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Abstract

Many forms of childhood glaucoma have been associated with underlying genetic changes,

and variants in many genes have been described. Currently, testing is variable as there are

no widely accepted guidelines for testing. This systematic review aimed to summarize the lit-

erature describing genetic changes and testing practices in childhood glaucoma. This sys-

tematic review was conducted in accordance with the Preferred Reporting Items for

Systematic review and Meta-Analyses (PRISMA) 2020 guidelines and registered with Pros-

pero (ID CRD42023400467). A comprehensive review of Pubmed, Embase, and Cochrane

databases was performed from inception through March 2, 2023 using the search terms:

(glaucoma) AND (pediatric OR childhood OR congenital OR child OR infant OR infantile)

AND (gene OR genetic OR genotype OR locus OR genomic OR mutation OR variant OR

test OR screen OR panel). Information was extracted regarding genetic variants including

genotype-phenotype correlation. Risk of bias was assessed using the Newcastle-Ottawa

Scale. Of 1,916 records screened, 196 studies met inclusion criteria and 53 genes were dis-

cussed. Among study populations, mean age±SD at glaucoma diagnosis was 8.94±9.54

years and 50.4% were male. The most common gene discussed was CYP1B1, evaluated in

109 (55.6%) studies. CYP1B1 variants were associated with region and population-specific

prevalence ranging from 5% to 86% among those with primary congenital glaucoma. MYOC

variants were discussed in 31 (15.8%) studies with prevalence up to 36% among patients

with juvenile open angle glaucoma. FOXC1 variants were discussed in 25 (12.8%) studies,

which demonstrated phenotypic severity dependent on degree of gene expression and type

of mutation. Overall risk of bias was low; the most common domains of bias were selection

and comparability. Numerous genes and genetic changes have been associated with child-

hood glaucoma. Understanding the most common genes as well as potential genotype-phe-

notype correlation has the potential to improve diagnostic and prognostic outcomes for

children with glaucoma.

Introduction

Glaucoma in children is a rare but potentially visually devastating condition characterized by

elevated intraocular pressure, optic nerve damage, and the potential to cause irreversible
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blindness if not diagnosed and treated in a timely manner [1]. Childhood glaucoma is typically

diagnosed clinically on the basis of intraocular pressure elevation, signs of glaucomatous optic

nerve damage, corneal changes, or visual field defects consistent with glaucomatous optic

nerve damage [2]. In some cases, genetic testing can establish a molecular diagnosis as many

forms of childhood glaucoma, including primary congenital glaucoma (PCG), juvenile open

angle glaucoma (JOAG), and glaucoma associated with non-acquired ocular or systemic dis-

eases, have been associated with underlying genetic changes [3]. Understanding these genetic

changes has the potential to shed light on pathophysiologic mechanisms of disease, disease

prognostication, and treatment implications.

Currently, various clinical practice guidelines recommend that children at high risk of

developing glaucoma should undergo an eye examination to detect disease [4–6]. Even though

many genes have been implicated in the childhood glaucoma [7–9], no current guidelines out-

line specific protocols for populations who may be genetically “at increased risk.” Additionally,

for children with a confirmed diagnosis of glaucoma, the frequency and type of genetic testing

is variable. This may be driven by the relative nascency of childhood glaucoma genetics that

has not yet resulted in enough centralized high quality evidence to influence standard clinical

practice, or the fact that genetic testing associated with childhood glaucoma can be inconsis-

tent or inconclusive [10, 11]. This study summarizes the current body of evidence evaluating

genetic changes and testing associated with childhood glaucoma.

Materials and methods

Inclusion and exclusion criteria

Studies were included in the systematic review if (1) they were prospective or retrospective

cohort studies, cross-sectional studies, case-control studies, case series, or case reports, and (2)

they specifically discussed genetic changes or testing associated with primary congenital glau-

coma, juvenile-onset open angle glaucoma, secondary glaucoma associated with congenital

non-acquired ocular anomalies, or unspecified glaucoma with age of onset between 0–18

years. Articles were excluded if (1) they were review articles, letters, or abstract-only publica-

tions (2) they discussed genetic changes or testing related to syndromic glaucoma with sys-

temic features, (3) they lacked a child-specific analysis or discussion, or (4) they were not

available as full-text articles in English.

