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Abstract

Understanding the dynamic deformation pattern and biomechanical properties of breasts is

crucial in various fields, including designing ergonomic bras and customized prostheses, as

well as in clinical practice. Previous studies have recorded and analyzed the dynamic behav-

iors of the breast surface using 4D scanning, which provides a sequence of 3D meshes dur-

ing movement with high spatial and temporal resolutions. However, these studies are limited

by the lack of robust and automated data processing methods which result in limited data

coverage or error-prone analysis results. To address this issue, we identify revealing inter-

frame dense correspondence as the core challenge towards conducting reliable and consis-

tent analysis of the 4D scanning data. We proposed a fully-automatic approach named Ulta-

dense Motion Capture (UdMC) using Thin-plate Spline (TPS) to augment the sparse land-

marks recorded via motion capture (MoCap) as initial dense correspondence and then recti-

fied it with a sophisticated post-alignment scheme. Two downstream tasks are

demonstrated to validate its applicability: virtual landmark tracking and deformation intensity

analysis. For evaluation, a dynamic 4D human breast anthropometric dataset DynaBreas-

tLite was constructed. The results show that our approach can robustly capture the dynamic

deformation characteristics of the breast surfaces, significantly outperforms baselines

adapted from previous works in terms of accuracy, consistency, and efficiency. For 10 fps

dataset, average error of 0.25 cm on control-landmarks and 0.33 cm on non-control (arbi-

trary) landmarks were achieved, with 17-70 times faster computation time. Evaluation was

also carried out on 60 fps and 120 fps datasets, with consistent and large performance gain-

ing being observed. The proposed method may contribute to advancing research in breast

anthropometry, biomechanics, and ergonomics by enabling more accurate tracking of the

breast surface deformation patterns and dynamic characteristics.

Introduction

The human breast is a complex organ that undergoes significant deformations during exercise

and daily activities, which can cause discomfort or even injury [1]. Sports bras have been
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developed to protect the breast tissues from deformation [2–4], e.g. reducing bouncing, sag-

ging, and swinging. However, sports bras exert a high degree of pressure onto the wearer,

which may have adverse effects [5]. To develop sports bras that effectively limiting breast

movement while minimize stress on the breast tissues, it is crucial to gain a comprehensive

understanding of the breast movement and deformation patterns.

With the development of motion capture technique (MoCap), the dynamic behavior of

breast anatomical landmarks has been captured and analyzed in various studies, confirming

that the breast move in complex 3D patterns due to their non-uniform soft-tissue masses

[6–8]. However, these studies have 3 intrinsic limitations: (i) MoCap systems rely on physical

markers attached to anatomical landmarks on the human body, which limits the number of

landmarks that can be tracked; (ii) movements and deformations of unmarked points are not

captured or analyzed, i.e. the sophisticated information of the whole surface deformation is

discarded; (iii) it remains unclear whether sparse and discrete landmarks are sufficient to fully

capture the complexity of breast movement.

On the other hand, three-dimensional (3D) scanning technology can provide information

on the entire surface area of the scanned objects and has been applied in anthropometry stud-

ies of the human body. Major types of 3D scanning systems are laser based, structure-light

based, and multi-view stereo based [9]. All of these techniques require the subject to maintain

a specific static position during scanning, after which the surface is reconstructed from the col-

lected signals and exported as mesh data—consisting of an array of vertices, edges and faces to

represent the surface topology. With mesh data, post-processing, feature extraction, and mea-

surements [10] can be implemented to extract the geometric information of interest; for exam-

ple, providing precise and reproducible data for assessing bra fit problems [11–14]. However,

while this method provides rich information on the subtle geometric features of the surface, it

is limited to static postures and cannot provide dynamic information. This limitation hinders

its application in research on dynamic movement and deformation patterns of the breast.

Some researchers have attempted to compensate for this limitation by having subjects main-

tain intermediate postures during scans (from a few seconds to a few minutes) [15–17]. How-

ever, this approach presents challenges for the subjects who must hold these postures and may

not accurately reflect realistic movements in free motion.

The development of 3D scanning technology in recent years has made it possible to capture

a 3D image within milliseconds, enabling the continuous scanning of human subjects during

dynamic activities, i.e. 4D scanning [18]. It extends 3D scanning by adding an extra dimension

—time. The output of 4D scanning is typically a sequence of mesh data that represents the

scanned surface at different times, as shown in Fig 1. Commercial systems with high scanning

rates and accuracy are now available, such as 3dMDbody scanning system (3dMD Ltd.,

Atlanta, U.S.), which can scan up to 120 frames per second (fps) with an error under 0.7mm

(https://3dmd.com/products/#3dmdbody-system-product-specifications). This capability is

Fig 1. 4D scanning mesh sequence recorded in the experiment. From left to right are frames of 0.0s, 0.1s, . . ., 1.0s.

https://doi.org/10.1371/journal.pone.0299040.g001
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adequate for capturing subtle deformation patterns of the breasts, and various studies have

already begun utilizing this informative modality [19–21]. However, despite the advancement

in 4D data collection, there remain two major challenges associated with data processing: (i)

the lack of automation schemes: with a scanning rate up to 120 fps (or 7200 frames per min-

ute), manually processing the generated data to extract critical anthropometric measurements

is unacceptable. Current research [22–25] usually only extracts a few frames from each scan

for processing, leading to discarding subtle information about dynamic procedures and dimin-

ishing the value of high-speed scanning capabilities; (ii) the lack of accurate and consistent

method to reveal the dense correspondence between frames. While adjacent frames corre-

spond to each other, i.e. the former frame transforms to the next frame, the exact correspon-

dence between vertex points in these frames is unclear. The lack of dense correspondence

poses a challenge for developing automated methods to process 4D data, such as tracking the

trajectories of anatomical landmarks during dynamic activities.

