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Abstract

This study aimed to investigate how electromyography (EMG) cluster analysis of the rectus

femoris (RF) could help to better interpret gait analysis in patients with cerebral palsy (CP).

The retrospective gait data of CP patients were categorized into two groups: initial examina-

tion (E1, 881 patients) and subsequent examination (E2, 377 patients). Envelope-formatted

EMG data of RF were collected. Using PCA and a combined PSO-K-means algorithm, main

clusters were identified. Patients were further classified into crouch, jump, recurvatum, stiff

and mild gait for detailed analysis. The clusters (labels) were characterized by a significant

peak EMG activity during mid-swing (L1), prolonged EMG activity during stance (L2), and a

peak EMG activity during loading response (L3). Notably, L2 contained 76% and 92% of all

crouch patients at E1 and E2, respectively. Comparing patients with a crouch gait pattern in

L2-E1 and L2-E2, two subgroups emerged: patients with persistent crouch (G1) and

patients showing improvement at E2 (G2). The minimum activity of RF during 20–45% of

the gait was significantly higher (p = 0.025) in G1 than in G2. A greater chance of improve-

ment from crouch gait might be associated with lower RF activity during the stance phase.

Using our findings, we could potentially establish an approach to improve clinical decision-

making regarding treatment of patients with CP.

1 Introduction

Cerebral palsy (CP) is a nonprogressive movement and posture disorder that develops in a

fetus during pregnancy or infancy [1]. It is caused by an injury to the developing brain, which

mostly happens before birth. Spastic CP is the most common form of the disease, which arises

from damage to the motor cortex [1]. In this condition, muscles appear stiff and tight. Abnor-

mal muscle tone and motor deficit affect the walking ability of patients with CP [2].

Surface electromyography (EMG) can be used to measure muscle activity in a noninvasive

and clinically meaningful manner. In patients with CP, 3D gait analysis with simultaneous

EMG measurements is often conducted to gain insight into muscle function as part of
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prescribing treatment and evaluating treatment effect [3]. Combining EMG data of the rectus

femoris (RF) muscle with kinematics, kinetics, and clinical data, Reinbold et al. demonstrated

a method to predict the outcome of RF transfer surgery [4]. They concluded that a diminished

range of knee flexion and a high activity of RF during swing phase, in addition to a positive RF

spasticity (Ely) test, are the main factors for deciding to perform RF transfer surgery [4]. Pati-

kas et al. [5] also suggested that EMG could be used to better interpret gait in children with

hemiplegic spastic CP. They reported a prolonged activation of RF during the swing phase as a

part of the underlying gait compensatory mechanisms in these patients. Additionally, they

stated that EMG signals can describe the clinical condition of patients before and after surgery

[6]. Particularly, several studies also reported a strong association between the EMG of RF and

gait impairments in these patients [7–9]. EMG can also be utilized to develop improved con-

trol strategies for lower-limb exoskeletons, thereby enhancing motor function in patients with

CP [10, 11].

Although the literature confirms the importance of EMG for treatment decision-making

in patients with CP, there are still some limitations here, such as cross-talk, artifacts, and

poor signal quality [12], for using these data in clinical settings. In addition, interpreting the

results derived from these signals requires the expertise of a clinician and, currently, this is

primarily conducted visually and qualitatively [13]. Consequently, there is a need for an

approach that can assist clinicians by providing an objective analysis and interpretation of

the EMG signals.

Some studies quantitively classified CP patients into different groups based on kinematics.

Sutherland and Davids [14] classified common gait abnormalities of the knee in CP into four

types: crouch, jump, recurvatum, and stiff knee. Rodda et al. [15] proposed an algorithm using

a combination of 3D gait analysis, videos, and clinical examinations to classify the gait of

patients with hemiplegia and diplegia. While these studies [16] have shown that kinematics-

based grouping is helpful for treatment management and clinical decision-making in CP, a

comprehensive EMG-based grouping system for these patients remains a challenge. The lack

of access to an extensive EMG database definitively poses a significant problem for developing

such systems.

Clustering analysis represents an analytical technique to group-unlabeled data for extract-

ing meaningful information [17]. In recent studies, researchers used a K-means clustering

algorithm as an unsupervised approach to classify the pathological gait patterns observed in

patients with CP [18, 19]. Sangeux et al. [20] conducted a study using a large dataset of CP

patients to compare sagittal gait patterns and K-means clustering. They introduced the "Plan-

tar flexor–Knee extension (PFKE) couple index", which measures the distance of ankle and

knee kinematics during 20 to 45% of the gait cycle relative to normative data. Their findings

revealed a significant association between the traditional CP gait groups and the five clusters

identified through the PFKE-based K-means algorithm. Additionally, they observed a correla-

tion between the clusters and spasticity in the gastrocnemius-soleus muscles.

