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Abstract

Background

Irritable bowel syndrome (IBS) is one of the most common functional bowel disorders and

dysmetabolism plays an important role in the pathogenesis of disease. Nevertheless, there

remains a lack of information regarding the causal relationship between circulating metabo-

lites and IBS. A two-sample Mendelian randomization (MR) analysis was conducted in order

to evaluate the causal relationship between genetically proxied 486 blood metabolites and

IBS.

Methods

A two-sample MR analysis was implemented to assess the causality of blood metabolites

on IBS. The study utilized a genome-wide association study (GWAS) to examine 486

metabolites as the exposure variable while employing a GWAS study with 486,601 individu-

als of European descent as the outcome variable. The inverse-variance weighted (IVW)

method was used to estimate the causal relationship of metabolites on IBS, while several

methods were performed to eliminate the pleiotropy and heterogeneity. Another GWAS

data was used for replication and meta-analysis. In addition, reverse MR and linkage dis-

equilibrium score regression (LDSC) were employed for additional assessment. Multivari-

able MR analysis was conducted in order to evaluate the direct impact of metabolites on

IBS.

Results

Three known and two unknown metabolites were identified as being associated with the

development of IBS. Higher levels of butyryl carnitine (OR(95%CI):1.10(1.02–1.18),p =

0.009) and tetradecanedioate (OR(95%CI):1.13(1.04–1.23),p = 0.003)increased suscepti-

bility of IBS and higher levels of stearate(18:0)(OR(95%CI):0.72(0.58–0.89),p = 0.003)

decreased susceptibility of IBS.
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Conclusion

The metabolites implicated in the pathogenesis of IBS possess potential as biomarkers and

hold promise for elucidating the underlying biological mechanisms of this condition.

Introduction

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that significantly

affects individuals’ quality of life and social functioning. Most European countries, the United

States, and China report prevalence rates ranging from 5% to 10% [1]. Clinical symptoms of

IBS include abdominal pain or discomfort, stool irregularities, bloating, as well as other

somatic, visceral, and psychiatric comorbidities [2]. Current therapeutic approaches for IBS

primarily focus on alleviating symptoms and are often limited in their effectiveness [3]. Due to

the chronic nature of IBS, patients with this condition impose a significant economic burden

on healthcare systems. In particular, the foundation for both disease prevention and treatment

is the investigation of the biological process. However, the underlying mechanisms of IBS

remain poorly understood, encompassing a range of characteristics including gastrointestinal

motility, visceral hypersensitivity, intestinal secretion and intestinal permeability [2, 4]. It is

important to acknowledge that genome-wide association studies (GWAS) have identified

numerous genetic variations that enhance the vulnerability of individuals to IBS, thereby offer-

ing molecular insights into the complex interplay between environmental and genetic factors

in the pathogenesis of IBS [5, 6].

Advancements in microbiological technologies, such as metagenomics, metabolomics have

shed light on microbial functions, metabolites, and their interactions with the host, which hold

promise in unraveling the biological processes underlying the disease [7]. Given their involve-

ment in processes like cellular organization, post-translational modification, and epigenetic

modification, it is essential to further explore the potential links between metabolic profiling

and disease risks [8]. In addition, an increasing number of evidence has demonstrated that an

altered metabolic profile in either the host or the gut microbiota, as well as their interactions,

likely play a significant role in the manifestation of IBS symptoms [9–11].

In recent times, the utilization of Mendelian randomization (MR) analysis has been increas-

ingly prominent as a valuable method within the field of epidemiological research. Mendelian

randomization (MR) employs genetic variants as instrumental variables (IVs) to establish

causal links between exposures and outcomes. Compared to other epidemiological approaches,

MR provides unbiased estimates by leveraging genotypes determined at conception, making it

less susceptible to confounding factors and reverse causation [12]. Currently, although some

evidence shows the role of blood metabolites in IBS, a causal relationship has not been estab-

lished. Hence, in order to acquire a more profound comprehension of the development of IBS,

MR is utilized as a potent instrument to explore the plausible causal association between

metabolites and IBS.