The estimation of dense correspondence between vertices points of different frames is a

core challenge in developing effective methods for 4D data processing. In this paper, we pro-

pose a fully-automatic approach named Ulta-dense Motion Capture (UdMC) to reveal such

correspondence by augment the sparse landmarks obtained from MoCap as initial dense cor-

respondence and then rectified it with a sophisticated post-alignment scheme. Based on a

dynamic human breast anthropometric dataset DynaBreastLite constructed in this research,

comprehensive estimation of accuracy and efficiency was conducted to evaluate the proposed

method’s applicability in dynamic breast deformation pattern research. The results show that

the proposed method significantly outperforms the prior baselines in terms of accuracy, con-

sistency, and efficiency. This approach enables tracking, describing, and analyzing dense breast

deformation with comprehensively evaluated accuracy, thus providing researchers with an

accurate tool to investigate complex breast dynamics during various activities such as exercise

or daily movements. To the best of our knowledge, this is the first systematic approach devel-

oped for whole-surface dense tracking of breast motion based on 4D scanning data which has

significant potential for breast biomechanics, anthropometry, and ergonomics studies, as well

as for designing more comfortable and supportive wearable products for female users based

on advanced understanding of breast biomechanics.

Related works

4D scanning in anthropometry and ergonomics research

4D scanning systems have been used in ergonomic and anthropometry research to investigate

shape changes and deformation patterns during various activities. While the foot [19, 20, 25,

26] and face [21] have received more attention, there is a growing interest in applying 4D scan-

ning technology to analyze body and breast dynamics [22–24]. Although only a limited num-

ber of studies have explored this area, it has been recognized as having great potential for

ergonomics studies and sportswear design [18]. By capturing rich information on the dynamic

changes, interactions, and properties of the human body during active movement that are not

available through other modalities, 4D scanning can provide valuable insights into breast

dynamics analysis.

However, as has been discussed in the Introduction, the lack of an accurate and consistent

method to reveal the dense correspondence—which refers to identifying the corresponding

points across different frames of scans—has limited the feasibility of developing an automatic

data analysis scheme capable of processing the massive volumes of data generated by 4D scan-

ning. This, in turn, has led to acute limitations in applying 4D scanning in anthropometry and

ergonomics research. For example, while commercial 4D scanners can scan up to a hundred
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frames per second, [22, 23] only extracted 3 frames from each gait cycle for analysis, discarding

all data of other frames. In another research, [24] proposed a simple automatic analysis scheme

that slicing the torso mesh horizontally into 50 layers and then dividing each layer into 360 sec-

tors representing angles ranging from -180˚ to 180˚, with one point extracted from each sector.

Points from the same slice of layer and sector are regarded as corresponding points among dif-

ferent frames, and their movement is calculated accordingly. However, [24] admitted that

such a scheme may be error-prone since the points with identical height-angle coordinates

across different frames are considered to represent the same point on the surface when they

may not actually do so.

Surface matching and registration

In a broader context, the task of identifying dense correspondence between different frames of

a 4D mesh sequence falls within the scope of surface registration. This topic has been exten-

sively studied and applied in various fields such as robotic navigation [27], autonomous vehi-

cles [28], augmented reality [29], and medical imaging [30, 31], due to their common needs to

reveal the correspondence of two 2D/3D images that are recorded in different times or

perspectives.

There are two main types of surface registration methods: rigid and non-rigid [32]. Rigid

surface registration is comparatively well-developed, as matching rigid objects is easier than

those under free-form deformation. However, this method is not appropriate for breast shape

registration due to the highly flexible nature of breast tissue during active movement. For reg-

istration of non-rigid surfaces under free-form deformation, various types of approaches have

been proposed. Iterative Closest Point (ICP) [33] iteratively matches two point sets to find

their optimal alignment, which was then extended to nonrigid registration by [34] and has

been adopted by various human scan related studies [10, 35]. Feature-based methods assume

that local surface features remain consistent across deformations and utilize such feature to

reveal the dense correspondence. However, designing geometric features based on this

assumption may not generalize well to highly flexible free-form deformations like breasts. Sta-

tistic model-based registration approaches, such as Coherent Point Drift (CPD) [36, 37],

model the matching of non-rigid surfaces in a probabilistic fashion and fine-tune the estimated

correspondence iteratively. Despite being proposed early on, CPD is still considered one of the

state-of-the-art methods [38]. More recently, Bayesian Coherent Point Drift (BCPD) reformu-

lated CPD in a Bayesian setting to improve robustness and accuracy [39].

