like and IFNγ-

like). These will be referred to as TNFα and IFNγ moving forward. The environment is com-

posed of grid cubes that each represent a 20μm x 20μm x 20μm volume, which is the approxi-

mate size of our largest agent type, the macrophage [33]. The environment has two overlying

grids, one single occupancy grid for immune cells and one multi occupancy for the smaller

bacteria. The simulation has 4 types of agents: macrophages, CD4+ T cells, CD8+ T cells, and

bacteria. Macrophages are subdivided into uninfected and infected classes. Agent behaviors

are performed with a time step of 6 minutes, the approximate time for a monocyte to move

20 μm, or one grid cube [34–37]. The simulation is run for a total of 6 days, to reflect the dura-

tion of the in vitro experiments. An overview of agent behaviors is shown in Fig 2 and further

detail is given in the text below and a flowchart of the simulation (S5 Fig). Parameters that are

varied during calibration are given in Table 1 with initial ranges and references, and parame-

ters kept constant are given in S1 Table in S1 File. These methods are in part drawn from work

modeling NHP granulomas in silico, specifically GranSim and subsequent developments

[17,18].

Diffusing molecules. There are 2 diffusing molecules included representing simplified

TNF-α and IFN-γ. These are contributed to by the secreting agents and diffuse in the simula-

tion space. TNF-α and IFN-γ were selected because they are known to be important in the

immune response to TB, are well studied, and because they play major roles in included mech-

anisms: activation and chemotaxis [31]. We limited the number of cytokines to minimize the

complexity of this first model iteration. Chemotaxis was modeled to be solely due to TNF-α.

Anti-inflammatory cytokines like IL-10 were excluded due to the short time span of the experi-

ment, based on evidence that IL-10 has minimal impact on bacterial burden or disease pathol-

ogy early in the infection [52]. Diffusion is performed similarly to that in Weathered et al.

using a 3D alternating-direction explicit numerical method [53]. As this method is uncondi-

tionally numerically stable, a larger dt than is predicted by the conditional stability criterion

can be used while maintaining accuracy [54]. After finding dt suggested by the conditional sta-

bility criterion and the diffusion parameters a multiplier of 4 was incorporated into the
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alternating-direction explicit method to reduce simulation time while maintaining accuracy,

as recommended by Cilfone et al. [54]. This calculated PDE time step is then used to calculate

the number of diffusion iterations needed per ABM time step. The PDE is run with a smaller

time step than the ABM, ranging from 2 to 14 diffusion iterations per agent time step depend-

ing on the diffusion parameters and calculated stability criterion. IFN-γ and TNF-α are dif-

fused separately with separate diffusion coefficients and decay rates. The rate of diffusion is

slowed within granulomas by granuloma fraction of diffusion.

Agents. Immune cells. Macrophages, infected macrophages, CD4+ and CD8+ T cells are

all classified as types of immune cells. These cell types were chosen to limit complexity, while

including necessary components to form the core and cuff of the spheroid. Immune cells share

common behaviors, including movement and aging. Movement is determined by gravity

Fig 2. An overview of rules for the simulated agents. a) Bacteria grow and divide. b) Immune cells secrete cytokines dependent on activation or infectious

state, move probabilistically up a TNF-α gradient, age, and die. c) Macrophages (MF) can phagocytose bacteria becoming infected. MF activation is

represented by a nonsequential process that requires two signals: NF-κB and STAT1. NF-κB can be activated by TNF-α, bacteria, or direct contact with an

activated CD4+ T cell. STAT1 is activated by IFN-γ secreted by activated T cells. d) Infected ΜF either fight infection by killing intracellular bacteria and

returning to an uninfected state, or when a certain threshold of bacteria is reached will burst releasing intracellular bacteria into the environment. e)

TB-Specific CD4+ T cells activate by interacting with a ΜF that has interacted with a bacterium. After activation, CD4+ T cells can proliferate. f) TB-Specific

CD8+ T cells activate by interacting with a ΜF that has interacted with a bacterium and is STAT1 activated. After activation, CD8+ T cells can proliferate and

kill infected macrophages along with the intracellular bacteria. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0299107.g002
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Table 1. Parameters that are varied during calibration.

Parameter Initial Range Units Refs

Bacteria

Mtb internal doubling time 23,69 Hours [38]

Mtb external doubling time 23,69 Hours [38]

Macrophages

activated macrophage proportion 0,0.1 Per time step e

base killing probability 0.0001,0.02 Per time step e

active killing probability 0.002,0.3 Per time step e

base phagocytosis probability 0,1 Per time step f

active phagocytosis probability 0,1 Per time step f

phagocytosis threshold 8,12 Intracellular bacteria [21]

cellular dysfunction threshold 8,12 Intracellular bacteria [21]

NF-κB span 0.16,166 Hours [23]

threshold for NF-κB activation TNF 40,500 Molecules e

threshold for NF-κB activation bac 20,150 External bacteria [21]

STAT1 span 0.16,166 Hours [23]

threshold for STAT1 activation IFN 40,500 Molecules e

activated macrophage TNF secretion 0,40 Molecules/second [39]

infected macrophage TNF secretion 0,40 Molecules/second [39]

macrophage population max lifespan 20,100 Days [21]

macrophage population max activated lifespan 7,13 Days [21]

base movement probability macro 0.5,1 Per time step [34–37]

activated movement probability macro 0,0.5 Per time step e

CD4+ T cells

fraction CD4 0.5,0.65 CD4+ T cells/ CD3+ T cells [40,41]

fraction TB-specific 0.0001,0.06 TB-specific CD4+ T cells/ Total CD4+ T cells [42,43]

activated TB-specific CD4 fraction 0,0.1 Initial activated TB-specific CD4 T cells/ Total TB-specific CD4 T cells e

activation probability CD4 0,1 Per time step f

deactivation probability CD4 0,1 Per time step f

activated CD4 TNF secretion 0,40 Molecules/second [39]

activated CD4 IFN secretion 0,40 Molecules/second [39]

CD4 population doubling time 6,16 Hours [44,45]

maximum CD4 generations 3,10 Generations [44,46,47]

CD4 population max lifespan
CD8 population max lifespan

34,340 Days [48–50]

CD4 population activated lifespan
CD8 population max activated lifespan

2.5,4 Days [21,44]

base movement probability CD4
base movement probability CD8

0,1 Per time step f

activated movement probability CD4
activated movement probability CD8

0,1 Per time step f

CD8+ T cells

fraction CD8 0.3,0.35 CD8+ T cells/ CD3+ T cells [41]

TB-specific CD8 fraction 0.0001,0.06 TB-specific CD8+ T cells/ Total CD8+ T cells [42,43]

activated TB-specific CD8 fraction 0,0.1 Initial activated TB-specific CD8 T cells/ Total TB-specific CD8 T cells e

activation probability CD8 0,1 Per time step f

deactivation probability CD8 0,1 Per time step f

activated CD8 TNF secretion 0,40 Molecules/second [39]

activated CD8 IFN secretion 0,40 Molecules/second [39]

(Continued)
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limited or 3D rules. Cells moving in 3D can move in any direction. With gravity limited rules,

cells will fall in the z dimension if no immune cell is below them and can only move up in the z

direction if on top of another immune cell. Given these movement rules, the cells will chemo-

tax probabilistically toward the highest concentration of TNF-α when the summed TNF-α in

the Moore neighborhood, the 26 grid cubes that directly border the given square, is above

threshold for immune cell movement TNF. This chemotaxis algorithm is based on that in

Weathered et al. [53]. Immune cells also age according to individualized lifespans. A resting

lifespan and activated lifespan are selected for each cell from a population lifespan * (1+/- life-
span variance). These lifespans are then converted to aging rates, which change according to

the activation status of the cell. The resting aging rate is 1 hour aged per hour, while the acti-

vated aging rate is calculated as resting lifespan divided by activated lifespan. At initialization,

a cell will be given a random starting age from zero to the resting lifespan. Then a cell’s current

age gets incremented by the aging rate each time step. When a cell reaches its maximum age, it

will die and be removed from the simulation.