Materials and methods

Study design

A set of single-nucleotide polymorphisms (SNPs) that indicate genetic variations were chosen

as instrumental variables for a two-sample Mendelian randomization (MR) analysis. The fol-

lowing three basic theories were accepted (Fig 1): 1. instrumental variables are directly
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associated with the exposure; 2. instrumental variables are independent of any confounding

factors; 3. genetic variants influence outcomes only through the exposure. Fig 1 shows an over-

view of the study design. The study utilized MR analysis to examine the causal links that exist

in both directions between metabolites and IBS [13].

Data sources

Two GWASs of IBS were used. The discovery set encompassed 53,400 European cases and

433,201 European controls, while the validation set comprised a total of 4,605 cases and

182,423 controls(finn-b-K11_IBS) [6]. At least one of the following four requirements should

be met by the IBS cases from UKB [14]: Rome III symptom criteria for the digestive health

questionnaire (DHQ) are met if the symptoms of IBS cannot be adequately explained by

another diagnosis [15]; DHQ “self-report”: responded positively when asked if they had ever

received an IBS diagnosis [16]; Unprompted ‘self-report”: spontaneously declared an IBS diag-

nosis when asked if they were told of having any serious medical conditions [17]; the Interna-

tional Code of Disease Version 10 (ICD-10). The diagnosis from FinnGen consortium

conforms to the ICD-10 criteria.

The metabolomics GWAS server (http://metabolomics.helmholtz-muenchen.de/gwas/) pro-

vided the genetic association data for serum metabolites. The ground-breaking research by Shin

et al. [18], who conducted the most thorough investigation of genetic impacts on human metab-

olism to date, was noteworthy. 486 metabolites with genetic effects on human serum metabolites

were effectively found by their comprehensive GWAS research. A total of 7,824 people from two

Fig 1. An overview of this Mendelian randomization analysis. IVW, inverse variance weighted; WM, weighted median; LOO analysis, leave-one-out analysis;

MVMR, multivariable Mendelian randomization analysis; SNPs, single nucleotide polymorphisms.

https://doi.org/10.1371/journal.pone.0298963.g001
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European demographic cohorts were included in the study. Local committees approved both tri-

als for ethical purposes, and before participating in the research, each subject gave their voluntar-

ily informed consent. Following stringent quality control procedures, a total of 486 metabolites

were analyzed, comprising 309 known metabolites and 177 unknown metabolites [19].

Selection of genetic instruments

First, a more stringent threshold (p<1×10−5) was established as the genome-wide significant

cutoff to identify highly correlated SNPs with blood metabolites and IBS, as shown by prior

research [20]. In order to mitigate the presence of linkage disequilibrium, we clumped these

SNPs (kb = 500, r2 = 0.01) which were widely used in previous studies. In order to evaluate the

robustness of the instrumental variables (IVs), we calculated the F-statistics. In accordance

with a standard criterion, IVs exhibiting an F-statistic value of less than 10 were deemed to be

weak and consequently eliminated from subsequent analysis [21]. Additionally, we carried out

a harmonization process to ensure the alignment of alleles between exposure- and outcome-

associated SNPs. This process also involved the removal of palindromic SNPs and SNPs with

incompatible alleles.

Primary analysis and sensitivity analysis

For the primary analysis, we employed inverse-variance weighted (IVW) regression, which

was a reliable method for combining effect estimates from numerous SNPs when pleiotropy

was balanced [22]. Given the challenges in verifying the "exclusion-restriction" premise of

IVW, various sensitivity analyses were conducted including the Weighted Median Estimator

and the MR-Egger Regression model. The method of the weighted median estimator was uti-

lized to investigate the impacts of all available SNPs when half the IVs were valid. This

approach yielded unbiased estimates of effects [23]. The MR-Egger regression model yielded a

relatively robust estimate that was not influenced by the validity of IVs. Additionally, the

model accounted for potential horizontal pleiotropy by incorporating the regression slope and

intercept [23]. The MR-PRESSO (MR pleiotropy residual sum and outlier) method was

employed to assess the presence of potential outliers among instrumental variables (IVs) by

utilizing both global and SNP-specific observed residual sum of squares. Outliers with a p-

value< 0.05 in the subsequent distortion test were excluded to get a corrected causal effect.