Surface registration with auxiliary modalities

Revealing dense correspondence between surfaces remains challenging when dealing with

highly flexible surfaces lacking recognizable features, such as human breasts. Previous studies

have attempted to address this issue by incorporating information from other modalities [40,

41]. Introducing sparse key points (landmarks) information has been proved to be an effective

strategy for solving a wide range of challenging 3D computer vision tasks [42, 43]. [42] con-

structed a monocular hand 3D reconstruction dataset using a weakly-supervised approach to

first detect hand key points and then iteratively fitting them with the deformable 3D model,

leading to state-of-the-art 3D reconstruction and pose estimation accuracy at that time. [43]

trained a Convolution Neural Network (CNN) that can detect 500+ dense landmarks on the

face for head 3D reconstruction. However, these works mainly focus on the 3D reconstruction

of a single scene, while our focus is revealing the inter-frame correspondence between different

frames within a sequence of reconstructed 3D scenes. In this regard, [44] propose Extended

Coherent Point Drift (ECPD), which incorporates sparse prior correspondence information
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within the CPD framework to provide extra guidance for the registration. Apart from directly

introducing prior correspondence, several studies [40, 45, 46] use texture information to pro-

vide additional guidance or rectification for registration. FAUST [40] and Dynamic FAUST

[46] augment the texture on the body by painting high-frequency patterns on the subject’s

skin, resulting in more accurate and robust registration compared to methods that only utilize

geometric information [47]. However, these methods require time-consuming and uncom-

fortable skin preparation before and after scanning. Additionally, Due to the lack of ground-

truth data, these methods are evaluated based on some checking criteria [46], which may not

be reliable enough for breast anatomical and biomechanics research purposes. Addressing this

issue, DynaBreastLite, a lightweight dynamic 4D human breast anthropometric dataset was

constructed in this research, providing ground-truth anthropometric landmarks trajectories

obtained from MoCap.

Method

The construction of DynaBreastLite dataset

Data acquisition. To obtained real-world data of dynamic breast deformation during

active motion, we recruited one female participant on December 29, 2021 who completed her

participation on the same day. Prior to involvement in the study, written consent was obtained

from the participant. The experiment received ethics approval from The Hong Kong Polytech-

nic University Ethics Committee (HSEAR20210305003). To record the anatomical landmarks

for motion model construction, 30 pearl hard base markers were attached to anatomical land-

marks around the breasts that could be tracked by the MoCap system as well as recorded by

optical cameras and be further aligned to the reconstructed meshes as texture. Comparing

with Dynamic FAUST [46] that utilizing painted feature on the skin, attaching markers is

comparatively time-efficient and easier to cleanup after scanning. Further more, it can provide

accurate ground-truth trajectories for registration accuracy evaluation.

A 3dMDbody scanning system (3dMD Ltd., Atlanta, U.S.) was adopted for 4D scanning,

with 30 optical cameras installed around the scanning area to collect images from various per-

spectives and reconstruct the dynamic surface mesh of the human body based on multi-view

stereo. A Vicon motion capture system (Vicon Motion Systems Ltd., Oxford, U.K.) was also

installed at the same area to track the landmarks’ spatial trajectories. The scanning rates of 4D

scanning and motion capture were set at 120 and 100 fps, which are the highest scanning rates

of both systems. During the experiment, the subject was scanned by these two systems simulta-

neously under two conditions: static standing and 6km/h walking on a treadmill in braless-

condition. The static standing data was used to calibrate the two systems to the same coordi-

nates system, as discussed in Alignment of 4D scanning and MoCap data while the later one

was used to construct theDynaBreastLite dataset. After scanning, the mesh sequence generated

by the 3dMDbody system and the landmark-trajectories data were collected for further

processing.

Alignment of 4D scanning and MoCap data. There are two elements to be considered

when aligning the 4D scanning and the MoCap data: the coordinates systems and the record-

ing start times of these systems are different, leading to the requirements of performing spatial

and temporal alignment. To align two systems spatially, the static standing data was used since

in this case the temporal alignment issue can be neglected:

Approach. Spatial alignment of 3dMD and Vicon data

1. Landmark positions was obtained from the first frame of Vicon data and manually labelled

from the first frame of 3dMD mesh.
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2. In rough alignment stage, axis-rotation Raxis was performed on the Vicon landmarks to ori-

ented them to roughly the same direction as the 3dMD landmarks.

3. In refined alignment stage, the Rigid CPD algorithms [37] was used to estimate the rotation

Rfine, translation T, and scaling s to transform the Vicon landmarks to the exact positions of

3dMD landmarks.

4. Eventually, the spatial transformation from the Vicon to 3dMD coordinates system was

obtained as:

x3dmd ¼ sRfineRaxisxvicon þ T ð1Þ

For each specific scanning trail, since there may be a small latency between the start times

of two systems, it needs to be aligned temporally:

Approach. Temporal alignment of 3dMD and Vicon data

1. Reference points extraction For each frame of 3dMD mesh, compute the local gradient of

texture gray scale is computed for each vertex:

Dxg ¼ max
x02N 100ðxÞ

kgðxÞ � gðx0Þk
1

kx � x0k2 þ 10� 5 ð2Þ

where g(x) is the gray scale value at vertex x, N 100ðxÞ is the nearest 100 vertices to x. The

vertices with local gradient exceeding the mean gradient by more than 2 times of standard

deviation are extracted as reference points. Since the texture gray scale level nearby the

landmarks changes rapidly, the reference points will contain most of the vertices belonging

to the landmarks.