K-means is a powerful clustering algorithm that is widely used for various clustering prob-

lems. However, this method is associated with two significant limitations: 1) converging to a

local minimum and 2) sensitivity to selecting the initial cluster centroids, which converges on

the local rather than the global optima [21]. Therefore, the initial selection of cluster centroids

plays a critical role in processing the K-means algorithm. This challenge can also be considered

as the optimization of an "objective function" that effectively groups the points in the data

space into clusters. To address this problem, researchers have proposed several methods that

employ global optimization search algorithms to determine the initial points for the K-means

algorithm [22]. Particle swarm optimization (PSO) is a good, nature-inspired and population-

based, effective global optimization algorithm [23].
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To the best of our knowledge, no clustering research has been conducted regarding EMG

in patients with CP while walking. In the current study, we focused on EMG of the RF because

of the importance of this muscle in the gait of these patients. Developing a hybrid PSO- K-

means clustering algorithm, we aimed to analyze the EMG data of patients with CP and to

evaluate the relationship between common CP gait abnormalities, changes in gait over time,

and the identified clusters. Therefore, we hypothesize that the RF EMG patterns of patients

with CP are not uniform and that they can be classified into clusters that might be linked to

the clinical picture. Furthermore, examining these EMG patterns before and after treatment

might help us identify EMG features that could aid in patient prognosis.

2 Materials and methods

2-1 Participants

The data analyzed in this study were part of a larger database established at the local University

Clinics in the years 2000–2022 and derived from more than 2000 hemiplegia/diplegia patients

with CP and about 350 typically developed individuals. This study was approved by the local

ethics committee with the serial number S-243/2022. The retrospective gait data used for this

study were primarily divided into two groups. The group of patients who visited the gait lab

for the first time (E1, first examination) and those who visited a second time, too (E2, second

examination). Therefore, it should be noted that the E2 patients in our study represent the

same individuals examined at two different time points. The inclusion criteria were availability

of EMG, kinematics and kinetics data for each subject, walking only barefoot without any

assistive device, and classified as GMFCS level I, II, or III [16]. For hemiplegia patients, only

the affected side was considered. After applying these criteria, 881 and 377 patients were

recruited as E1 and E2, respectively, and 117 persons as typically developed (TD) (reference

group). In addition, considering the hip, knee and ankle angle of the patients in sagittal plane

during the gait, they were classified as crouch, jump, recurvatum, stiff knee, and mild gait

[14, 24]. The characteristics of the participants are shown in Table 1.

2-2 Data acquisition

All subjects walked barefoot at a self-selected speed along a lane 15 m in length during data

acquisition. Kinematics and kinetics were recorded using a twelve-camera 3D motion analysis

system (VICON, Oxford Metrics Limited, UK) operating at 120 Hz and using three force

plates (Kistler Instruments Co.), respectively. The skin-mounted markers were applied accord-

ing to the protocol of Kadaba et al. [25] and the plug-in-gait model was chosen for analysis.

Subsequently, gait parameters of at least seven strides were determined.

Table 1. Demographic and descriptive data of the participants at their first (E1) and second (E2) examinations and also healthy individuals.

E1 (n = 881) E2 (n = 377) TD (n = 117)
Age (years) 16.8 ± 9.6 (58.3–3.3) 16.9 ± 8.5 (54.2–3.7) 21.7 ± 12.3 (46–6)

Height (cm) 151.9 ± 37.1 (197–94) 152.6 ± 18.2 (196–98) 161.9 ± 19.8 (195–108)

Body mass (kg) 46 ± 19.5 (125.1–13.6) 46.8 ± 17.3 (101.8–14.5) 66.4 ± 16.8 (91–19)

Sex (male/female) 510/371 212/165 58/59

CP type (diplegia/ hemiplegia) 700/181 332/45

Subgroups (crouch/ jump/ recruvatum/ stiff/ mild) 72/65/109/42/593 38/28/24/19/268

GMFCS level (I/ II/ III) 140/130/15 59/67/3

Interval between examinations (years) 2.4 ± 1.9 (13.5–0.1)

https://doi.org/10.1371/journal.pone.0298945.t001
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The EMG data were recorded from eight lower extremity major muscles including the RF,

right and left legs, using myon 320 (Myon AG, Schwarzenberg, CH). Bipolar surface adhesive

electrodes (Blue Sensor, Ambu Inc., Glen Burnie, MD, USA) were placed on the targeted mus-

cles, following the guidelines provided by SENIAM [26]. The distance between the electrodes

was set at 2 cm [6]. To amplify the EMG signal, the Biovision EMG apparatus (Biovision Inc.,

Wehrheim, Germany) before 2013/2014 and via Delsys (Delsys Inc., Natick, MA, USA) after

2013/14, was utilized with a preamplification factor of ×5000.