After the identification of outliers by MR-PRESSO, MR analyses were performed subsequent

to the elimination of these outliers. Furthermore, directional pleiotropy was evaluated on the

intercept derived from the MR-Egger regression model [24]. The Q-test was employed to iden-

tify any potential violations of the assumption of heterogeneity in the association between indi-

vidual IVs for the IVW and MR-Egger methods [25]. In order to assess the robustness of the

findings, a leave-one-out (LOO) analysis was performed to examine the potential influence of

specific SNP on the outcomes. This involved systematically removing each SNP one at a time

and subsequently conducting MR analysis to assess their influence. In summary, we meticu-

lously assessed blood metabolites that could potentially have a causal impact on IBS using a

multifaceted approach: (1) Significance in the primary analysis, with a p-value below 0.05

derived from IVW. (2) Consistency in both direction and the effect size across three MR meth-

ods including IVW, Weighted Median and MR-Egger. (3) The lack of heterogeneity or hori-

zontal pleiotropy in Mendelian randomization (MR) outcomes. (4) the estimates obtained are

not severely disturbed by the presence of a single SNP [26]. All MR analyses were performed

using the “TwoSampleMR” package (version 0.4.22). The meta-analysis was performed using

the Reviewer Manager software (Version 5.4.1). The presentation of causal estimates is in the

form of odds ratios (ORs) accompanied by 95% confidence intervals (CIs).
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Replication and meta-analysis

In order to thoroughly assess the reliability of the candidate metabolites identified, we con-

ducted a replication of IVW analysis in an independent IBS cohort consisting of 4,605 cases

and 182,423 controls. All cases encompassed within the FinnGen dataset were in accordance

with the ICD-10 standard. The FinnGen GWAS incorporated adjustments for many factors,

including sex, age, the first 10 genetic main components, genotyping batch, and the genetic

relatedness matrix [27].

Reverse causality analysis and genetic correlation

To rule out the possible bi-directional association between metabolites and IBS, we conducted

reverse MR analysis regarding IBS and identified metabolites. The instrumental variables used

in this study were chosen based on a genome-wide significance threshold of 5e-6.

In addition, prior research has raised concerns about potential false positives in MR results

stemming from genetic correlations between traits [28]. The estimation of coinheritance

between two traits based on SNPs can be accomplished using Linkage Disequilibrium Score

(LDSC) regression [29]. Therefore, in order to mitigate any confounding due to the genetic

link between the screened metabolites and IBS, we employed LDSC to examine the causative

effects.

Confounding analysis and multivariable MR analysis

In addition, we conducted an examination of the IVs for metabolites using the Phenoscanner

V2 website (http://www.phenoscanner.medschl.cam.ac.uk/) in order to assess the potential

association between each SNP and confounding factors relevant to IBS. If any SNP was identi-

fied to exhibit an association with the potential confounding factors at a significance level of

p<1×10−5, a subsequent MR analysis would be conducted following the exclusion of these

SNPs. This step aims to ensure the dependability and validity of the obtained findings.

The utilization of Multivariable Mendelian Randomization (MVMR) enables the adjust-

ment for interactions arising from genetic diversity between exposures, by combining numer-

ous exposures that have the potential to interact with one another. The multivariable

mediation analysis examined the specific impact of each exposure variable on the outcome var-

iable, independent of any other exposure variables. Hence, we conducted MVMR analysis on

the identified metabolites in order to account for their potential interactions. This adjustment

was carried out using the IVW method [30, 31].