Macrophages. Beyond the immune cell rules described above, macrophages will attempt to

phagocytose and activate every time step. Each macrophage attempts to phagocytose by pick-

ing a bacterium in its Moore neighborhood at random. If this bacterium is extracellular, it will

be phagocytosed with a phagocytosis probability dependent on the activation state (base
phagocytosis probability, active phagocytosis probability). Successful phagocytosis turns a mac-

rophage into an infected macrophage. Macrophages that have phagocytosed bacteria also get

classified as having interacted with bacteria, meaning antigenic peptides can be displayed on

the cell surface. Each macrophage also checks for activation. Activation is represented by a

simplified two-step signaling process, requiring STAT1 and NF-κB activation [55]. STAT1 is

activated if local IFN-γ is greater than threshold for STAT1 activation IFN. NF-κB can be acti-

vated in 3 ways: TNF-α greater than threshold for NF-κB activation TNF, nearby extracellular

bacteria greater than threshold for NF-κB activation bac, or direct interaction with an activated

CD4+ T cell. These represent TNF-α interaction with TNFR, activation of TLR, and

CD40-CD40L interactions, respectively [56]. NF-κB and STAT1 activations last for set

Table 1. (Continued)

Parameter Initial Range Units Refs

CD8 population doubling time 3,13 Hours [45]

maximum CD8 generations 7,20 Generations [46,47,51]

kill probability CD8 0.012,0.12 Per time step [21]

Diffusion

threshold for immune cell movement TNF 1,500 Molecules e

diffusion coefficient TNF 0.1,1 10^-7 cm^2/s [23]

degradation rate per second TNF 0.96,10 10^-4 1/s e

diffusion coefficient IFN 0.1,1 10^-7 cm^2/s [23]

degradation rate per second IFN 0.96,10 10^-4 1/s e

granuloma fraction of diffusion 0,1 - f

sphere efficiency 0.65,0.9 - e

Initial ranges are either determined by literature, estimated through preliminary simulations (e), or broadened to the full mathematically possible range (f). Initial ranges

were all sampled with uniform distributions. All parameters are continuous, but phagocytosis threshold, cellular dysfunction threshold, and maximum CD{4,8}
generations behave discretely as they are only used in comparison to integer values. One time step is equivalent to a 6-minute interval. Note that CD{4,8} population max
lifespan, CD{4,8} population activated lifespan, base movement probability CD{4,8}, and activated movement probability CD{4,8} are shared for CD4+ and CD8+ T cells

and are therefore only counted as 4 parameters. The set of calibrated parameter sets can be found in the supplemental data with distributions shown in S1 Fig.

https://doi.org/10.1371/journal.pone.0299107.t001
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durations after the signal was initially received (NF-κB span and STAT1 span). After the mac-

rophage-specific length of activated time, the pathway will deactivate and be checked again

immediately, to allow longer activation if the activation signals persist. If both pathways are

activated at the same time, then the macrophage becomes fully activated. Activation changes a

macrophage’s movement probability, phagocytosis probability, and aging rate. Activated mac-

rophages also secrete TNF-α at a rate of activated macrophage TNF secretion molecules per

second.

Infected macrophages. Infected macrophages can fight the infection at each time step. Each

infected macrophage corresponds to a list of one or more intracellular bacteria that have been

phagocytosed by the macrophage and exist in the same location on the corresponding bacterial

grid. An intracellular bacterium is selected randomly and will be killed with a probability that

is dependent on the macrophage’s activation state (base killing probability, active killing proba-
bility). If all the bacteria within an infected macrophage are killed, then the infected macro-

phage reverts to a healthy macrophage. Infected macrophages can be activated through the

same pathways as healthy macrophages. When fully activated, the phagocytosis and killing

probabilities change to values for activated macrophages. Infected macrophages secrete TNF-α
when activated, but also constitutively secrete TNF-α at a baseline level of infected macrophage
TNF secretion molecules per second when not activated. Infected macrophages don’t move but

can continue to phagocytose bacteria if the number of intracellular bacteria is below phagocy-
tosis threshold. Once the number of intracellular bacteria is above cellular dysfunction threshold
the macrophage is considered chronically infected [18]. Chronically infected macrophages can

no longer be fully activated or kill intracellular bacteria. If the number of bacteria within an

infected macrophage reaches a bursting threshold the macrophage will burst and release the

intracellular bacteria into the environment. A burst limit was randomly selected for each

infected macrophage from a uniform distribution from 20 to 40 intracellular bacteria [57].

When a macrophage dies of old age the bacteria are similarly released into the environment.

CD4+ T cells. CD4+ cells can be TB-specific or non-TB-specific. TB-specific CD4+ T cells

can also become activated. Activation of TB-specific CD4+ T cells occurs with a probability of

activation probability CD4 if a random macrophage in its Moore neighborhood has interacted

with bacteria. This is equivalent to antigen presentation on MHC II [56]. Activation increases

movement probability and aging rate. Activated CD4+ T cells secrete both TNF-α and IFN-γ
at activated CD4 TNF secretion and activated CD4 IFN secretion molecules per second, respec-

tively [39]. Active CD4+ T cells can also divide with a doubling time of CD4 population dou-
bling time until the maximum number of generations (maximum CD4 generations) is reached.

If there is no space available when a cell divides, it is recorded as a failed attempt. An average

of less than 5% of attempted divisions fail in calibrated runs. This could be thought of as nutri-

tional inhibition that prevents the cells from growing. Deactivation occurs with a given proba-

bility deactivation probability CD4 per time step.

CD8+ T cells. Just like CD4+ T cells, CD8+ T cells can be subdivided into TB-specific and

non-TB-specific. TB-specific CD8+ T cells can be activated. If a randomly selected macro-

phage within the T cell’s Moore neighborhood is STAT1 activated and has interacted with bac-

teria, then the T cell will probabilistically activate (activation probability CD8). STAT1

activation is a proxy for interaction between CD4+ T cell and macrophage which increases

expression of molecules on the surface of the APC(B7 and 4-1BBL) that provide co-stimulation

to naïve CD8+ T cells [56,58]. If activated, a CD8+ T cell will secrete both TNF-α (activated
CD8 TNF secretion) and IFN-γ (activated CD8 IFN secretion). Activation also increases move-

ment probability and aging rate. Activated CD8+ T cells will also divide with a doubling time

of CD8 population doubling time until the maximum generation (maximum CD8 generations)
is reached. Activated CD8+ T cells can kill infected macrophages (equivalent to cells
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presenting peptides in MHC I). A random infected macrophage is selected for the Moore

neighborhood, and the infected macrophage and all intracellular bacteria are killed with a

probability kill probability CD8. CD8+ T cells deactivate probabilistically (deactivation proba-
bility CD8).