Search strategy

To ensure a comprehensive review of the available literature, Pubmed, Embase, and Cochrane

databases were all queried using the following search terms: (glaucoma) AND (pediatric OR

childhood OR congenital OR child OR infant OR infantile) AND (gene OR genetic OR geno-

type OR locus OR genomic OR mutation OR variant OR test OR screen OR panel). Addition-

ally, relevant citations from papers identified through these databases were manually

identified. All relevant studies published on or before March 2, 2023 were included.

Study selection and data collection. After searching the databases, all titles and abstracts

were screened by a single reviewer (AK) to exclude irrelevant studies. Full text review was sub-

sequently conducted in accordance with the aforementioned inclusion and exclusion criteria.

Data was then extracted for all studies that met criteria by a single reviewer (AK). Data

extracted included year of study, study design, sample size, mean age and sex breakdown of

study population, etiology of glaucoma included in study, genes or genetic tests studied, spe-

cific genetic changes identified, and any quantitative measures reported in the study, such as

diagnostic yield, prevalence of genetic changes, and genotype-phenotype correlations. An
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independent validation of both the screening and data extraction process on a random 20%

sample was conducted by a second reviewer (JO).

Risk of bias assessment

A risk of bias assessment was then performed independently using the Newcastle-Ottawa Scale

tool for cohort and case-control studies [12], as well as modified instruments for cross-sec-

tional studies [13] and case reports and series [14], by two investigators (AK and JO). Dis-

agreements were adjudicated by a third party (YH).

Data synthesis and analysis

Results across studies were summarized using Microsoft Excel Version 16.0 (Redmond, WA)

to provide descriptive statistics, including means and standard deviations of study population

sizes and ages. This study did not require review by the Institutional Review Board because no

patient data were included. This systematic review was conducted in accordance with the Pre-

ferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) 2020 updated

guidelines for reporting systematic reviews [15]. PRISMA checklist in S1 Checklist, Addition-

ally, the methodological protocol of the search was registered with Prospero in February 2023

(ID CRD42023400467). Protocol in S1 Protocol.

Study characteristics

Systematic search of the Pubmed, Embase, and Cochrane databases resulted in the identifica-

tion of 2,349 studies published as of March 2, 2023. Following the removal of duplicates, 1,916

articles remained (Fig 1). Following exclusion of 1,255 of those studies based on screening of

abstracts and titles alone, the remaining 661 studies underwent full-text review. Of those, 305

were excluded on the basis of relevance, 70 were excluded for being non-pediatric studies, 72

were excluded on the basis of study design, and 18 were excluded for not being available as

full-texts in English. Following this assessment for eligibility, 196 studies were eligible for

inclusion in the systematic review. A complete spreadsheet containing all data fields extracted

from included studies can be found in S1 Appendix.

Of the 196 included studies, 36 (18.4%) were case reports, 40 (20.4%) were case series, 15

(7.7%) were case-control studies, 91 (66.9%) were cross-sectional studies, 7 (3.6%) were pro-

spective cohort studies, and 7 (3.6%) were retrospective cohort studies. Twenty-three of the

studies (11.7%) were published between 1993 and 2002, 58 (29.6%) between 2003 and 2012,

and 115 (58.7%) between 2013 and March 2023. Within the studies, 53 unique genes were dis-

cussed. The most common gene discussed in the studies was CYP1B1, evaluated in 109

(55.6%) of the studies, followed by MYOC in 31 (15.8%), and FOXC1 in 25 (12.8%). Of the

included studies that were not case reports, mean±SD number of study participants was 80.3

±139.4 participants. The total number of participants included across all 196 studies was

12,607. Of the studies that published data on participant age, mean age±SD at glaucoma diag-

nosis was 8.94±9.54 years. Of the studies that published data on participant sex, an average of

50.4% were male. A comprehensive list of all genes, proposed functions, and glaucoma associa-

tions is shown in Table 1.