2. The offset δ between the two systems defines how to convert the Vicon data timestamp tvicon
to the 3dMD data timestamp t3dmd, i.e. t3dmd = tvicon + δ. With a specific δ, the alignment

distance between two systems can be estimated:

(a). Interpolate the Vicon data as continues trajectories via quadratic interpolation so that it

can be resampled at any timestamp during the recording period.

(b). For each frame of 3dMD mesh, convert its timestamp to tvicon and resampled the Vicon

landmarks positions with this timestamp. The averaged distance between the resampled

landmarks and their nearest reference points from the mesh is obtained as the alignment

distance for this frame.

(c). For the whole period, the averaged alignment distance of all frames is obtained as the

overall alignment distance.

3. The optimum time offset is obtained by grid search: [−10, 10] is sliced into 100 intervals to

obtained the optimum offset δ1 = −0.30 s, and then the [δ1 − 0.5, δ2 + 0.5] is sliced into 100

intervals to obtained the final optimum offset δ2 = −0.25 s, which already provides a satisfy-

ing alignment between the 3dMD and Vicon data, as shown in Fig 3.

With the aligned MoCap data as the ground-truth landmark labelling to the 4D scanning

data, a lightweight dynamic 4D human breast anthropometric dataset was constructed, referred

to as DynaBreastLite. The dataset can be accessed via https://huggingface.co/datasets/liu-

qilong/dyna-breast-lite. Noted that due to privacy concerns, the texture of the mesh is withheld.

This dataset contains 30 anthropometric landmarks in 121 frames of 3D reconstructed scenes,
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accumulating to 121 frames of 3D meshes and 3630 ground-truth landmark coordinates in

total. The data instances in the dataset are referred to using this convention: the i-th frame of

mesh is denoted as mesh matrix VðiÞbody 2 R
3�NðiÞ

, where the j-th column vðiÞj denotes the 3D coor-

dinates of the j-th vertex, with superscript denoting the frame index. The attached landmarks

of this frame is denoted as landmark matrix CðiÞ 2 R3�K , where its k-th column cðiÞk denotes the

3D coordinates of the k-th landmarks, with subscript denoting the landmark index and super-

script denoting the frame index. Noted that the landmarks in different frames with the same

landmark index are corresponding with each other, i.e. the landmark cðiÞk is directly correspond-

ing to cðiþ1Þ

k in the next frame. Landmarks index and their spatial trajectories are shown in Fig 2.

Automatic breast cropping. To facilitate efficiency of dense breast motion estimation, as

a data preprocessing step, the breast area was automatically cropped out based on the contour

landmarks of the breasts:

Approach. Automatic breast cropping

1. For the i-th frame of mesh, the landmarks cðiÞ0 ; c
ðiÞ
1 ; c

ðiÞ
10; c

ðiÞ
17; c

ðiÞ
25; c

ðiÞ
26 are selected as breast area

contour. The landmark indices is combined as a set K = {0, 1, 10, 17, 25, 26}

2. Upper bound cropping

Calculate the maximum height hmax of all contour landmarks, crop out the mesh part

under the level plane at height hmax + ψ, where ψ is an adjustable factor for slightly enlarging

the cropping area. Appropriate ψ is empirically selected as 30 mm.

3. Lower bound cropping

Calculate the minimum height hmin of all contour landmarks, crop out the mesh part above

the level plane at height hmin − ψ.

4. Estimate the approximate breast plane based on the contour landmarks:

(a). The center point of all contour landmarks cðiÞo ¼
1

6

P
k2Kc

ðiÞ
k is regarded as one point on

the breast plane.

(b). In ideal scenario, all contour landmarks are on the breast plane. In this case, the normal

vector n of the plane should be perpendicular to ðcðiÞk � cðiÞo Þ, which forms 4 linear equa-

tions ðcðiÞk � cðiÞo Þ
Tn; k 2 K.

Fig 2. Experiment setting and landmarks setting. (a) the index of the anthropometric landmarks and (b) spatial

trajectories of the landmarks.

https://doi.org/10.1371/journal.pone.0299040.g002

PLOS ONE Ultra-dense Motion Capture: An exploratory full-automatic approach for dense tracking of breast motion in 4D

PLOS ONE | https://doi.org/10.1371/journal.pone.0299040 February 26, 2024 7 / 20

https://doi.org/10.1371/journal.pone.0299040.g002
https://doi.org/10.1371/journal.pone.0299040


(c). To exclude 0 vector from the solution space, an extra linear equation knk1 = 1 is added.

(d). In practical scenario, the contour landmarks may not coplane. Therefore, the 5 linear

equations are solved with least-square method and then rescale the solution as a unit vec-

tor, adopted as the optimized estimation of the norm vector n̂. Together with point cðiÞo ,

the breast plane is defined.

(e). For the sake of geometric completeness, the point cðiÞo is slightly moved towards the

inverse direction of the norm vector n̂: ĉo ¼ cðiÞo � cn̂. With ĉo; n̂, the breast plane is

estimated.

5. Crop the body mesh with the approximate breast plane and removed all disconnected parts.

Then the breast area of the mesh is extracted from the body mesh.

The i-th frame of the cropped out breast is denoted as mesh matrix VðiÞbreast 2 R
3�NðiÞ

. Auto-

matically cropped out breast area are shown in Fig 3.

Ultra-dense Motion Capture

To realistically construct the dense correspondence between different frames of mesh, each

frame of breast mesh is morphing to the next frame based on a landmarks guided TPS motion

model and a post-alignment scheme, as summarized in Fig 4.