Bacteria. Bacteria grow and divide. Bacteria have biomass that gets added to every time

step. The rate of growth depends on whether they are intracellular or extracellular. Growth

rate is calculated from doubling time (Mtb internal doubling time, Mtb external doubling time)
and includes some individual variance from the population mean. If the biomass threshold of

2 is reached, then the bacteria divide into two with the biomass distributed among them

unevenly [59]. Simulated bacteria represent BCG, as BCG was used in the in vitro models.

Behaviors/parameters are drawn from both BCG and TB literature.

Initial conditions. The differences between the spheroid and traditional simulations

include the movement rules and the initial spatial distribution of cells. Our initial conditions

reflect those used in the in vitro models [15].

Spheroid. In the experimental protocols, 400,000 macrophages are infected with MOI 1 and

then levitated [15]. While the magnetic beads aren’t explicitly included in the model, they

impact the movement rules of the cells by allowing them to move in 3D as described in the

immune cells section. After two days, 600,000 CD3+ cells are added in a dropwise manner

directly to the spheroid. Due to computational limitations associated with the 3D simulation

of a full-sized spheroid, we simulate a spheroid of 1/10th the size. Due to this downscaling, cali-

brated parameters are assumed to be effective parameters. Scaling analysis of representative

parameter sets shows that larger spheroid simulations (up to one-half of experimental struc-

tures) show similar overall behavior to our simulations at 1/10th size. (S2 and S3 Figs) We gen-

erate a sphere of 40,000 mixed healthy and infected macrophages. Given the experimental

MOI of 1, we use a Poisson distribution to estimate the percentage of cells with various num-

bers of phagocytosed bacteria [60], giving the fraction of macrophages that have phagocytosed

n bacteria as MOIne� MOI

n!
. Macrophages with zero to six intracellular bacteria are initialized, giving

39,997 initial bacteria. This sphere is centered on an 80x80x80 grid representing 1.6 mm x 1.6

mm x 1.6 mm volume. The radius of the initialized sphere is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

40;000∗3
4 p sphere efficiency

3
q

, with

the initial density of the cells determined by sphere efficiency. Sphere efficiency is the fraction of

grid cubes that are initialized to contain cells. It has a maximum value of 1 where every grid

cube has a cell resulting in a smaller, more densely packed sphere. Lower values have empty

grid cubes within the structure, resulting in a larger, less dense structure. At day 2, 60,000 CD4

+ and CD8+ T cells are added in a cuff around the macrophages. Proportions of CD4+ T cells

(fraction CD4), CD8+ T cells (fraction CD8), and TB-specific T cells (fraction TB-specific, TB-
specific CD8 fraction) are estimated from literature [40–43]. Subsets of the immune cells are

allowed to be preactivated (activated macrophage proportion, activated TB-specific CD4 frac-
tion, activated TB-specific CD8 fraction) as the alveolar macrophages and PBMCs were taken

from patients with active TB. Activated TB-specific T cells are given a random starting genera-

tion and starting point in the division cycle as the process of proliferation could have already

started.

Traditional culture. The experimental conditions are the same as the spheroid without the

inclusion of the magnetic levitation beads. The exclusion of the magnetic beads is represented

in the simulation by gravity limited movement rules as described in the immune cells section.

As with the spheroid, the traditional simulation is 1/10th the size of the experiment. This is

simulated by adding 40,000 infected and uninfected macrophages distributed evenly through

the environment. After these macrophages are added they fall to the bottom of the plate due to

the gravity-limited movement. Since the cells would all be at the bottom of the plate, the

PLOS ONE Agent-based modeling of in vitro tuberculosis infection models

PLOS ONE | https://doi.org/10.1371/journal.pone.0299107 March 22, 2024 10 / 32

https://doi.org/10.1371/journal.pone.0299107


dimensions were adjusted to 216 x 216 x 11, or 4.32mm x 4.32mm x 0.22 mm. The ratio of

cells to the surface area of the plate is initialized to be the same in the simulation as in the in
vitro model. Additionally, the volume of simulation, and therefore initial cellular density, is

minimally different between the spheroid and traditional models. The percentage of cells with

various numbers of phagocytosed bacteria is calculated in the same manner as the spheroid

model. At day 2, 60,000 CD4+ and CD8+ T cells are distributed evenly throughout the envi-

ronment before falling. All parameters are kept the same for the spheroid and traditional simu-

lation, except the parameters that dictate initial structure and gravity-limited movement (case
number and is gravity in S1 Table of S1 File).

Simulation and parameter sampling. This model is built using Repast Simphony 2.8, an

open-source software used to build ABMs in Java [61]. The Repast model code is located at

https://github.itap.purdue.edu/ElsjePienaarGroup/TB-in-vitro release v1.0.1. Simulations

were run on the Purdue Brown Cluster, XSEDE, and OSG resources [62–66]. Python and

MATLAB were used for data analysis and visualization. Some parameters are varied between

cells of the same type within a population to represent biological heterogeneity. Variances are

specified in S1 Table of S1 File, and cellular parameters are sampled uniformly within [param-

eter*(1-variance), parameter*(1+variance)]. Probabilities were not sampled between cells

because heterogeneity in these cases is established through the stochasticity associated with the

comparison of randomly generated values to these probability parameters. Other parameters

that were held constant between all cells in a population include secretion rates, maximum

generations (i.e., the number of times a cell can proliferate), and thresholds for activation,

movement, and cellular dysfunction.

Calibration

Calibration is performed by doing an initial parameter sweep and then iterating around spe-

cific parameter sets. These iterations are used to find a variety of parameter sets that fit into the

experimental data range while iterating to reach parts of the output space that were not cap-

tured in the previous sample. Experimental data ranges used for calibration include:

• Spheroid bacterial fold change from 4 hours post-infection to day 6

• Traditional bacterial fold change from 4 hours post-infection to day 6

• Spheroid cell viability at day 6

• Traditional cell viability at day 6

• Spheroid cell count at day 6

• Traditional cell count at day 6

A total of 50 parameters are varied in the model (Table 1). Initial ranges are determined

from relevant literature (in silico, in vivo, in vitro) or left broad if no estimates were identified

in the literature. A schematic of the calibration procedure for 2 parameters and 2 model out-

puts is provided in Fig 3. Latin hypercube sampling (LHS) was used to sample 1,000 parameter

sets from initial ranges with a centered design (Table 1). These parameter sets are run in both

the traditional and spheroid simulation with 7 replicates as a broad initial sweep. Top runs are

defined as those with the highest traditional CFU, as this part of the output space had few runs

in the initial sweep. The top five runs that met the bacterial fold changes for traditional and

spheroid are iterated. Iterations are performed by narrowing the parameter range to 20% of

the initial range centered around the initial point (each of the top five runs). One hundred

samples in this new range are generated using LHS and are run in triplicate. The number of
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replicates and runs are reduced due to computational costs. Runs that passed all 6 criteria (bac-

terial fold changes, cell viability, and cell count at day 6 for traditional and spheroid cultures)

are iterated until there was less than a 10% increase in traditional culture CFU. The iterating

range is then narrowed to 10% of the initial range, and iterated until again there is a less than

10% increase in traditional culture CFU. The calibrated set is generated by selecting runs that fit

all 6 criteria from all the simulations, giving us a collection of parameter sets with all 50 parame-

ters varied. Thus, our approach allows us to enrich areas that fall within experimental ranges

while directing the traditional CFU higher in order to fill out the whole experimental range.