Clinical examination was exclusively performed by two physiotherapists controlling each

other. Knee extensor muscle strength was assessed according to the Medical Research Council

(MRC) [27]. The spasticity of the RF was tested both by the Duncan-Ely test [28] and by the

Tardieu test [29]. According to the MRC, muscle strength ranged from 5 (the strongest) to 1

(the weakest) The scale for spasticity ranged from 0 (no spasticity) to 4 (severe spasticity).

More information about these (strength and spasticity) grading systems is available in our pre-

vious work [30].

2-3 Signal processing

The raw EMG data were then band-pass filtered (Butterworth filter with a cutoff frequency of

20–350 Hz), rectified, and the signal smoothed (Butterworth low-pass filter with a cutoff fre-

quency of 9 Hz), amplitude-normalized to the mean of signal, time-normalized within one

gait cycle (101 datapoint) in MatLab (The MathWorks, Inc. USA) [6]. The gait events were

detected for both right and left sides for at least seven trials for each individual. The final EMG

envelopes were calculated as the averaged time-normalized signals for all the valid strides. Fur-

ther, six main features (mean, range, max, min, and their timing) from the EMG envelopes

were extracted during ten gait phases [6]. These phases included the whole-gait-cycle, stance,

swing, loading response, mid-stance, terminal stance, pre-swing, initial swing, mid-swing, and

terminal swing phase. These features were used for further analysis.

To determine a magnitude that describes the deviation of a patient’s EMG feature from the

reference group, the norm-distance (NDi) was calculated according to [6] by Eq (1). ND was

defined as the absolute difference between the i_th feature of the EMG of the patient p (Fpi)
and the mean value of the same feature in the reference group ð�FniÞ, divided by the corre-

sponding standard deviation within the reference group (SDni). This standardization process

served as the initial input for subsequent steps and can potentially help as a data transforma-

tion method to identify meaningful clusters.

NDi ¼
jFpi �

�Fnij

SDni
ð1Þ

2-4 Cluster analysis

We applied cluster analysis as an unsupervised stand-alone tool to gain insight into the data

distribution, examine the distinct characteristics of each cluster, and prioritize specific clusters

for subsequent analysis. Therefore, we applied two feature matrices with dimension of 881×60

(number of feature (6) × number of gait phases (10)) and 377×60 for E1 and E2 conditions,

respectively. Prior to performing clustering analysis, we employed principal component analy-

sis (PCA) to reduce the dimensionality of the input matrices [31]. The first principal compo-

nents (PCs), which explained more than 96% of the total variance, were used for the

clustering. The hybrid clustering algorithm was developed using MatLab software based on

the details described in Supplementary material (S1 Appendix). In the initial stage, the PSO

algorithm was employed for a global search to explore the possible optimal solutions to
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predefine the number of clusters. The output of PSO served as the initial centroids for the K-

means algorithm, which was then utilized to refine and generate the final result. Using the

elbow method [32], the number of ‘K’ was determined. In this method, the changes in the sum

of squared differences between the observations and their cluster (SSE) were analyzed by add-

ing the number of clusters. The point at which there is a sharp change in the elbow curve indi-

cates the K. In this study, we applied the elbow method on the E1 dataset to determine the K;

then we set this for the E2 clustering as well.

2-5 Comparison between the clusters

The Pearson correlation (r) was applied to compare the averaged RF EMG of patients in the

different clusters with that of the typically developed group. A more comprehensive investiga-

tion of the clusters (labels)’ characteristics conducted through 1) extracting the average hip,

knee, and ankle joint angles and moments of each cluster at E1 and E2 in the sagittal plane and

2) examining the population of the gait subgroups (crouch, jump, recurvatum, stiff knee, and

mild) in each cluster. Descriptive statistics (mean and standard deviation) were used to com-

pare the clinical examination data between the conditions.