Results

Causal effects of the blood metabolites on IBS

The number of instrumental variables of metabolite varied from 3 to 483, with a median num-

ber of 20.7. The IVs have the potential to account for a range of 0.24% to 70.8% of the variance

in their associated metabolites. All of the minimal F statistics exceeded a value of 10, suggesting

a potential presence of a weak instrumental variable bias. Details of the SNPs can be seen in S3

Table.

The IVW MR analysis was conducted for each pair of metabolites, utilizing the instrumen-

tal variables available. A collective sum of 41 statistically significant correlations (P<0.05) were

detected, comprising 25 previously recognized metabolites and 16 metabolites that have not

been previously characterized. In addition, sensitivity and pleiotropy studies were performed

to assess the durability of the observed correlations (Table 1). There was no observed indica-

tion of heterogeneity, as shown by a Cochran Q test with a p-value greater than 0.05.
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Table 1. MR analyses of genetically predicted levels of blood metabolites and risk of IBS.

Exposures nsnp OR(95%CI) pval Het.pval MR-egger intercept pval MR-presso global test pval

Amino acid

methionine 22 1.66(1.02–2.71) 0.043 0.522 0.514 0.547

arginine 21 1.36(1.07–1.74) 0.012 0.445 0.462 0.455

valine 6 0.53(0.29–0.95) 0.034 0.863 0.780 0.830

serotonin (5HT) 16 1.25(1.04–1.50) 0.020 0.683 0.295 0.684

homocitrulline 7 1.26(1.01–1.57) 0.043 0.908 0.842 0.909

N-acetylglycine 16 1.11(1.01–1.23) 0.033 0.797 0.399 0.812

trans-4-hydroxyproline 6 0.79(0.63–1.00) 0.050 0.521 0.298 0.618

phenol sulfate 15 0.68(0.59–0.79) 0.000 0.225 0.122 0.304

Isovalerylcarnitine* 19 0.83(0.71–0.98) 0.031 0.232 0.119 0.007

indolelactate 19 0.79(0.64–0.98) 0.030 0.733 0.592 0.765

Lipid

1-palmitoylglycerol (1-monopalmitin) 14 1.49(1.07–2.07) 0.019 0.068 0.805 0.083

stearate (18:0) 43 0.74(0.59–0.92) 0.007 0.630 0.352 0.677

glycocholate 9 0.90(0.82–0.99) 0.027 0.999 0.903 1.000

Butyryl carnitine 33 1.10(1.03–1.19) 0.007 0.277 0.287 0.296

docosapentaenoate (n3 DPA)* 10 1.25(1.01–1.55) 0.041 0.365 0.448 0.032

1-palmitoylglycerophosphocholine 34 0.58(0.43–0.78) 0.000 0.258 0.353 0.292

10-nonadecenoate (19:1n9) 7 0.71(0.54–0.92) 0.011 0.482 0.506 0.514

1-arachidonoylglycerophosphoinositol* 20 1.24(1.02–1.52) 0.033 0.182 0.222 <0.001

1-palmitoylglycerophosphoinositol 11 0.84(0.71–0.99) 0.034 0.794 0.488 0.752

tetradecanedioate 21 1.14(1.05–1.24) 0.002 0.868 0.145 0.879

hexadecanedioate 24 1.13(1.02–1.25) 0.024 0.725 0.904 0.766

4-androsten-3beta,17beta-diol disulfate 2 19 1.19(1.01–1.40) 0.040 0.150 0.220 0.148