Fig 3. Calibration method used for targeted exploration of the output space. This is a simplified example with only

two parameters and output dimensions to visualize steps. A) An initial sweep was performed with the entire parameter

space. Traditional and spheroid simulations were run with all parameter sets (blue shapes). The output space has

experimentally determined ranges that are used for calibration represented by grey regions, the desired output space is

the overlap of these regions (green region). We used this method to enrich desired parts of the output space in a

directed manner. In this case, higher output 2 is desired (blue arrow). Thus, points that fall in the overlap of the

experimental regions (green region) with the highest output 2 are selected to iterate. (⬟) These are called enrichment

points. B) For each of these enrichment points, a new region is defined around the initial parameter set by narrowing

the parameter range to 20% of its initial sampled range as noted by the smaller grey box. This range is sampled using

LHS and run through the simulations. The point with the highest output 2 that falls in the experimental region is

selected as a new enrichment point (▼), and this process is repeated until less than a 10% increase in output 2 is seen.

The region is then further narrowed to 10% of the initial range, and iterations are performed as above. The calibrated

set is then defined as all parameter sets that meet the six calibration criteria.

https://doi.org/10.1371/journal.pone.0299107.g003
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Uncertainty analysis

LHS and partial rank correlation coefficients (LHS-PRCC) are used to perform an uncertainty

analysis [67]. LHS-PRCC has been used with similar simulations to characterize monotonic

relationships between inputs and outputs [67]. One thousand samples are selected from the

initial range using LHS and run with 7 replicates. These replicates are averaged before PRCCs

are calculated at day 2 before the T cells are added and day 6. A significance level of 0.01 is

used with a Bonferroni correction for the number of tests run. The relationship between the 50

varied parameters and 9 outputs of interest (total Mtb count, Mtb killed by activated macro-

phage count, Mtb killed by resting macrophage count, Mtb killed by CD8+ T cell count, acti-

vated CD4+ T cell count, total activated CD8+ T cells, activated macrophage count, total

STAT1 macrophage count, total NF-κB macrophage count) are analyzed.

Matching unpaired runs

To be able to explore simulations that reach the upper ranges of traditional CFU counts, some-

thing that was not achievable using paired simulations, we also analyze matched simulations.

Unpaired spheroid and traditional simulations are matched by selecting runs with similar (but

not identical) initial condition parameters: fraction CD8, fraction CD4, fraction TB-specific,
and TB-specific CD8 fraction. To identify matched simulations, the spheroid runs are looped

through for each traditional run, and a cost function is calculated. This function sums squared

errors divided by the maximum value for these 4 controlled parameters (fraction CD8, fraction
CD4, fraction TB-specific, and TB-specific CD8 fraction).

X

i2A

pi � pimatched

upperBoundðpiÞ

� �2

A ¼ ffraction CD8; fraction CD4; fraction TB � specific;TB � specific CD8 fractiong

Where pi is the parameter value in the spheroid simulation, pimatched is the potential match-

ing parameter value in the traditional simulation, and the upper bound is the upper bound of

the initial range as given in Table 1. The spheroid simulation with the lowest cost is selected to

be matched to the unpaired traditional run.

Results

Results from multiple in vitro cultures are reproduced with one in silico

framework and shared parameters

We first test if the multiscale model can recreate the experimental data for bacterial fold

change, cell count, and cell viability at day 6 by only varying initial spatial layout and move-

ment rules between the traditional and spheroid simulations. Using the calibration method

described above, parameter sets are identified whose outputs fit the criteria for both spheroid

and traditional in vitro data. (Fig 4A–4C) Our simulations produce CFU fold change outputs

that span most of the experimental range, except for the highest experimentally measured

CFUs in the traditional cultures. Together this indicates that experimental data from spheroid

and traditional in vitro cultures can be reproduced using the same sets of parameters (S1 Fig)

and the same model structure.

After calibrating to both spheroid and traditional cultures, representative calibrated runs

are visualized to compare with experimental images as a qualitative validation. Simulated

spheroids (Fig 4G and 4H) qualitatively match experimental microscopy (Fig 4F), having a lay-

ered structure with macrophages on the inside and T cells in a cuff around the edge. The
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Fig 4. Paired simulations are calibrated to data from in vitro cultures. Spheroid and traditional simulations are run

with the same parameters, only varying the initial spatial layout of cells and the movement rules between the two

simulation types. Comparison of experimental data (n = 3) to calibrated simulation data (n = 398) for a) CFU fold

change from 4 hours post-infection to 6 days, b) cell viability at day 6, and c) cell count at day 6. d) Bacterial count, and

e) activated macrophage count dynamics for calibrated spheroid and traditional simulations over the 6-day time

course show heterogeneous behaviors. Representative spheroid and traditional simulations are visualized at day 6 for

comparison to in vitro images. f) A slice of the in vitro spheroid culture at day 6. (Adapted with permission from Kotze

et al. 2021) g) A slice through the center of a spheroid simulation at simulated day 6, or the 1440th six-minute time step.

The number in the top right is the Repast time step, and the number in the bottom left is the simulation number. h)

Full spheroid simulation. i) A brightfield image of the in vitro traditional culture on (day 6). j) Traditional simulation

viewed top down. k) Traditional simulation viewed from the side. *** p�1e-3.

https://doi.org/10.1371/journal.pone.0299107.g004
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spheroid has a dense center with some cells less densely around the outside. The layered struc-

ture of the spheroid can be contrasted with the more well-mixed traditional simulation (Fig 4J

and 4K) and experiments (Fig 4I). In the traditional simulation, cells are localized at the bot-

tom of the simulation space, due to the gravity-limiting spatial rules. In summary, quantitative

calibration and qualitative validation indicate that our simulation-predicted temporal outputs

and spatial organization align well with experimental data.

Beyond recreating existing experimental data, our computational model predicts that

there is a heterogeneous group of bacterial time courses that are consistent with the experi-

mental data at day 6. (Fig 4D) Bacterial dynamics range from traditional simulations that

show minimal bacterial reduction following the addition of T cells at day 2, to traditional

and spheroid simulations that show transient bacterial reduction after T cell addition, and

traditional and spheroid simulations that show sustained bacterial reduction throughout

the entire simulation. These diverse bacterial dynamics are associated with similarly diverse

activated macrophage dynamics (Fig 4E). However, the activated macrophage dynamics

reveal that, in most simulations, the majority of macrophages become activated. This sug-

gests that more complex spatial mechanisms are driving the diversity in bacterial dynamics.

Our predicted macrophage activation (Fig 4E) could be compared with M1 activation mark-

ers in vitro at day 2.5 to differentiate between the spheroid simulations with different pre-

dicted timings of macrophage activation.

Taken together, these results indicate that our computational framework is able to repro-

duce both aggregate and spatial data from in vitro spheroid and traditional cultures. Addition-

ally, our simulations indicate that activation of a large number of macrophages is not always

sufficient to reduce bacterial numbers in these in vitro cultures.