Overall, risk of bias was low among included studies. Of the case reports and series, 80%

scored a 4 or higher out of 5 on the modified Newcastle-Ottawa scale for case series and

reports, with the most common domain for bias being selection. Of the case-control studies,

70% scored a 6 or higher out of 9 on the Newcastle-Ottawa scale for case-control studies, with

the most common domain for bias being comparability between cases and controls. Of the

cross-sectional studies, 70% scored an 8 or higher out of 10 on the modified Newcastle-Ottawa
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Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0298883.g001
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Table 1. Nuclear genes associated with childhood glaucoma in published literature.

Gene Protein Relevant proposed function/expression

of gene

Glaucoma types associated with gene

ADAM9 a disintegrin and metalloprotease

metallopeptidase domain 9

Involved in cell-cell and cell-matrix

interactions involved in neurogenesis

PCG [16]

ARX aristaless related homeobox Involved in central nervous system

development

PCG [17]

ANGPT1 angiopoietin 1 Mediates matrix-endothelium interactions

and is involved in vascular development

PCG, JOAG [18]

BEST1 bestrophin 1 Regulates ion transport in the retina Angle-closure [19]

CHRDL1 chordin like 1 Regulates retinal angiogenesis in response

to hypoxia

PCG [20]

COL1A1,

COL18A1,

COL2A1

collagen type I alpha 1 chain, collagen type

XVIII alpha 1 chain, collagen type II alpha 1

chain

Encodes fibrillar collagen found in

cartilage and vitreous humor or eye

PCG [18], JOAG [18]

CPAMD8 C3 and PZP like alpha-2-macroglobulin

domain containing 8

Involved in innate immunity and damage

control

PCG, JOAG [21–23], glaucoma associated with non-

acquired ocular anomalies [18]

CRYBB3 crystallin beta B3 Involved in maintaining the vertebrate eye

lens

PCG [24], JOAG, glaucoma associated with non-

acquired ocular anomalies [25]

CYP1B1 cytochrome P450 family 1 subfamily B

member 1

Involved in metabolizing a signaling

molecule involved in eye development

PCG [18, 20, 24, 26–121], JOAG [9, 122–127],

glaucoma associated with non-acquired ocular

anomalies [25, 128]

DPT dermatopontin Involved in extracellular matrix formation

and cell-matrix interactions

PCG [129]

EFEMP1 EGF containing fibulin extracellular matrix

protein 1

Encodes extracellular matrix glycoprotein

involved in retinal drusen formation

JOAG [130]

FBN1 fibrillin 1 Encodes extracellular matrix protein

expressed in the eye

PCG [131]

FOXC1 forkhead box C1 Regulates embryonic and ocular

development and ocular drainage

PCG [24, 48, 72, 117, 129, 132–146], JOAG [18, 25,

128, 147], glaucoma associated with non-acquired

ocular anomalies [148]

FYCO1 FYVE and coiled-coil domain autophagy

adaptor 1

Mediates autophagy and expressed in the

lens and retina

PCG [24]

GJA1, GJA8 gap junction protein alpha 1, gap junction

protein alpha 8

Encodes connexin protein necessary for

lens fiber growth and maturation

PCG [24, 117, 149], glaucoma associated with non-

acquired ocular anomalies [25]

HMX1 H6 family homeobox 1 Involved in development of craniofacial

structures

PCG [131]

LMX1B LIM homeobox transcription factor 1 beta Involved in development of the anterior

segment of the eye

PCG [131]

LTBP2 latent transforming growth factor beta binding

protein 2

Involved in ciliary microfibril

development and lens suspension

PCG [24, 44, 68, 71, 82, 150–154], JOAG [123, 155],

glaucoma associated with non-acquired ocular

anomalies [25]

MAF MAF bZIP transcription factor Regulates embryonic lens fiber cell

development

PCG [131]

MYOC Myocilin, or trabecular meshwork

glucocorticoid-inducible response (TIGR)

Involved in IOP regulation and expressed

in ocular tissue

PCG [53–55, 68, 72, 74–76, 90, 156–159], JOAG [9,

118, 122, 123, 155, 160–172], glaucoma associated

with non-acquired ocular anomalies [18]