Carbohydrate

1,5-anhydroglucitol 31 0.83(0.69–0.99) 0.044 0.126 0.903 0.153

Xenobiotics

Paraxanthine* 12 1.14(1.02–1.26) 0.020 0.717 0.182 0.013

Peptide

aspartylphenylalanine 7 1.21(1.02–1.43) 0.029 0.936 0.687 0.93

Unknown

X-09706 22 0.81(0.65–1.00) 0.047 0.589 0.341 0.607

X-11437 15 0.93(0.87–1.00) 0.037 0.896 0.467 0.910

X-11438 24 0.85(0.73–0.99) 0.036 0.070 0.496 0.088

X-11521 12 0.83(0.69–0.99) 0.037 0.779 0.356 0.780

X-11537 6 0.78(0.63–0.96) 0.021 0.171 0.932 0.248

X-12038* 57 1.35(1.06–1.73) 0.015 0.025 0.854 0.002

X-12063 17 1.09(1.00–1.19) 0.047 0.128 0.313 0.190

X-12212 11 1.16(1.03–1.29) 0.010 0.584 0.219 0.663

X-12230* 8 0.77(0.61–0.99) 0.041 0.058 0.470 0.015

X-12855 20 1.25(1.08–1.45) 0.003 0.644 0.826 0.538

X-13435* 25 0.78(0.64–0.94) 0.011 0.048 0.005 0.043

X-13477 8 0.70(0.50–0.97) 0.031 0.605 0.586 0.631

X-13741 12 0.87(0.77–0.97) 0.016 0.281 0.321 0.345

X-14057 18 1.32(1.12–1.54) 0.001 0.114 0.817 0.143

X-14374 9 0.66(0.52–0.85) 0.001 0.376 0.975 0.372

(Continued)

PLOS ONE Causality of genetically determined blood metabolites on irritable bowel syndrome

PLOS ONE | https://doi.org/10.1371/journal.pone.0298963 April 3, 2024 6 / 14

https://doi.org/10.1371/journal.pone.0298963


Additionally, both the MR-Egger regression and MR-PRESSO global test did not reveal any

pleiotropic effects (p>0.05). We further used a strict selection mentioned above and finally, 9

metabolites were included. The direction and magnitude were consistent in other sensitivity

analyses, although p-value was not always significant. (Fig 2) The findings of the study indicate

that there is a negative correlation between levels of stearate (18:0) (OR(95%CI): 0.74 (0.59–

0.92), p = 0.007), phenol sulfate (0.68 (0.59–0.79), p = 0.000)and IBS. Elevated levels of butyryl

carnitine (OR(95%CI): 1.10 (1.03–1.19), p = 0.007), tetradecanedioate (OR(95%CI): 1.14

(1.05–1.24), p = 0.002), and 1-palmitoylglycerophosphocholine (OR(95%CI): 1.49 (1.07–2.07),

p = 0.019) were found to be significantly correlated with a heightened susceptibility to IBS.

Three unknown metabolites may also be risk factors for IBS except X-14374. More Details can

be seen in S2 Table.

Replication and meta-analysis

Additionally, we performed a MR analysis using a separate dataset from the FinnGen

GWAS, which consisted of 4,605 cases and 182,423 controls. The findings of the meta-analy-

sis have established that there exists a relationship between five specific metabolites and their

impact on IBS (Fig 3). Genetically increased levels of butyryl carnitine(OR(95%CI):1.10

(1.02–1.18),p = 0.009), tetradecanedioate(OR(95%CI):1.13(1.04–1.23),p = 0.003)increased

the susceptibility of IBS and higher levels of stearate(18:0)(OR(95%CI):0.72(0.58–0.89),

p = 0.003) decreased the susceptibility of IBS. The scatterplots of selected metabolites are

shown in Fig 4.

Reverse association analysis and genetic correlation analysis

We conducted a MR analysis employing instrumental variables for IBS in order to determine

the reverse casual effects of IBS on metabolites. Since limited SNPs can be obtained when

clumping, we extended the limitation of p-value to 5e-6. The findings did not demonstrate a

reverse causal association with IBS. Furthermore, no evidence substantiating horizontal pleiot-

ropy was found. More details can be found in S4 Table.

In order to explore an alternate hypothesis about the presence of similar genetic compo-

nents, we used LDSC analyses to assess the potential influence of shared causative genetic vari-

ations on the observed genetic relationships. Regarding LDSC analysis, we did not detect

significant genetic connections. (rg = 0.098 and p = 0.084 between and stearate (18:0) and IBS;

rg = 0.017 and p = 0.881 between butyryl carnitine and IBS; rg = 0.075 and p = 0.384 between

tetradecanedioate and IBS) (S5 Table).