Spatial evolution of spheroid simulations indicates that macrophage

activation timing is limited by T cell interaction and macrophage location

within spheroids

To examine when and where macrophages become activated within spheroids we next ana-

lyzed, both visually and quantitatively, the spatial evolution of macrophage activation in a rep-

resentative spheroid simulation. An initial sphere of mixed infected and uninfected

macrophages is present at day 1 with a cuff of T cells being added at day 2 (Fig 5A). Macro-

phage activation starts at the interface of the macrophages and T cells and moves toward the

center as time progresses. This activation coincides with T cell infiltration into the macrophage

core. We calculate the radial density of cell subpopulations to quantitatively investigate these

trends (Fig 5B–5E). The simulation starts with uniformly distributed macrophages before a

cuff of uniformly distributed CD4+ and CD8+ T cells is added (Fig 5B). As time progresses the

T cells spread out and begin to infiltrate the macrophage core. In this representative simulation

there is more CD8+ T cell activation leading to more CD8+ T cells infiltration. Activated T

cells make up the minority of the T cell populations and are more localized towards the center

of the granuloma (Fig 5C). This makes sense as interacting with a macrophage presenting anti-

genic peptides is required for T cell activation, and bacteria and macrophages that have inter-

acted with bacteria are localized to the core. These activated T cells provide one of the signals

required for macrophage activation, STAT1 via IFN-γ. Indeed, when the distribution of the

IFN-γ-driven STAT1 activation signal is overlaid with the other required signal for macro-

phage activation, NF-κB, results indicate that macrophage activation propagates from the out-

side in (Fig 5D). The distribution of fully activated macrophages (Fig 5E) closely follows the

STAT1 signal, further indicating that in this model T cells (and not NF-κB activation) are the

limiting step of macrophage activation. This NF-κB activation is solely due to TNF-α secretion
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from the infected macrophages, with 100% of NF-κB activation being due to TNF-α during

the first two days of simulation.

Taken together, this illustrates how our models are used to predict and quantify key host-

pathogen interactions in space and time in a single granuloma. Our simulations predict that

IFN-γ-driven STAT1 activation is the limiting factor in macrophage activation in spheroids,

that macrophage activation occurs at later time points for macrophages at the center of the

spheroids since it depends on T cell infiltration, and that relatively few activated T cells are

responsible for macrophage activation within the infected spheroid core. These distributions

could be tested by staining and imaging slices of spheroids over time, for example the activa-

tion markers for macrophages at days 3 and 4.

Fig 5. Spatial distribution of cells in a granuloma over time. a) The spatial development of a single granuloma over 6 days. The radial distribution of b)

macrophages, CD4+ T cells, and CD8+ T cells; c) base and activated T cells; d) NF-κB and STAT1 activated macrophages; e) base and activated macrophages.

The y-axes represent the radial density of cells. Radial density graphs were generated by calculating the distances of the cells to the center of the spheroid,

generating a histogram for the cells of interest by dividing them into preset bins, and then normalizing by the total volume in each bin which corresponds to

the volume of a spherical shell. S4 Fig shows the same graph averaged across all simulations.

https://doi.org/10.1371/journal.pone.0299107.g005
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A distribution of outcomes, including T cell infiltration, is seen among

spheroid simulations

Given the predicted importance of T cell infiltration for macrophage activation in the spheroid

simulations, we investigate T cell infiltration in our diverse collection of spheroid granulomas.

Spheroid simulations show variation in T cell infiltration between parameter sets (Fig 6A and

6B). Calibrated runs vary from no infiltration (Fig 6A) to an almost homogeneous mixing of

macrophages and T cells (Fig 6B). To evaluate the heterogeneity across all of our simulations,

the mean and standard deviation of radial density is calculated for macrophages and T cells for

each simulation. This gives a mean position when correcting for the uneven volumes of the

radial spheres. As suggested by the representative examples in Fig 6A and 6B these position

metrics for T cells and macrophages range from having nearly complete overlap to almost

complete separation (Fig 6C). Little infiltration was seen in the in vitro model at day 6 [15],

which aligns with some but not all of our simulated runs. Either the small sample size of the

experimental study doesn’t account for full heterogeneity, or this information can be used to

further narrow the parameter space in future model iterations. Cell segmentation on a larger

number of stained in vitro images could be compared with our predicted infiltration measures

to confirm heterogeneity or narrow the output space.

One way to quantify the infiltration of T cells is to determine the difference between the

T cell mean and macrophage mean. The higher the value the more separation between the T

cells and macrophages and, therefore, more structural heterogeneity within the spheroids.

Spearman’s rank correlation coefficients were calculated between this distance measure and

outputs of interest at day 6 with α = 0.01. Our model suggests this measure of separation

between macrophages and T cells is not significantly correlated to total bacterial count (ρ =

0.09, p = 0.07). However, this model is only looking at runs that were calibrated to experi-

mental data, which has a small range of bacterial count for the spheroid simulations. If

increasing T cell separation was an isolated change it’s possible that this relationship could

be observed.

Although the bacterial counts in the spheroid simulations are all within a small range, the

bacterial counts in the corresponding traditional simulations vary more. The Spearman’s rank

correlation coefficient between our separation measure and the traditional total bacterial

count shows a significant positive correlation (ρ = 0.56, p< 0.000001). The parameter sets that

show more separation in the spheroid have higher bacterial load in the traditional cultures

compared to their paired spheroid simulations. This would suggest that those parameter sets

rely on a lot of structure to be able to control bacteria, because when those parameters are used

to simulate the traditional well-mixed conditions, the bacteria are not as well controlled. In

contrast, those parameter sets that don’t have a lot of separation, do equally well in controlling

bacteria in both the spheroid and traditional. Parameter sets with less separation resemble the

traditional organization, so similar results are expected. Thus, our simulations suggest that

there are two different ways that the model can control the bacteria–one is structure dependent

and the other is not. This aligns well with the experimental results as cells from the same

patient can either 1) control bacteria in both the traditional and spheroid culture or 2) only

control bacteria in the spheroid.

The spatial organization of cells within a spheroid also impacts aggregate macrophage and

T cell activation. The separation measure positively correlates with activated macrophage

count (ρ = 0.31, p< 0.000001), activated infected macrophage count (ρ = 0.42, p< 0.000001),

total STAT1 macrophage count (ρ = 0.31, p< 0.000001), and total activated CD8+ T cells (ρ =

0.17, p< 0.001). Increasing separation is therefore associated with more macrophage, infected

macrophage, and CD8+ T cell activation.
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Fig 6. T cell infiltration into macrophage core of spheroid. Example simulations with a) extensive and b) limited T

cell infiltration into the macrophage core. A slice through the center of the spheroid is shown at simulated day 6, or the

1440th six-minute time step. The number in the top right is the Repast time step, and the number in the bottom left is

the simulation number. c) Mean and standard deviation radial density of macrophages and T cells (in numbers of grid

squares). Runs are sorted by mean minus one standard deviation (μ−σ) of the T cell distance from the center of the

spheroid. d) Mean and standard deviation radial density of macrophages and T cells normalized to the initial size of

the macrophage spheroid. The black line represents the initial size of the full spheroid, which varies due to differences

in the sphere efficiency. Runs are sorted by mean minus one standard deviation (μ−σ) of the normalized T cell distance

from the center of the spheroid.

https://doi.org/10.1371/journal.pone.0299107.g006
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Taken together, these results illustrate that our simulations produce a wide range of out-

comes that are consistent with the experimental data. Our findings suggest that differential

immune mechanisms can control bacterial growth in a spheroid structure dependent or inde-

pendent manner. Our results also support the hypothesis that spheroid structure enables

important anti-bacterial immune mechanisms such as macrophage STAT1 activation and

CD8+ T cell activation.

Uncertainty analysis suggests that drug screening and macrophage

activation mechanism investigations could yield different results between

in vitro models

LHS-PRCC analysis is performed on the initial large LHS sweep to quantify how uncertainty

in the parameters impacts uncertainty in the outputs of both the spheroid and traditional sim-

ulations. At day 2, before the T cells have been added to the simulation, the spheroid and tradi-

tional simulations show similar responses to changes in parameters (Fig 7). Total bacterial

count is inversely correlated with the doubling time of the intracellular bacteria and the killing

ability of the resting macrophages. This is expected since all the bacteria at the beginning of

the simulation are intracellular. Lower doubling times of these bacteria, which is equivalent to

faster growth rates, lead to more bacteria.