OAT ornithine aminotransferase Involved in glutamate and GABA

synthesis

Glaucoma associated with non-acquired ocular

anomalies [173]

OPA1 Optic atrophy type 1 mitochondrial dynamin

like GTPase

Involved in mitochondrial metabolism in

retinal ganglion cells

PCG, JOAG [166]

OPTN Optineurin Regulates basic cellular functions within

trabecular meshwork and retina

PCG [18, 174], JOAG [164]

NTF4 neurotrophin 4 Regulates survival and differentiation of

mammalian neurons

PCG [90]

(Continued)
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scale for cross-sectional studies, with the most common domain for bias being comparability

between different outcome groups. Of the cohort studies, 100% scored a 6 or higher out of 9

on the Newcastle-Ottawa scale for cohort studies, with the most common domain of bias

being selection.

Limitations

This systematic review is limited in that reported summary estimates may have been subject to

publication bias; it is possible that reported metrics, such as diagnostic yield or magnitude of

Table 1. (Continued)

Gene Protein Relevant proposed function/expression

of gene

Glaucoma types associated with gene

PAX6 paired box 6 Provides transcriptional regulation of

neural development, especially in the eye

PCG [175–181], JOAG [18, 182]

PITX2, PITX3 paired like homeodomain 2, paired like

homeodomain 3

Regulates development of the anterior

segment of the eye

PCG [17, 72, 117, 131, 140, 144, 183], JOAG [9, 147],

glaucoma associated with non-acquired ocular

anomalies [18, 148, 184]

PLOD2 procollagen-lysine,2-oxoglutarate

5-dioxygenase 2

Involved in membrane stability and

expressed in the eye during embryogenesis

PCG [185]

PRDM5 PR/SET domain 5 Regulates fibrillar collagens in the eye PCG [131]

PTBP2 polypyrimidine tract binding protein 2 Regulates neural development via

repression of select adult protein isoforms

until final maturation

PCG, JOAG [18]

PXDN Peroxidasin Involved in extracellular matrix formation

and is expressed in the eye

PCG [150]

RAX retina and anterior neural fold homeobox Regulates retinal cell fate determination

and ocular development

PCG [131]

SIX1, SIX6 SIX homeobox 1, SIX homeobox 6 Involved in ocular development PCG [131]

SLC4A11 solute carrier family 4 member 11 Encodes ion channel expressed in corneal

endothelium

PCG [131], JOAG [18]

SOX11 SRY-box transcription factor 11 Regulates embryonic development and cell

fate determination of ocular structures

PCG [24, 131], glaucoma associated with non-

acquired ocular anomalies [25]

SVEP1 sushi, von Willebrand factor type A, EGF and

pentraxin domain containing 1

Involved in epidermis development and

lymph vessel morphogenesis

PCG [186]

TBK1 TANK binding kinase 1 Regulates autophagy in the retinal

ganglion cell layer

PCG, JOAG [18]

TEK TEK receptor tyrosine kinase mediates embryonic vascular development

through angiopoietin signaling

PCG [24, 37, 71, 186, 187], JOAG [18], glaucoma

associated with non-acquired ocular anomalies [25]

THBS1 thrombospondin 1 Mediates cell-cell and cell-matrix

interactions on ocular tissue

PCG [188]

TMEM98 transmembrane protein 98 Expressed in ocular tissues and regulates

eye size

PCG, JOAG [18]

TNF tumor necrosis factor Involved in multifunctional inflammatory

cytokine pathway

PCG [189]

TRIM44 tripartite motif containing 44 Regulates differentiation and maturation

of neuronal cells

PCG [131]

WDR36 WD repeat domain 36 Involved in ocular tissue cell cycle

progression, signal transduction,

apoptosis, and gene regulation

PCG [90], JOAG [166]

WT1 WT1 transcription factor Regulates progenitor proliferation and

retinal ganglion cells during retinogenesis

PCG [131]

VAX1 ventral anterior homeobox 1 Regulates development and

morphogenesis of anterior ventral

forebrain and visual system

PCG [131]

https://doi.org/10.1371/journal.pone.0298883.t001
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genotype-phenotype correlations, may be overestimates of true estimates due to the tendency

for positive findings to be overrepresented in the literature. Additionally, this review only

included studies that had full text available in the English language, which may have resulted

in incomplete summarizations of genetic changes and prevalence estimates by omitting studies

in other languages conducted in globally diverse patient populations. Finally, though a com-

prehensive search strategy was implemented, it is possible that some relevant studies were not

included due to variations in terminology or our use of only three major databases.