2-6 Comparison between the groups

Considering the changes in the EMG cluster and gait kinematics of the patients from their sec-

ond examination (E2), we set two cohorts of patients in E1 in an identified cluster (section 3)

who were determined as crouch and who did not show any changes (G1) or showed improve-

ment (G2) in their gait later according to E2. All of these patients underwent single-event mul-

tilevel surgery (SEMLS) between the examinations. Gait profile score (GPS) [33] was

computed for the groups in both E1 and E2 to assess gait improvement.

To investigate the gait factors resulting in these different responses to the treatment, the

EMG data of the RF muscle from G1 and G2 patients at E1 were compared by extracting six

main features (section 2–3) during 20 to 45% of their gait cycle, as described by Sangeux et al.

[20]. Applying the nonparametric Kruskal-Wallis test, we compared the features between G1

and G2 at E1 (p-Value = 0.05). Furthermore, we used statistical parametric mapping (SPM,

www.spm1d.org) implemented in MatLab [34] to compare joint patterns. Fig 1 illustrates the

procedure we used in this study in a flow chart.

Fig 1. Flowchart of the methodology used in this study. EMG, electromyography; PSO, particle swarm optimization.

https://doi.org/10.1371/journal.pone.0298945.g001
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3 Results

Fig 2 shows an elbow plot with K = 3, representing the number of clusters (L1, L2, and L3).

The first 25 PCs accounted for approximately 96.1% of the variance in the primary dataset

and were utilized for the clustering analysis. Comparing the EMG of RF between the three

identified clusters in two examinations (Fig 3A), they were characterized by a peak during

mid-swing (L1), prolonged activity during (mid- and terminal) stance (L2), and a significant

peak during loading response (L3). Notably, L2 contained 76% (55 out of 72) and 92% (35

out of 38) of all crouch patients at E1 and E2, respectively (Table 2). An excessive knee flex-

ion during the stance phase of gait (Fig 3B), along with lack of an extension moment (Fig

3C), for patients detected as cluster 2, supported the sensitivity of our clustering to the

crouch gait.

Correlation analysis (Table 2) revealed a similarity of more than 0.9 between the average

EMG pattern of patients placed in L3 and the normal population, while L1 patients had the

lowest coefficient by 39 and 53% at E1 and E2, respectively.

In addition, averaged clinical assessment of the patients (as presented in Table 2 descrip-

tively) revealed that the L2 group had lower strength and higher levels of spasticity in their

knee extensors than did the other two groups. Moreover, the number of patients with more

severe motor impairment (GMFCS level III) was also higher in the L2 than in the L1 and L3

groups. Comparing G1 (16 patients, 32 limbs) and G2 (8 patients, 15 limbs), there was a signif-

icant improvement in the GPS of G2 at E2 (Table 3).

The SPM results did not show any systematic difference (p<0.05) between knee kinematics

of G1 and G2 individuals at E1 (Fig 4A and 4B). Visually, however, the stance peak extension

moment for both groups is at the same level (Fig 4C). As increased RF activity during stance

was the main characteristic of cluster 2, a subjective comparison between the two groups in

this phase (Fig 4A) showed a higher average EMG in G1-E1 than G2-E1. Statistically, as shown

in Table 2, there is a systematic difference between the minimum activity of RF during 20–

45% gait between the two groups (p = 0.025). Mean and maximum (features) were also lower

for G2. We only reported the main three features with the lowest p-value.

Fig 2. Determination of the number of clusters using the elbow method. The scatter plots show the distribution of

input data (E1) in different clusters in which the axes are PC1 and PC2. Each color represents a cluster.

https://doi.org/10.1371/journal.pone.0298945.g002
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Fig 3. Average rectus femoris electromyography (EMG) (A), knee kinematic (B) and knee kinetic (C) patterns for

different clusters and examinations. Red: L1, Blue: L2, Green: L3, Black: reference group, Solid lines: E1, Dashed

lines: E2.

https://doi.org/10.1371/journal.pone.0298945.g003
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4 Discussion

Using an unsupervised hybrid PSO- K-means cluster analysis, three main groups were identi-

fied from EMG data of the RF in patients with CP. These clusters differed from each other in

level of activity in swing (L1), stance (L2), and loading response (L3) (Fig 3A). Applying a pre-

clustering standardization technique in combination with PCA, our clustering system could

categorize the patients in relation to the deviation of their EMG results from those of a healthy

population. Subsequently, a correlation of more than 90% was observed between one of the

clusters (L3) and a normal EMG (Table 2). Descriptively, L3 patients showed a stronger knee

extensor and a lower RF spasticity. On the other hand, patterns in patients identified as L1 cor-

related least with normal patterns (Table 2). It has been reported that in the majority of chil-

dren with CP the RF is active during the mid-swing phase, when this muscle is normally

inactive [35]. A high swing peak observed in the mean EMG of this cluster (L1) aligns with this

typical feature of CP.