Before the addition of T cells, resting macrophages are responsible for all of the bacterial

killing. Cytotoxic CD8+ T cells have yet to be added to the culture, and T cells are required to

fully activate macrophages. Mtb killed by resting macrophages accounts for all of the killing

and closely aligns with the total Mtb count. Base killing probability is therefore, as expected,

negatively correlated with total Mtb.

Total NF-κB activated macrophages is the only other output, besides total bacterial

count, showing significant correlations with parameters before day 2. NF-κΒ signaling

comes from TNF-α or bacteria and is required for total activation. Total NF-κB activated

macrophages are correlated to NF-κB span, base killing probability, infected macrophage
TNF secretion, and macrophage population max lifespan in both spheroid and traditional

simulations. NF-κΒ span is the length of time that NF-κB stays active after receiving the ini-

tial signal, so the longer this time period is, the more NF-κB activated macrophages there

are. When base killing probability is lower, fewer bacteria are killed, and more bacteria and

infected macrophages are available to activate NF-κB. Higher TNF-α secretion from

infected macrophages also leads to more activation. Lastly, longer macrophage lifespans

mean more macrophages are alive to be activated.

After the T cells are added, the total bacteria count is more dependent on CD4+ T cell

parameters. The intracellular doubling time and base killing probability are both still nega-

tively correlated with total bacteria count. The rest of the significantly correlated parameters

are associated with CD4+ T cells and STAT1 activation. Fewer TB-specific CD4+ T cells, less

CD4+ T cell activation, and more CD4+ deactivation all reduce the amount of activated CD4

+ T cells indirectly leading to more bacteria. Higher threshold for STAT1 activation by IFN-γ,

higher degradation rate for IFN-γ, and less CD4+ T cell IFN-γ secretion all lead to less macro-

phage STAT1 activation. Again, this will indirectly lead to more bacteria.

With the inclusion of adaptive immune cells, the responses of the spheroid and tradi-

tional simulations also diverge more. For bacterial counts, the only difference between

spheroid and traditional simulations is due to external bacteria. Lower external doubling

time leads to more bacteria only in the traditional simulation, as the population of external

bacteria is so small in the spheroid simulation. Macrophage activation is mostly dependent

on CD4+ T cell parameters in both models. However, increased macrophage activation in
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the traditional simulation is also correlated with increased macrophage lifespans and

decreased CD4+ T cell doubling time. This suggests that macrophage death might be limit-

ing the population size in traditional runs. Also, a larger CD4+ T cell population will lead to

more macrophage activation.

Fig 7. Impact of input parameters on simulation outputs at day 2 before the T cells are added and day 6. Correlation coefficients for spheroid and

traditional simulations are shown in the same heatmap with the traditional in the lower left-hand corner and the spheroid in the upper right. Insignificant

correlations are shown in white, while positive and negative correlations are shown with red and blue, respectively. Significance was determined with α = 0.01

and a Bonferroni correction.

https://doi.org/10.1371/journal.pone.0299107.g007
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CD8+ T cell activation is correlated with parameters related to CD4+ T cells, CD8+ T cells,

and IFN-γ. Differences between the two models include negative correlations between the

probability of deactivation/population doubling time and total CD8+ T cell activation in the

traditional simulations only. Less deactivation or more proliferation should therefore lead to

higher activated CD8+ T cell populations in the traditional simulations.

The only parameter-output relationship seen just in the spheroid simulation is a positive

correlation between the base killing probability and total NF-kB activated macrophages. This is

the opposite of the relationship seen at day 2. One hypothesis for this relationship is that more

killing initially leads to less macrophage activation and subsequent death later in the simula-

tion. This is supported by positive correlations between macrophage lifespans and total NF-kB

activated macrophages.

Despite these differences, the two models have many similar responses to changing parame-

ters. For example, the total activated CD4+ T cells show the same relationships for both the

spheroid and traditional simulations with regard to all parameters. The significantly correlated

parameters are all related to CD4+ T cells: fraction of TB-specific cells, activation probability,

deactivation probability, and doubling time.

Altogether, these results show that similar parameters are driving dynamics in the spheroid

and traditional models before day 2, but the influential parameters diverge after the addition

of T cells. We hypothesize that this diversion in influential parameters is due to the differing

relative location of the T cells to macrophages in traditional versus spheroid simulations.

These correlations can inform which in vitro model is most appropriate when designing exper-

iments. For example, the traditional simulation has a correlation between macrophage life-

spans and macrophage activation that is not seen in the spheroid (i.e., macrophage population
max lifespan and macrophage population max activated lifespan in Fig 7). This relationship

suggests that macrophage lifespans influence macrophage activation in the traditional culture,

so a spheroid might be more appropriate if the biological question under investigation relates

to the drivers of macrophage activation. The traditional simulation also has an inverse correla-

tion between external bacterial doubling time and total bacterial count, which suggests more

of the bacterial population is extracellular. This may lead to overestimation of drug efficacy in

screenings as intracellular bacteria may receive sub-therapeutic levels of antibiotics. Finally,

there is a correlation between IFN-γ parameters and resting macrophage killing in the tradi-

tional simulation (i.e., threshold for STAT1 activation IFN and degradation rate per second
IFN), which suggests less macrophage activation and more resting macrophage killing. IFN-γ
treatment or treatment with other immunotherapies could therefore have different impacts in

spheroid vs. traditional cultures. Our results therefore indicate that spheroid and traditional

cultures could have differential responses in relation to both mechanism investigations and

drug screenings.

Limitations in representing both spheroid and traditional cultures guide

future model iterations

The analysis done thus far is based on paired calibration. Pairing the simulations assumes that

everything except for the initialization and movement is the same between the spheroid and

traditional simulations. While this assumption allows us to reproduce most of the experimen-

tal range, the highest traditional culture CFU counts are unable to be recreated with paired

simulations. Traditional simulations with high levels of bacteria falling in this range are

observed, but the corresponding spheroid simulation did not meet calibration criteria. This

suggests that to reproduce these high traditional CFU results, some parameters (i.e., biological

mechanisms) may need to be different between the spheroid and traditional simulations. To
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investigate this possibility, we evaluate unpaired simulations that are allowed to have different

parameter values between traditional and spheroid simulations, but that are matched as closely

as possible for initial conditions.

Comparing the parameters between the spheroid and traditional simulations, nine parame-

ters are found to be significantly different between the matched traditional and spheroid simu-

lations (Fig 8). Some of the observed parameter differences can lead to fewer bacteria in the

spheroid directly or indirectly by increasing activation. The matched spheroid runs had higher

intracellular doubling time of the bacteria meaning the bacteria grow more slowly and a higher

resting macrophage killing rate leading to more bacterial killing as compared to the traditional

simulations. Therefore, the matched spheroid runs have fewer bacteria than the traditional

runs due to less intracellular bacterial growth and more killing, suggesting that macrophages

might be more efficient and inhibiting bacterial growth and killing bacteria in the spheroid

conditions.

The matched spheroid runs also have parameter differences that lead to more macrophage

activation. Lower threshold for STAT1 activation IFN in spheroid runs would give more

STAT1 activation of macrophages causing more overall macrophage activation. Lower deacti-
vation probability CD4 in spheroid runs would prolong CD4+ T cell activation giving these

cells more opportunities to activate macrophages. Lastly, lower degradation rate per second
TNF in spheroid runs maintains higher concentrations of TNF-α, leading to more NF-κB acti-

vation of macrophages.