Cofounding factors and MVMR

We conducted an investigation to determine the potential independence of SNPs linked to five

metabolites from potential risk factors using the Phenoscanner and potential SNPs were

Table 1. (Continued)

Exposures nsnp OR(95%CI) pval Het.pval MR-egger intercept pval MR-presso global test pval

X-14626 18 1.27(1.09–1.48) 0.002 0.859 0.232 0.889

Note:

*Outliers detected by MR-PRESSO were removed.

SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; Het.pval, heterogeneity test p value.

https://doi.org/10.1371/journal.pone.0298963.t001
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eliminated from the analysis. The results showed that despite this exclusion, estimates obtained

continued to exhibit statistical significance. More details can be seen in S6 Table. After adjust-

ing for metabolite interactions, MVMR estimates showed that genetically predicted stearate

(18:0), butyryl carnitine and tetradecanedioate can still influence IBS independently of other

metabolites (S7 Table).

Fig 2. Forest plot for the causality of metabolites on IBS using different analysis. OR, odds ratio;95% CI, 95% confidence interval.

https://doi.org/10.1371/journal.pone.0298963.g002
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Discussion

IBS presents a complex diagnostic challenge due to the absence of reliable biomarkers or defin-

itive tests. Diagnosis relies primarily on questionnaires, which, though commonly used, strug-

gle to provide quantifiable and objectively reproducible data. Furthermore, the heterogeneous

nature of IBS symptoms complicates its identification [2]. Some genetic variants associated

with a heightened risk of IBS have been identified, shedding light on the intricate interplay

between genetic and environmental factors in IBS development [6]. Prior research has also elu-

cidated diverse alterations in metabolites, including short-chain fatty acids (SCFAs) in IBS.

Nevertheless, the precise causal link between these metabolites and IBS remains unknown.

Additionally, there remains a scarcity of specific and sensitive diagnostic markers for IBS. This

study employed a two-sample MR approach to investigate the causal relationship between 486

blood metabolites and the risk of IBS. An additional GWAS dataset was utilized for the pur-

pose of replication and meta-analysis. The findings indicate that elevated concentrations of

butyryl carnitine and tetradecanedioate are associated with heightened vulnerability to IBS,

while increasing levels of stearate (18:0) exhibit a protective effect. To the best of our under-

standing, this work is the initial MR investigation to evaluate the systematic and comprehen-

sive impact of human blood metabolites on IBS. Furthermore, reverse causality was not found

and these associations do not appear to be confounded by genetic correlation. MVMR esti-

mates suggested that stearate(18:0), butyryl carnitine and tetradecanedioate can directly affect

IBS independently of other metabolites.

Our study showed that stearic (18:0) played a protective role in IBS. Stearic acid is a long-

chain fatty acid consisting of 18 carbon atoms. From a dietary perspective, stearic acid is con-

sidered relatively neutral when compared to some other saturated fatty acids. It holds a signifi-

cant role in various bodily processes such as inflammation regulation, coagulation, glucose

Fig 3. Meta-analysis of the significant association between metabolites and IBS. OR, odds ratio;95% CI, 95% confidence interval.

https://doi.org/10.1371/journal.pone.0298963.g003
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balance, and bile acid metabolism. One study even noted a significant difference in stearic acid

levels between IBS patients and healthy individuals [9]. Additionally, Zhang recently reported

that 17 fatty acids, all belonging to the medium-chain and long-chain fatty acid categories (C6

and longer), were downregulated in IBS-D (Diarrhea-Predominant IBS) patients. He sug-

gested that medium-chain and long-chain fatty acids present in the colonic mucosa could

serve as potential markers for distinguishing IBS-D patients from healthy subjects. It is essen-

tial to conduct further studies to validate these findings and gain a more comprehensive

understanding of their significance in IBS [11]. The mechanism underlying it was not clear. A

study found that a diet enriched with stearic acid led to reduced concentrations of fecal sec-

ondary bile acids (SBA). These SBA can impact intestinal function, including factors like intes-

tinal peristalsis and mucosal permeability, which may have a key role in the mechanism of IBS

[32].