Furthermore, identifying a significant number of patients with a crouch gait as L2 (Table 2)

is consistent with the prolonged activation of RF during stance phase, which is supported by

the current literature [14]. In healthy individuals, quadriceps muscles are typically active for a

small portion of the stance phase. However, in patients with crouch gait, the positioning of the

ground reaction force behind the center of the knee joint requires the quadriceps to be

engaged throughout the entire stance phase in order to maintain stability of the knee joint

Table 2. Number of patients with a gait abnormality, clinical examination data (mean ± SD), and number of patients with different GMFCS level in each cluster

examination.

Conditions (Clusters-
Examinations)

Gait subgroups count per condition r-correlation to

normal EMG

Clinical Examination Parameters GMFCS level

(I/ II/ III)Stiff Recurvatum Mild Jump Crouch Knee extensors

strength

Rectus spasticity

Tardieu

Rectus spasticity

Duncan-Ely

E1-L1 11 63 224 25 7 0.39 4.5 ± 0.6 0.66 ± 1 0.64 ± 0.5 57/40/2

E1-L2 21 26 178 23 55 0.67 4.3 ± 0.6 1.1 ± 1 0.71 ± 0.4 19/45/11

E1-L3 10 21 190 17 10 0.91 4.6 ± 0.5 0.44 ± 0.8 0.49 ± 0.5 64/45/2

E2-L1 6 6 107 10 3 0.53 4.3 ± 0.6 0.68 ± 1 0.72 ± 0.5 30/20/0

E2-L2 5 9 79 12 35 0.7 4.2 ± 0.6 0.96 ± 1 0.69 ± 0.5 10/29/2

E2-L3 8 8 83 6 0 0.92 4.4 ± 0.6 0.44 ± 0.9 0.59 ± 0.5 19/18/1

https://doi.org/10.1371/journal.pone.0298945.t002

Table 3. Mean ± SD and statistical comparison for gait profile score (GPS) and rectus femoris electromyography (EMG) features at 20–45% gait between patients

with crouch gait (cluster 2) measured before and after surgery (E1 and E2) and demonstrated no significant improvement (G1) or significant improvement during

the second examination (G2).

GPS

G1 G2 Normal

E1 16.25 ± 2.6 18.4 ± 5.9 4.87 ± 1.09

E2 15.16 ± 3.9 14.3 ± 6.3

p-value between E1 and E2 within each Group 0.167 0.033*
Rectus EMG features in 20–45% gait cycle during E1

G1 G2 p-value between G1 and G2 for each feature Normal

Min 20–45% 85.1 ± 20.2 69.2 ± 25.7 0.025* 38.3 ± 14.5

Mean 20–45% 110.8 ± 16.3 100.8 ± 23.4 0.144 56.7 ± 21

Max 20–45% 137.8 ± 19.1 128.1 ± 27.4 0.121 92.2 ± 36.8

*p-value<0.05

https://doi.org/10.1371/journal.pone.0298945.t003
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Fig 4. Average rectus femoris electromyography (EMG) (A), knee kinematic (B) and knee kinetic (C) patterns for

cluster 2 patients that did not improve (G1) or improved (G2) after surgery (E2) compared to their condition

before surgery (E1). Red: G1, Blue: G2, Solid line: E1, Dashed line: E2.

https://doi.org/10.1371/journal.pone.0298945.g004
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[36]. Table 1 demonstrates higher levels of RF and weaker knee extensor strength among indi-

viduals classified as L2 at E1 compared to L1 and L3. This cluster also exhibited a greater pro-

portion of patients with a higher GMFCS level, which may support the notion that this EMG

pattern might be linked to severity of the disability.