Fig 3. Breast area cropped out based on contour landmarks. From left to right are frames of 0.0s, 0.1s, . . ., 1.0s.

https://doi.org/10.1371/journal.pone.0299040.g003

Fig 4. Flowchart of the mesh morphing and post-alignment process. It consists of two major steps: (1) TPS motion modelling based on sparse

anatomical landmarks, and (2) post-aligning the transformed mesh to the sophisticated 4D scanned geometry. In step (2), there are two sub-steps: (2a)

source mesh transformation and (2b) alignment to the target mesh, which results in an aligned displacement field.

https://doi.org/10.1371/journal.pone.0299040.g004
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Inter-frame mesh morphing and post-alignment. The radial basis function (RBF) is

commonly used to interpolate continuous fields from a sparse set of controlling point-value

pairs. One type of RBF, known as Thin-plate Spline (TPS) [48], is derived from the physical

analogy of bending a thin sheet of metal and offers several advantages: (i) it can estimate a

smooth value field with infinite differentiability; (ii) its energy function has a clear physical

explanation; and (iii) no manual fine-tuning of free parameters is required. TPS has been

widely applied to estimating and describing non-rigid transformations [49, 50]. Considering

these advantages, we chose to adopt the TPS kernel for constructing the motion model.

With the sparsely labelled landmarks cðiÞk ; k ¼ 1; 2; . . . ;K in the i-th frame as controlling

points and their corresponding landmarks in the next frame cðiþ1Þ

k ; k ¼ 1; 2; . . . ;K as the values

points, consisting a set of control point—value point pairs, the TPS motion model is con-

structed. Based on the motion model, an arbitrary point x’s corresponding point’s coordinates

in the next frame of mesh can be determined as:

x̂ðiþ1Þ ¼ f ðiÞðxðiÞÞ ¼ a0 þ aTxðiÞ þ
XK

k¼1

oi�ðkx
ðiÞ � cðiÞk kÞ ð3Þ

where a0, a, ωi, i = 1, . . ., K denotes the coefficients of the TPS model, k�k denotes the Euclid-

ean norm, and the function ϕ(�) denotes a pre-defined kernel function ϕ(r) = r2 log r. The coef-

ficients of the TPS model are solved with the constraints that inputting the landmarks cðiÞk the

corresponding values cðiþ1Þ

k should be the output, which constituting linear equations with

close-form solution. Implementation of TPS model and its solution is based on SciPy [51].

With the constructed f(�), each column of Vbreast is transformed to its approximated corre-

sponding coordinates in the next frame of mesh, resulting a mesh matrix VðiÞmorph. Although the

TPS motion model f (i)(�) can capture the general trend of movement of the breast based on the

labelled anatomical landmarks, it’s only a rough estimation based on sparse landmarks, which

doesn’t provide a comprehensive description of the sophisticated breast dynamic characteris-

tic. To introduce more sophisticated dynamic information to the motion model, the 4D scan-

ning sequence is used for post-alignment, i.e. V ðiÞmorph is further aligned with the target mesh

Vðiþ1Þ

breast : each column of VðiÞmorph is replaced by its nearest point from the target mesh based on

point-to-plane search [52], resulting in the aligned mesh matrix VðiÞalign.

Continues full-field dense correspondence mapping. With mesh matrix V ðiÞbreast and V ðiÞalign,
the dense correspondence between the i-th frame and the i + 1-th frame of mesh is con-

structed. However, it only provide the correspondence of the discrete vertices points. TPS [48]

is used for constructing continues full-field dense correspondence mapping:

x̂ðiþ1Þ ¼ FðiÞðxðiÞÞ ¼ a0 þ aTxðiÞ þ
XM

j¼1

oi�ðkx
ðiÞ � vðiÞj kÞ ð4Þ

where vðiÞj ; j ¼ 1; 2; . . . ;M isM nearest points of x from Vbreast. Since the point movement

should be coherent and smooth, it should be accurate enough to interpolate x’s movement

based on the neighboring points from Vbreast. As coefficients a0, a, ωi, i = 1, . . ., K is solved

with the correspondence pairs constraints, where each correspondence pair constituting one

linear equation, such local interpolation scheme is much more efficient than using all corre-

spondence pairs in VðiÞbreast;V
ðiÞ
align for correspondence mapping.

At this stage, the function that maps an arbitrary point x(i) in the i-th frame to its corre-

sponding point x̂ðiþ1Þ in the (i + 1)-th frame has been constructed. The revelation of the dense
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correspondence in the 4D scanning sequence has paved the way for a comprehensive and sys-

tematic analysis of the dynamic characteristics and properties of the breast using 4D scanning

data.

Downstream tasks

Virtual landmarks tracking. As discussed in Introduction, the widely adopted MoCap

technology relies on physical markers attached to the human body, which limits the number

and position of the anatomical landmarks that can be tracked for analysis purpose. The ana-

tomical landmarks of interest must be selected in advance and can not be reselected after a ses-

sion of recording, leading to numerous duplicated experiments to acquire enough data for

analysis. Yet with our approach, the tracking of the movement and trajectory of an arbitrary

point on the breast surface can be directly derived from the dense correspondence information.