The roles of the other parameters are less clear. Lower activated TB-specific CD4 fraction,

lower activated CD8 TNF secretion, and higher threshold for NF-κB activation TNF would all

suggest lower macrophage activation in the spheroid. Lower base movement probability CD4

Fig 8. Matched spheroid and traditional simulations. a) Traditional simulations that fell above the paired range and matched spheroid simulations. b)

Significantly different parameters between the set of high traditional simulations and matched spheroid simulations.

https://doi.org/10.1371/journal.pone.0299107.g008
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could delay activation of TB-specific T cells or could lead to less spatial interference by non-

TB-specific T cells in spheroids. As these simulations are matched after the fact, some of these

differences are potentially spurious.

These predicted differences could be tested in vitro. For example, bacterial metabolism,

markers of macrophage activation, and markers of CD4+ T cell activation could be measured

and compared between the spheroid and traditional cultures. Bulk RNAseq already suggests

augmented T cell activation in spheroid cultures [15]. These model-predicted differences also

guide future computational and experimental studies by highlighting hypothesized cellular

functional differences between traditional and spheroid cultures.

Discussion

In silico models have been used previously to represent multiple in vitro models for other dis-

eases. In 2006, Grant et al. used cellular automata to represent the growth of epithelial cells

in 4 conditions: 3D embedded, suspension, surface, and collagen overlay cultures [68]. They

were able to recreate the complex structure associated with each condition with a set of axi-

oms governing the interactions of cells, matrix, and cell-free space. The difference between

a 2D and 3D culture system has also been modeled to explore viral dynamics and drug tox-

icity. A network model of tumor cell infection by oncolytic viruses was simulated in a 2D

monolayer and 3D environment, which suggested that traditional mean field models over-

estimate how effective therapy would be [69]. Beyond this, infection in a 3D environment

was shown to have a smaller chance of tumor eradication, emphasizing the need for ideal

virus characteristics: fast replication and slow tumor cell killing. A virtual cell-based assay

was extended from 2D cultures to 3D spheroids to predict drug toxicity [70]. This model

was found to represent 3D in vitro models well, which show higher drug toxicity than 2D

monolayers. In silico models have further been used to compare in vitro models with in vivo
models. Hamis et al. showed that in vivo responses of LoVo cells to an anti-cancer drug

(AZD6738) could be qualitatively predicted using an in silico spheroid model with parame-

ters determined using an in vitro monolayer [71].

In all instances mentioned above, space is explicitly modeled to gain insight into the system

behavior in different configurations. The spatial configurations alter the dynamics of the sys-

tem and change important predictive outcomes, such as drug response. Similar to these prior

works, we explicitly include space to model two different in vitro culture conditions. We show

that spatial organization alone can change the dynamics of Mtb infection in vitro. We use our

simulations to predict which model outcomes are likely to be affected by spatial organization

(e.g., macrophage activation and bacterial killing) and thereby guide experimental decisions.

Here we are using a single in silico framework to represent separate traditional and spheroid

cell cultures. A separate problem, representing one in vivo or in vitro system with both a 2D

and 3D computational model, has also been addressed [72,73]. Models of in vivo granulomas

and in vitro spheroids suggest that 2D representations of 3D systems (i.e. slice through center

of structure) have similar results and save computational time [72,73].

Granulomas are spatially organized structures, with a core of macrophages and a cuff

including CD4+ and CD8+ T cells [74]. The center of the granuloma is a more pro-inflamma-

tory environment, while the cuff has more anti-inflammatory cytokines [75,76]. Higher fre-

quencies of pro-inflammatory cytokines or lymphocytes are correlated with lower bacterial

burden in granulomas, but it is suggested that a balance of pro- and anti-inflammation is nec-

essary to limit both bacterial growth and pathology [76–78]. While we don’t explicitly include

anti-inflammatory pathways in this preliminary model, our model predictions are well-aligned

with observed patterns of pro-inflammatory signaling within granulomas. Specifically,

PLOS ONE Agent-based modeling of in vitro tuberculosis infection models

PLOS ONE | https://doi.org/10.1371/journal.pone.0299107 March 22, 2024 23 / 32

https://doi.org/10.1371/journal.pone.0299107


macrophage activation in our simulations is limited by the interactions between IFN-γ and

macrophages which begins at the periphery of the macrophage core and moves inwards. This

result aligns with the observed pattern of p-STAT1 seen in peripheral regions of granulomas in

immunohistochemistry of NHP granulomas [79]. Previous computational modeling also sug-

gests the importance of IFN-γ producing T cells and interactions between macrophages and T

cells for bacterial control [80]. It emphasizes the importance of spatial organization as interac-

tions between CD11c+ macrophages and T cells are limited due to the cellular distributions

within granulomas and the recruitment of non-specific T cells. While the structure of our

spheroid simulations is artificially constructed rather than emerging from immune interac-

tions, the similar spatial patterns for cell organization and activation suggest that the simula-

tion reproduce this key aspect of granuloma organization.

The in vitro cultures we are simulating primarily represent cellular granulomas, rather than

caseous or necrotic granulomas. Necrotic granulomas are important drivers of active disease

and make treatment challenging as many drugs struggle to penetrate into the necrotic cores of

these granulomas [81]. While our in vitro spheroids don’t have a fully necrotic core, they do

show early markers of necrosis [15]. Nonnecrotic and necrotic alveolar macrophages were

seen in the center of the spheroid, as shown with the cytoplasmic localization of HMGB1. This

necrosis was seen without experimentally induced hypoxia, which was necessary for necrosis

in traditional culture. This spheroid culture and our in silico model thus would have utility for

drug screenings mainly for cellular granulomas, but also as an early-stage necrotic granuloma.

Screening for drug candidates in ex vivo caseum or caseum surrogates could be paired with

spheroid cultures to ensure efficacy in the necrotic core in addition to the spheroid structure

[81,82].

The evolution of a single granuloma can be followed over time in other experimental sys-

tems. Sequential imaging with [18F] fluorodeoxyglucose positron emission tomography and

computed tomography has been used to follow disease progression in NHP and track response

to TB treatment in humans [83–85]. This imaging gives information at the lesion-to-tissue

scale. Florescent in vivo microscopy of zebrafish embryos has given insight into the cellular

level dynamics [86]. Imaging after infection of zebrafish embryos with Mycobacterium mari-
num allows tracking of infected macrophages providing information about early granuloma

formation and dissemination. Recently, a method to study zebrafish granulomas ex vivo called

Myco-GEM was created that allows continuous light sheet imaging for upwards of 8 hours

[87]. With the tagging of cytokines, specific cells, or bacteria the inflammatory state of the

granuloma, granuloma dynamics, cell movement, and bacterial load can be longitudinally

examined. Our computational model similarly provides dynamic information at the cellular

scale. Beyond this, we gather information about aggregate cell counts, cell activation status,

and cytokine concentrations without perturbing the observed system. Thus, our computa-

tional model complements in vitro experimental models, by providing both high-resolution

spatiotemporal information and aggregate information about host-pathogen interactions

within individual granuloma structures. Simulations with virtual perturbations and knockouts

can then quickly be run to examine how these interactions could contribute to bacterial sur-

vival or elimination.

TB is a very heterogeneous disease. There are many different clinical outcomes: bacterial

clearance, asymptomatic latent infection, and active infection [78,88]. These host-level out-

comes are dependent on a population of granulomas, which can be very heterogeneous even

within the same lung leading to bacterial dissemination, control, or clearance [78,85,88,89].