Investigating the relationship between EMG activity and altered kinematics in G1 patients

with persistent crouch condition and G2 patients with significant GPS improvement, we

observed (Table 3) that a lower minimum activity of RF during 20–45% of the gait cycle was a

significant (p = 0.025) indicator of a better GPS at E2. However, the changes from E1 to E2 for

sagittal knee kinematics of G1 and G2 were not significant. These findings suggest that EMG

patterns are important for treatment decision-making, but that the effectiveness of kinematics,

as a widely used clinical measure, is limited. The G1-G2 EMG comparison was made for the

period 20–45% of the gait cycle. Sangeux et al. [20] developed an index to categorize CP sub-

groups by considering only this 25% of the gait cycle, mainly to avoid the loading response

effects on the stance phase features. As the relationship between muscle EMGs and joint kinet-

ics is nonlinear [37], it is difficult to find a direct explanation for the differences in the kinetics

patterns of G1-G2 at E1 based on the RF activity.

Several algorithms are available in the literature to determine the optimal number of clus-

ters [38]; however, in this study, the elbow curve at K = 3 was obvious and an exact bio-

mechanical meaning for the clusters supports the algorithm results. For instance, each cluster

showed a prominent activation in different gait phases: there was a cluster with a significant

number of patients with crouch and a weaker RF, in addition to a cluster with patients with

(correlated) normal EMG patterns. In this research, we used blind, unsupervised clustering

without any prior information about the available EMG data. The only inclusion criteria

applied were the availability of data from patients who walked barefoot and without any assis-

tance. Applying such an algorithm on a large database (collected in our center) with more than

1000 examinations aided us in identifying general trends in the EMG data of CP patients. Fur-

thermore, the term E2 in our study addressed the second examination of patients in whom a

gait test (E1) had previously been performed in the lab. As a result, this does not apply to a

before-after surgery scenario. However, it is important to note that these patients are typically

engaged in an everyday training program. In the present study, the inclusion or exclusion cri-

teria did not specifically consider the aspect of "treatment" initially. Crosstalk remains a major

challenge in EMG studies, especially when attempting to isolate the activity of specific muscles.

Particularly, the crosstalk from the surrounding vastus lateralis muscle on the activity of RF

has recently been extensively reported as a common issue when employing surface EMG, espe-

cially in the presence of crouch gait observed in children with CP [39]. However, utilizing wire

fine EMG, true activation of RF was noted in 30–45% of crouched gait cycles [39]. Our study

specifically focuses on the 20–45% phase of gait in G1 and G2, addressing this unaffected seg-

ment of RF activity. Nevertheless, despite lacking access to an extensive database of wire fine

EMG data from CP patients, we believe that surface EMG, as a non-invasive and clinically rele-

vant measure of gait in individuals with CP, has the capacity to capture the primary character-

istics of muscle activity in these patients.

To overcome the K-mean algorithm initialization problem, we developed a hybrid K-mean

and PSO optimization approach. Raouafi et al. [40] employed discriminative analysis and K-

means clustering techniques to develop a classification approach for determining upper limb

disability levels in patients with CP. Their study utilized kinematic and EMG data from a

cohort of 13 patients. Similarly, Hu et al. [41] introduced a mixed K-means and hierarchical

clustering algorithm to categorize gait patterns in individuals with CP. While methodological

studies on gait in CP exist, our study was the first attempt at clustering EMG data in CP using

such an extensive clinical dataset. Therefore, the current research focused only on one muscle
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(RF) and, further, the crouch condition to investigate the possibility of developing CP-EMG

assessment approaches. Given that the vastus lateralis is particularly important during the

stance phase and is often active when the rectus femoris is not, we suggest including this mus-

cle in combination with the rectus femoris for further EMG analyses in patients with CP. Fur-

thermore, the gait subgrouping algorithm we developed, which is based on the hip, knee, and

ankle angles in the sagittal plane as outlined in references [14, 24], was limited to identifying

patients with one of the following conditions: crouch, recurvatum, jump, stiff, or mild knee

gait abnormalities. Although our algorithm was designed to detect the most severe condition

as the primary gait issue for a patient, multiple gait abnormalities can occur simultaneously.

For future research, we recommend analyzing EMG while considering the severity of each gait

abnormality for individual patients.

We conclude that clustering EMG data of the rectus femoris has the potential to establish a

novel threshold-based treatment decision-making approach for patients with CP, particularly

those exhibiting crouch gait. From a clinical point of view, our study demonstrated that, as a

rule of thumb for patients with crouch knee gait and minimal rectus femoris activity greater

than 85% of the mean EMG during mid-stance of the gait cycle (as shown in Table 3), the

crouch gait will not be corrected following the intervention. These findings seem promising

and suggest that clustering analyses should be applied on datasets with more muscles. In addi-

tion, we mainly evaluated knee movement while other joints and gait abnormalities could also

be included in future studies.
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