This application can be referred to as virtual landmark tracking, in contrast with the traditional

physical-marker-based landmark tracking approach:

Approach. Virtual landmarks tracking

1. Select a virtual landmark p(1) from the first frame of breast Vð1Þbreast.

2. Use the dense-correspondence mapping F(1)(�) to estimate its corresponding point p̂ð2Þ in

the 2-nd frame of the mesh.

3. With p̂ð2Þ, estimate its corresponding point p̂ð3Þ in the 3-rd frame of mesh in the same way,

and so on.

Deformation intensity analysis. The intensity of deformation of the breasts are associ-

ated with discomfort and adverse symptoms of the breasts [5]. Investigating the deformation

intensity in different areas of breasts is important not only to comprehend their dynamic char-

acteristics but also to inspire designers in creating comfortable and ergonomic bras. To esti-

mate this information, the trajectory length of anatomical landmarks on the breast is regarded

as the metric of deformation intensity of the associated surface-partial. With the result of vir-
tual landmark tracking, the deformation intensity of different breast surface-partial can be esti-

mated in fine granularity:

Approach. Deformation intensity analysis

1. Evenly sample V1
breast as 100 virtual landmarks with quadric decimation [53].

2. Track the trajectory of these virtual landmarks and calculate the trajectory length as a met-

ric for measuring deformation intensity.

3. Coloring each surface-partial as a visual illustration of the estimated deformation intensity.

Evaluation

Comparison baselines and implementation

As discussed in Surface matching and registration and Surface registration with auxiliary

modalities, probabilistic based surface registration methods, such as CPD [37], have been

found to generate comparatively reliable and accurate results. Therefore, we adopt CPD and

its more recent variants BCPD [39] from the geometry-only registration approaches as the

comparison baselines. Additionally, ECPD [44] is also adopted as baseline due to its similarity

with our work in introducing prior correspondence. The implementation of CPD, BCPD, and
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ECPD algorithms are based on probreg package [54]. However, since we did not augment

texture patterns by painting the subject’s skin, texture-based methods such as FAUST [40] and

Dynamic FAUST [46] are not included as comparison baselines.

To construct comparison baselines, these methods are used to replace the inter-frame mesh

morphing and post-alignment Inter-frame mesh morphing and post-alignment in our

approach. Furthermore, since the computation time of CPD, BCPD, and EPCD methods

increases drastically when the number of vertices increases, the breast meshes were decimated

to 1000 vertices using quadric decimation [53]. The implementation of quadric decimation is

based on PyVista [52]. Our approach and comparison baselines were executed on a Dell

Precision 3640 Tower workstation (Dell Inc., Round Rock, U.S.A) with Python 3.10.13 and

benchmarked on the dynamic human breast anthropometric dataset DynaBreastLite con-

structed in this research. To evaluate the performance of all approaches under different tempo-

ral resolutions and 4D sequence lengths, three versions of the dataset were constructed with

frame rates of 10 fps, 60 fps, and 120 fps by loading 1 frame from every chunk of 12 frames, 2

frames, and 1 frame from the DynaBreastLite dataset, respectively. These sub-datasets are

referred to as DBL-10, DBL-60, and DBL-120. The code and dataset can be accessed via

https://liu-qilong.github.io/udmc/.

Table 1 summarized the quantitative evaluation metrics of all approaches on all sub-data-

sets. Results show that our proposed approach outperforms all comparison baselines on all

sub-datasets by a large margin. Detailed description and analysis are provided in the following

sections.

Computation time

The computation time was obtained during the implementation of mesh morphing and post-

alignment. Data loading, pre-processing stages, and downstream task implementation stages

are excluded from computation time evaluation since these steps are identical for all

approaches. As presented in Table 1 and Fig 5, for all sub-datasets ranging from 10 fps to 120

fps (sequence length of 11 to 121), our approach has significantly lower computation times of

0.86s on DBL-10, 5.21s on DBL-60, and 9.32s on DBL-120. The advantage in computation

time makes our approach more feasible for breast biomechanical and ergonomic studies as

well as clinical practice.

Table 1. Quantitative evaluation metrics.

Dataset Metric Ours ECPD CPD BCPD

DBL-10 time (s) 0.86 15.38 15.97 60.32

acc-c (cm) 0.25 0.69 – –

acc-nc (cm) 0.33 5.00 3.08 0.87

DBL-60 time (s) 5.21 91.22 90.26 350.12

acc-c (cm) 0.36 1.40 – –

acc-nc (cm) 0.45 87.60 7.93 1.30

DBL-120 time (s) 9.32 183.89 181.88 968.91

acc-c (cm) 0.50 164.78 – –

acc-nc (cm) 0.57 531.90 9.20 2.24

Metrics are dumped for clarity: time refers to computation time, acc-c refers to alignment error on control landmarks, and acc-c refers to alignment error on non-

control landamrks. Noted that acc-c metric is not appropriate for CPD and BCPD since they don’t utilize prior-correspondence information during the registration

procedure.

https://doi.org/10.1371/journal.pone.0299040.t001
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Alignment of control landmarks

Both ECPD and our approach utilize prior-corresponding landmarks (i.e. the control land-

marks) as extra information to improve dense correspondence estimation across frames. To

estimate their performance in following guidance from prior correspondences, alignment esti-

mation on control landmarks using virtual landmark tracking was conducted:

1. Implement virtual landmark tracking based on initial positions of control landmarks from

the first frame of data.