Our in vitro models are more controlled with an established structure and proportion of cell

types. Nonetheless, the in vitro model still showed a large range of bacterial control, which we

recreated in silico. We also see heterogeneity in T cell localization in silico. While this is not
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seen as much in vitro, there is some variability in vivo. Early granulomas have T cells dispersed

throughout, while well-developed ones are more structured with a ring of T cells on the

periphery [90]. Being able to reproduce a diversity of granuloma organizations will allow us to

explore how different microenvironments contribute to granuloma trajectory and treatment

response.

LHS-PRCC has been used to look at correlations between inputs and outputs in simulations

of in vivo NHP granulomas. While our time points don’t line up with the longer in vivo simula-

tions, we can compare parameter influences before and after adaptive immunity has been

added. In the first iteration of the NHP granuloma simulation, there are similarities to our

model. This model from literature shows a strong positive correlation between intracellular

growth rate and total extracellular bacteria during early infection [18]. As infection progresses

extracellular bacteria in the simulated NHP granulomas become negatively correlated with T

cell parameters, namely recruitment, movement, and activation of macrophages.

Our primary output of interest, total bacteria, shows a similar relationship with the intracel-

lular growth rate before the addition of the adaptive immune system. Some comparisons

between this in vivo simulation and our in vitro simulation are limited because in vivo mecha-

nisms are missing in vitro, like cellular recruitment. However, we see an increased importance

of T cell parameters on our output of interest after adaptive immunity is initiated as in this lit-

erature model. In our short-term assembled spheroids, we see similar parameter influences to

in vivo granulomas. Therefore, some comparisons can be made not only between our two in
vitro models, but also in vivo simulations, to be able to rationally identify good use cases for

various in vitro models.

Our model is not without limitations. The only PBMC-derived CD3+ T cells simulated are

CD4+ and CD8+ T cells. Some subsets of T cells (e.g., regulatory and γδ T cells) are excluded

from the model for the purpose of simplification. Simplifications are also made to the macro-

phage activation pathway. The model only incorporates M1 macrophage polarization/activa-

tion represented as a 2-step pathway, and M2 macrophage polarization is not included.

Additionally, phenotypic variance of the bacteria was left out, even though there is a known

persistence of slow-growing Mtb in response to environmental stresses [22]. While many of

the parameters are varied between all cells within a population, some are held constant across

the entire population of cells. This model construction choice was made for simplicity but

could be changed in the next model iteration. Cellular heterogeneity could be represented with

more detail by varying secretion rates, maximum generations for T cells, and thresholds for

activation, movement, and cellular dysfunction. Varying secretion rates would better represent

the distribution of secretion by immune cells [39]. Xue et al. 2015 suggest that only 5% of cells

are responsible for 60% of all TNF-α production [39]. We expect that the inclusion of this het-

erogeneity would further highlight the importance of spatial layout as there would be a smaller

population of cells secreting cytokines. We expect that changes in generation size or thresholds

would increase variance in outputs without changing the average behavior. Additionally, our

model has been calibrated to be used with cells from patients with presumed active TB. The

same cells derived from an uninfected patient or a patient with latent TB might behave differ-

ently, and the model would need to be recalibrated to different data. These assumptions can be

reassessed as we iterate this model to use it in answering new biological questions.

While our in vitro model can represent a majority of the characteristics that could be incor-

porated into a complex in vitro Mtb model, it still diverges from the idealized. No explicit envi-

ronmental impact on the cells in the simulation is included. It’s known that plastic and glass

plates differ from in vivo environments, and as such extracellular matrix (ECM) components

like collagen have been incorporated into in vitro models. ECM can also change the lifespan

and movement of the cells and sequester chemokines. We plan to incorporate ECM in future

PLOS ONE Agent-based modeling of in vitro tuberculosis infection models

PLOS ONE | https://doi.org/10.1371/journal.pone.0299107 March 22, 2024 25 / 32

https://doi.org/10.1371/journal.pone.0299107


iterations. While primary human cells were represented, the bacteria represented within this

model is BCG, a model organism for Mtb, rather than Mtb itself. BCG was used for prelimi-

nary analysis as it can be used outside of a BSL3 laboratory. Switching between BCG and Mtb
could be done by adjusting parameter values, but more detailed pathways would need to be

added if specific virulent strains were of interest.

Conclusion

In summary, we show a novel application of ABMs to in vitro TB infection cultures. In doing

so, we introduce a framework to potentially integrate results from and compare multiple in
vitro models. Our findings identified the characteristics in which traditional and spheroid cul-

tures differ, and how these in vitro models could be further used to narrow down biologically

important mechanisms. We find that the timing of macrophage activation is limited by T cell

interactions and macrophage location, that bacteria can be controlled in a structure dependent

or independent manner, and that certain investigations (e.g., drug screening and macrophage

activation mechanism investigations) could produce different results in the traditional and

spheroid models.

Supporting information

S1 Fig. Distribution of parameters in calibrated runs. The ranges of the parameters have

been normalized from 0 to 1 with the bounds representing the minimum and maximum of the

ranges listed in Table 1.

(TIF)

S2 Fig. Scaled-up simulations. Spheroids that have been scaled to 1/2, 1/5, 1/10 (original), 1/

20, and 1/50 size of the experimental culture were simulated using the calibrated parameters.

Outputs for the scaled spheroid and traditional simulations were compared with the 6 outputs

used for calibration: spheroid CFU change with zoomed y-axis (a), traditional CFU fold

change (b), spheroid cell viability (c), traditional cell viability (d), spheroid cell count multi-

plied by one over scaling factor (e), and traditional cell count multiplied by one over scaling

factor (f). Red regions represent the experimental ranges. As expected, the outcomes of the tra-

ditional simulation are similar regardless of how much it was downscaled. The spheroid simu-

lation showed similar outcomes for normalized cell count and percent viability, but CFU fold

change varied. Smaller simulated spheroid had lower CFU fold changes suggesting they are

better able to control bacteria. These dots represent 398 runs, but one run is missing from the

1/2 spheroid simulation population and three runs are missing from the 1/2 traditional simula-

tion population due to these runs exceeding wall time limits with maximum memory and time

allocated.

(TIF)

S3 Fig. Scaled-up simulations that maintain CFU fold changes. Subset of simulations that

fall within spheroid and traditional CFU fold changes for both 1/2 and 1/10 scaled runs. CFU

fold changes for spheroid simulations (a) and traditional simulations (b). Red regions repre-

sent experimental ranges. Time courses of bacteria count for traditional (lighter green) and

spheroid (darker blue) show similar dynamics across scales (c-g).

(TIF)

S4 Fig. Average radial distribution. The radial distribution of a) macrophages, CD4+ T cells,

and CD8+ T cells; b) base and activated T cells; c) NF-κB and STAT1 activated macrophages;

d) base and activated macrophages. The y-axes represent the radial density of cells, which is

calculated by number of cells at a given distance from the center of a spheroid divided by the
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volume of the spherical shell. All runs have been averaged with error bars representing stan-

dard deviation.

(TIF)

S5 Fig. Flowchart of the simulation. After initialization, the simulation consists of a loop of

agent secretion, diffusion, agent behaviors, and an agent watcher. Overview of actions is

shown, and more detail can be found in the Repast model code at https://github.itap.purdue.

edu/ElsjePienaarGroup/TB-in-vitro release v1.0.1.

(PDF)

S1 File.

(DOCX)
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