Discussion/Summary of evidence

CYP1B1

The CYP1B1 gene, which encodes a cytochrome P450 family protein and is highly expressed

in the eye, is arguably one of the most investigated genomic regions in the setting of childhood

glaucoma. In PCG, CYP1B1 variants are thought to be related to impaired metabolism of reti-

nol, which disrupts retinoic acid levels required for ocular development [43]. Its increased

expression in fetal eyes as compared to adult eyes suggests its significance in the development

of childhood glaucoma specifically [190]. Numerous case reports have highlighted the inci-

dence of bilateral PCG in those with homozygous or compound heterozygous CYP1B1 vari-

ants in individuals both with and without a family history of the disease, with the most

common variants being p.G61E, p.R368H, pE229K, and p.R390H [26–36].

Of analytical studies investigating the prevalence of genetic changes associated with child-

hood glaucoma, CYP1B1 variants are the most common with varying prevalence across

regions and populations. For example, among patients with PCG, cross-sectional studies have

found the prevalence of CYP1B1 variants to range between 5% and 23% in South Africa [71],

China [46, 62], America [68], Vietnam [54], Japan [69, 94, 104, 107], and Germany [24], while

prevalences range from 30% to 55% in studies from India [79, 95], Turkey [72, 98], Portugal

[57, 128], Morocco [40], Spain [118], and France [103]. Among PCG patients, CYP1B1 vari-

ants appear to be most prevalent in some South Asian and Middle Eastern populations as prev-

alences have been found to range from 64% to 85.7% in studies from Pakistan [99], Iran [63],

and Saudi Arabia [47, 113, 123]. Prevalence of specific variants has also been found to be

region- and population-specific. For example, among PCG patients, the prevalence of the mis-

sense p.G61E variant was found to be 7.8% in a Moroccan population [114], 47.1% in an Ira-

nian population [119], 50% in an Israeli Bedouin population [49], and 63% in a Saudi Arabian

population [66]. Additionally, while the frequency of the missense p.E378K variant was only

6.67% in a Mexican population [50], it was 100% in a Slovak population of patients with PCG,

indicating a potential founder effect [77]. Studies have also evaluated the prevalence of

CYP1B1 variants in patients with various ocular anomalies. For example, the prevalence was

found to be as high as 91% in patients with buphthalmos, including ectropion uveae and par-

tial aniridia [87], 92.3% in patients with ectropion uveae [100], and 0% in patients with the

Axenfeld-Rieger anomaly [117]. Together, this research highlights the relative prevalence of

CYP1B1 variants among cases of childhood glaucoma and also suggests that testing for such

variants has varying degrees of utility depending on the patient population and ocular

manifestations.

In evaluating genotype-phenotype correlations, studies have shown that those with homo-

zygous CYP1B1 variants generally display more severe clinical phenotypes compared to those

without. For example, variants in CYP1B1 have been associated with earlier age of disease

onset [57, 75, 106, 191], higher likelihood of developing bilateral disease [57, 64, 75], higher

intraocular pressure [64, 106], and requirement of more medical and surgical interventions

[58, 75, 113]. However, among patients with CYP1B1 genetic changes, penetrance is not full,
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and phenotypic severity has been found to be variable, suggesting the presence of some type of

genetic modification through interaction with other genes [89]. Several studies have explored

whether the type of CYP1B1 variant affects the phenotype. For example, in West Siberia, vari-

ants in codon 444 were associated with the most severe phenotypes, suggesting that codon’s

role in structural stabilization of the resulting protein [115]. Additionally, null variants have

been found to be associated with a need for greater number of surgeries and earlier age of dis-

ease onset [33, 67]. In another study, the percentage of PCG patients with “severe” phenotypes

was 100% in those with frameshift variants, 80% with missense p.E229K variants, and 66.7%

with missense p.G61E variants [52]. However, in some familial studies, phenotypes of different

degrees of severity have been observed among patients with the exact same variant, even

within the same family, demonstrating that variant alone cannot account for all phenotypic

differences [45, 121]. Overall, future studies investigating the effect of CYP1B1 variants in both

functional protein models and human correlates will be essential in predicting disease course

and phenotypic severity of those with variants.