Tetradecanedioate, also known as “myristic acid”, is a dicarboxylic acid with a 14-carbon

atom chain. It can contribute to energy production in cells and also serve as a precursor for the

synthesis of essential lipids and potentially acts as a signaling molecule in cellular processes

[33]. Han’s research discovered that individuals with IBS exhibited higher levels of tetradeca-

noyl-CoA [9]. Tetradecanoyl-CoA represents a specific intermediate in the degradation of tet-

radecanoic acid. During the process of beta-oxidation, tetradecanoyl-CoA is broken down

Fig 4. Scatterplot for the significant MR association between metabolites and IBS. SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0298963.g004
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into smaller acyl-CoA molecules, eventually leading to the production of acetyl-CoA units.

Some of these acetyl-CoA units may be further metabolized to generate tetradecanedioate as

an intermediate product [33, 34]. Although the studies were limited, the dysregulation of tetra-

decanedioate might be implicated in the development of IBS.

Butyryl carnitine is a conjugate of butyric acid and carnitine. It is formed as part of the fatty

acid metabolism process, specifically involving short-chain fatty acids like butyric acid. The

role of butyryl carnitine in the body is primarily related to the transport and utilization of

short-chain fatty acids as an energy source [35]. Short-chain fatty acids, including butyric acid,

could enhance the gut epithelial barrier and accelerate the repair of it [36]. The benefits of

butyric acid are still controversial. While some reports suggest it may be a potential protective

factor for IBS, other studies present opposing views. For instance, Tian reported an increase in

butyric acid levels in the serum of patients with IBS-D (Diarrhea-Predominant IBS) but not in

their feces. Jakobsdottir [37] pointed out that fecal short-chain fatty acids may not necessarily

reflect the levels in the colon and that blood analysis might offer a more accurate alternative.

It’s important to note that while moderate levels of short-chain fatty acids may contribute to

stabilizing intestinal permeability by directly influencing the distribution of tight junction pro-

teins, high concentrations of these fatty acids may have the opposite effect [38, 39]. Excessive

activation of intestinal immunity is one potential mechanism through which short-chain fatty

acids might play a role in the pathogenesis of IBS [40]. The effect of butyryl carnitine on IBS

patients is still not fully understood. Both butyryl carnitine and butyric acid are involved in the

metabolic processes of fatty acids which may have an impact on the underlying mechanisms of

IBS pathology. Nevertheless, further research is needed [41].

Several limitations should be noted in our study. First, the selected metabolites did not

achieve statistical significance following stringent Bonferroni or False Discovery Rate (FDR)

corrections. Consequently, we can only suggest these metabolites as potentially associated with

IBS. Secondly, given the heterogeneous nature of IBS, encompassing multiple subtypes

(IBS-D, IBS-C, IBS-M), the relationship between metabolism and genetics may vary among

individuals and subtypes [42]. Thirdly, our study did not provide evidence supporting a con-

nection between butyryl carnitine and IBS, indicating that this relationship remains theoreti-

cal. Furthermore, there have been limited investigations into serum metabolism in patients

with IBS, potentially due to the lack of appropriate analytical methods. In the present investiga-

tion, our assessment was limited to examining the impact of metabolites detected in blood on

IBS, without taking into account metabolite concentrations in tissues that are more biologi-

cally pertinent. Hence, additional validation and exploration are necessary to substantiate our

conclusions.

In summary, our MR analysis indicates that stearic acid, tetradecanedioate, and butyryl car-

nitine may serve as potential metabolite markers in the context of IBS. The metabolites impli-

cated in the pathogenesis of IBS have potential as biomarkers and can contribute to the

elucidation of the underlying biological mechanisms of this condition.
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