2. Compared trajectories of virtual landmarks with ground-truth control landmark

trajectories.

3. Estimated average error (deviation from ground truth) and the standard deviation (SD) of

the error.

The results are summarized in Table 1 and Fig 6. Our approach achieved the lowest align-

ment error in all sub-datasets. The frame-wise alignment error curve indicates that our

approach aligned more accurately with the control landmarks for all frames. These results

demonstrate that our method provides more reliable and consistent alignment.

Generalization to non-control landmarks

The motion model in our approach is established based on control landmarks, which are spe-

cific points used to guide the alignment process. In this case, it is not surprising that our algo-

rithms perform well in aligning these particular points. However, for practical applications, it

is essential to estimate the accuracy of alignment on non-control landmark points, i.e. arbi-

trary anatomical landmarks on the breast. To quantitatively evaluate the accuracy, we con-

ducted leave-one-out validation on all landmarks:

1. Each landmark ck is excluded one at a time from the dense correspondence estimation

procedure.

Fig 5. Computation time on all frames of DynaBreastLite. Noted that the computation times of CPD and ECPD are

so close that their curves overlap with each other.

https://doi.org/10.1371/journal.pone.0299040.g005
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2. Implement virtual landmark tracking on ck, and compared the tracking result with the

ground-truth trajectory of ck. Estimated average error (deviation from ground truth) and

the standard deviation (SD) of the error.

3. Since ck was not included in the dense correspondence estimation procedure, we regarded

its estimated error as a sample of non-control landmark tracking accuracy.

For registration approaches that only utilize geometry information (CPD, BCPD), their

dense correspondence estimation process does not involve control landmarks; therefore, the

differences between virtual landmark tracking results of the labelled landmarks and their

ground truth trajectories can be regarded accuracy estimations for non-control landmarks.

Our approach consistently outperforms the baselines by a large margin, as shown in

Table 1 and Fig 7. When the frame rate increases from 10 fps to 120 fps and sequence length

from 11 to 121, we observe severe accuracy degradation in all comparison baselines while our

Fig 6. Alignment error on control landmarks. (a) Box plot of overall alignment error: upper/lower boundary of the

box represents the third/first quartile of the alignment error; solid middle line represents the median error; the

whiskers extend the box by 1.5 IQR; (b) frame-wise alignment error curve. The solid line represents the mean error of

that timestamp, while the shaded region denotes one standard deviation above and below the mean, illustrating

variability in alignment errors over time. Log scale y-axis is used for visual clarity. Noted that CPD and BCPD are

neglected from comparison because they don’t utilize prior-correspondence information.

https://doi.org/10.1371/journal.pone.0299040.g006

Fig 7. Alignment error on non-control landmarks. (a) Box plot of overall alignment error; (b) frame-wise alignment

error curve. Plotting configuration follows Fig 6.

https://doi.org/10.1371/journal.pone.0299040.g007
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approach records a minor acceptable accuracy degradation from 0.33 cm to 0.57 cm, indicat-

ing its advantage in scaling with higher frame rates and longer 4D sequences—vital factors for

real-world implementation. Besides overall alignment error, it’s also important to consider the

frame-wise alignment error curve as it represents the performance and reliability across frames

due to accumulated tracking errors. As depicted in Fig 7, error of ECPD accumulates rapidly

over successive frames, while other approaches present more stable accumulated errors.

Within all approaches, our approach exhibits both the lowest and the most stable error curve

throughout the tracking process. This suggests that our method offers greater reliability and

robustness for breast motion tracking.

Downstream tasks

The performance of all approaches on downstream tasks presented in Continues full-field

dense correspondence mapping are qualitatively estimated.

Virtual landmarks tracking. To illustrate the virtual landmarks tracking performance, we

selected 5 arbitrary points from the first frame of the mesh as virtual landmarks and tracked

their trajectories in the following frames, as shown in Fig 8. Videos of tracking results of all

approaches are presented in https://liu-qilong.github.io/udmc/. Noted that the selection of

Fig 8. Virtual landmarks tracking results of our approach and baselines. For each plot, from left to right are frames

of 0.0s, 0.1s, . . ., 1.0s.

https://doi.org/10.1371/journal.pone.0299040.g008
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virtual landmarks are merely for visual clarity. Under the hood, every point on the breast sur-

face can be densely tracked based on the continues full-field dense correspondence mapping

described in Continues full-field dense correspondence mapping. The results show that CPD

tended to sagging all landmarks to lower side and ECPD resulted in a twisted landmark layout

during the second half of breast movement especially for higher fps dataset. BCPD and our

approach successfully aligned with the swinging motion of breast, but according to Table 1,

comparing with our approach, BCPD’s computation time is 70 100 times longer and its align-

ment error on non-control landmarks is 2.6 3.9 times larger.

To illustrate overall breast movement pattern captured by each approach, we plotted con-

tinuous trajectories of each virtual landmark as shown in Fig 9. While ECPD and CPD cap-

tured chaotic and overlapping trajectories (especially for higher frame rate and sequence

length), our approach and BCPD captured smooth butterfly-like trajectories consistent with

prior research on breast movement patterns [6]. However, as previously discussed, BCPD

requires a significantly longer computation time and records a 2.6 3.9 times larger alignment

error. These results suggest that our proposed approach is more suitable for capturing the

complex dynamics of breast movement.