FOXC1 and PITX2

The FOXC1 gene encodes the forkhead box C1 protein, which is a transcription factor founda-

tional in the regulation of embryonic and ocular development and highly expressed in impor-

tant ocular structures including the iris, cornea, and trabecular meshwork [192]. Many case

reports have described a spectrum of conditions associated with variants in this gene, most

commonly including the Axenfeld-Rieger anomaly, as well as aniridia and megalocornea in

the setting of heterozygous FOXC1 variants [132–136]. Frequently reported variants associated

with varying degrees of phenotypic severity in case series include missense variants of the argi-

nine residue at position 127 [129, 138, 146], deletions [48, 137, 142], and duplications [139].

Among cross-sectional studies in German, Australian, Italian, and Spanish populations of

patients with PCG and glaucoma associated with non-acquired ocular anomalies, the preva-

lence of FOXC1 variants appears to range between 4% and 7.5% [24, 25, 143–145]. Through

functional protein analysis, it has been proposed that a dose-dependent relationship exists

between FOXC1 expression and phenotype where variants that result in 50–60% or 130–150%

of transcriptional activity are associated with glaucoma, and activity beyond these levels result

in more severe anterior segment anomalies and extraocular manifestations [141]. For example,

in one study of Swiss families, it was found that those with duplications with hypothesized

150% transcriptional activity exhibited glaucoma with less phenotypic severity than those with

a frameshift FOXC1 variants that resulted in little to no transcriptional activity [128]. Overall,

these studies demonstrate a significant amount of phenotypic heterogeneity associated with

relatively prevalent changes in FOXC1 and future research is required to delineate the hypo-

morphic and hypermorphic variants associated with the most severe phenotypes.

Of note, the FOXC1 gene has significant functional interactions with the PITX2 gene,

another gene implicated in childhood glaucoma [193]. The PITX2 gene encodes the paired-

like homeodomain 2 protein, a transcription factor involved in negative regulation of the

FOXC1 gene. Loss of function PITX2 variants result in inappropriately extensive activation of

FOXC1-target genes [194]. Thus, variants in PITX2 have been reported in glaucoma associated

with Axenfeld-Rieger syndrome even in the absence of FOXC1 variants [17, 184]. Though

FOXC1 and PITX2 variants are thought to cause childhood glaucoma through a similar mech-

anism, studies have shown that FOXC1 variants (as compared to PITX2 variants) have signifi-

cantly greater disease penetrance and earlier age of onset [147, 148]. However, one study

observed that despite increased prevalence of disease at age 10 in those with FOXC1 variants as

compared to PITX2 variants, difference in prevalence was no longer significant at age 25 [140].
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Additionally, FOXC1 variants are potentially more likely to be associated with corneal abnor-

malities and need for glaucoma surgery than PITX2 variants [148]. Overall, these studies high-

light that identification of causative genes in patients with Axenfeld-Rieger syndrome may

have implications in anticipating phenotypic severity, disease progression, and surgical inter-

vention requirements; future research is required to particularize these relationships with age.