Deformation intensity illustration. Deformation intensity graphs were generated using all

approaches. As shown in Fig 10, ECPD failed to distinguish the differences in deformation

intensity around the breast area; CPD and BCPD revealed a smooth increase in deformation

intensity from the chest area to nipple areas but failed to identify the differences between the

breast soft tissue and the more rigid rib cage area above/beneath the breast; in contrast, our

approach captured a smooth and clear boundary in deformation intensity between soft breast

tissue and comparatively rigid torso areas, which is consistent with patterns observed in 4D

mesh sequences obtained during experiments and prior research on breast deformation

Fig 9. Tracked trajectory of the virtual landmarks.

https://doi.org/10.1371/journal.pone.0299040.g009
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patterns [22]. These results show that our approach provides more realistic measurements of

deformation intensity.

Discussion

The proposed approach shows promising results in accurately tracking the breast deformation

and providing more optimal results than prior approaches. However, there are still some limi-

tations that need to be addressed: (i) we implement the registration with a simple sequential

alignment scheme, which may suffer from accumulated inter-frame error. More sophisticated

long & short range alignment techniques [46] may further improve the accuracy; (ii) the

DynaBreastLite dataset, utilized for evaluation, comprises 30 anthropometric landmarks across

121 frames of 3D reconstructed scenes, accumulating to 3630 ground-truth landmark coordi-

nates in total. However, it is important to note that all the data were collected from a single

subject walking at a speed of 6km/h. As an exploratory study, this dataset was constructed for

the purpose of validating the proposed method with carefully constructed ground-truth; how-

ever, currently it remains limited to the subject/case-specific level. In future studies, we will

expand the dataset by recruiting more subjects and covering a wider range of dynamic activi-

ties to facilitate data diversity.

Establishing dense correspondence between surfaces is a challenging task that involves

determining how points on one surface correspond to points on another surface. Although

geometric shape information can provide vital information, it may not be sufficient for entirely

solving this problem. For instance, scanning a cylinder rotating along its axis results in identi-

cal 3D meshes over time and, therefore, it is impossible to identify rotation movement solely

with this kind of scanned geometric shapes. Empirically, as reported in [46], there is a signifi-

cant gap of accuracy between the geometric-only and the texture incorporated registration

schemes. This highlights the importance of introducing other modalities of information when

attempting to establish dense correspondence between surfaces. At the core of our proposed

Fig 10. Breast deformation intensity distribution.

https://doi.org/10.1371/journal.pone.0299040.g010
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approach is the involvement of anatomical landmarks with known inter-frame correspon-

dence relationships. Compared with the geometric-only registration methods that utilize

computational intensive iterations to seek for the optimal and coherent point-set alignment,

the introduction of prior correspondence guarantees an near-optimal alignment at the begin-

ning, leading to improvement of efficiency and accuracy by a large margin.

Designing an approach to properly and efficiently merge and utilize information from dif-

ferent modalities is challenging. ECPD [44] incorporates sparse prior correspondence infor-

mation within the CPD framework by multiplying the alignment term of the prior

correspondence with the surface alignment term as the objective function, thereby forcing the

surface alignment optimization to follow the guidance of the prior correspondence. However,

as shown in Evaluation, this approach does not provide better quantitative and qualitative

results than state-of-the-art geometric-only approaches like CPD [37] and BCPD [39]. We sus-

pect that this is due to the sparse nature of prior correspondence—alignment term of the prior

correspondence contributes much less influence than the surface alignment term. In contrast,

our proposed approach utilizes TPS interpolation to establish an initial dense prior-correspon-

dence and then rectifies it with geometric information from a 4D scanning sequence. This

technique can be considered an augmentation to previous correspondence information. The

evaluation results show that this simple technique can provide a significant performance gain

for both accuracy and computation efficiency.

Conclusion

This study proposes a fully-automatic approach to track the complex deformation of the

breasts during dynamic activity with 4D scanning sequence with sparse anatomical landmarks

obtained via motion caption (MoCap). A dynamic 4D human breast anthropometric dataset

DynaBreastLite was constructed in this research and comprehensive evaluation is subsequently

conducted, comparing our approach with 3 baseline methods adapted from prior works.

Results show that our approach outperforms the comparison baselines by a large margin in

terms of accuracy, consistency, and efficiency. For 10 fps dataset, average error of 0.25 cm on

control-landmarks and 0.33 cm on non-control (arbitrary) landmarks were achieved, with 17-

70 times faster computation time. Two downstream tasks are presented to illustrate its applica-

tion value: (i) tracking virtual landmarks on arbitrary position without physical markers

attached to it and (ii) estimating fine-granularity deformation intensity during activities. Qual-

itative evaluation shows that our approach can provide more realistic results than other

approaches. To validate the proposed approach’s usability on different frame rates and

sequences lengths, evaluation was also carried out on 60 fps and 120 fps dataset and consistent

and large performance gaining were observed.

The significantly improved performance also suggests that combining 4D scanning

sequences and landmarks is a promising approach for constructing a motion model of the

human body surface. This also highlights the potential to advance anthropometry studies from

the landmarks level to the surface level, thus enabling a more thorough and better understand-

ing of the dynamics deformation patterns and properties of the breasts, with potential to bene-

fit the clinical practices and ergonomic wearable product designs.
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