LTBP2

The LTBP2 gene encodes the latent transforming growth factor beta binding protein 2, an

extracellular matrix protein thought to be essential in ciliary microfibril development and the

development of correct lens placement and suspension. It is located within 1.5 Mb from the

GLC3 locus, which has been linked to PCG in family linkage studies [7]. LTBP2 variants have

also been described in association with microspherophakia, megalocornea, and ectopia lentis:

all non-acquired ocular anomalies that can co-exist with glaucoma. For example, reports have

described compound heterozygous LTBP2 variants and the coexistence of LTBP2 variants in

those with MYOC variants contributing to severe childhood glaucomatous phenotypes [155,

195]. Additionally, some familial observational case series have described missense and frame-

shift variants in Iranian and Pakistani pedigrees, noting that consanguinity was present in all

studied families [150–152]. The prevalence of LTBP2 variants in childhood glaucoma patients

is population-specific. For example, no variants to date have been identified in cross-sectional

studies of PCG and JOAG populations from China, South Africa, Saudi Arabia, or the United

States [68, 71, 123, 153]. However, LTBP2 variants have been identified in 4–5.6% of study par-

ticipants with childhood glaucoma in Germany [24, 25] and 12.5% in India [44]. Additionally,

a single p.R299X variant has been identified in 40.5% of patients with PCG that all originated

from the Roma founder population, with homozygotes for the variant presenting with more

severe ocular phenotypes than heterozygotes [82]. Collectively, these findings suggest that the

prevalence of causal LTBP2 variants may be region-specific, and that using LTBP2 sequencing

for molecular diagnosis may not be productive in certain populations. Future research examin-

ing the association between LTBP2 variant prevalence and consanguinity in a variety of differ-

ent locations will help elucidate populations in which LTBP2 testing may be the most valuable.

MYOC

The MYOC gene encodes the myocilin protein, also known as the trabecular meshwork gluco-

corticoid-inducible response (TIGR) protein, which in the eye is expressed primarily in trabec-

ular meshwork tissue and thought to be an important contributor to the regulation of

intraocular pressure [196]. Homozygous and heterozygous missense MYOC variants have

been implicated in case reports and cases series of bilateral PCG and JOAG [156, 160] Some

common variants identified include the missense p.P370L [163, 168, 169] and p.Q48H [157,

159] variants. Of note, the missense p.Q48H variant is thought to contribute to a consequential

proportion of cases in India, with that variant alone found in 2.5% of PCG cases in an observa-

tional study in India [158]. In cross-sectional analyses, the prevalence of MYOC variants has

been found to range between 2.3% and 2.6% in Chinese and Indian populations with PCG [53,

166]. The prevalence in patients with JOAG is higher and has been found to range between 4%

and 36% among Iranian, Canadian, Spanish, American, and Chinese populations [9, 118, 122,

161, 166]. Additionally, a study of the age-based prevalence of MYOC variants found that

MYOC variants were identified in 36% of American glaucomatous probands with juvenile-

onset disease as compared to only 4% of probands with adult-onset disease [161]. Together,

these studies demonstrate that screening for MYOC variants is of highest utility in patients

with JOAG or members of families with history of early-onset glaucoma.
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MYOC variants have also been found to have significant interactions with other genes

implicated in childhood glaucoma. For example, one study found that patients with coexisting

MYOC and OPTN variants had more severe ocular phenotypes than those with MYOC vari-

ants alone [164]. The OPTN gene codes for the optineurin protein, which is expressed during

early stages of eye development and helps regulate cellular functions such as protein trafficking

and NF-κB pathway maintenance in the trabecular meshwork and retina. Though this phe-

nomenon has not been extensively characterized in humans, cellular studies have noted that

OPTN upregulation results in increased stability of MYOC mRNA; thus, loss of function vari-

ants at the OPTN gene drive dysregulation of MYOC expression [197], providing a possible

pathophysiological mechanism of their interaction. Another study found that those with con-

current MYOC and CYP1B1 variants had a much earlier age of onset of disease than those

with MYOC variants alone [9]. One hypothesis for this interaction is that the CYP1B1 protein

may be involved in metabolism of endogenous steroids, which are known to induce the myoci-

lin protein; thus metabolic derangements from CYP1B1 variants may further exacerbate the

ramifications of any mutant myocilin proteins [198, 199]. Overall, the role of multiple genes in

potential modification of MYOC gene expression implies a common interaction pathway. Fur-

ther studies of functional protein interactions and their resulting clinical manifestations will be

useful in understanding the mechanisms by which MYOC variants contribute to glaucoma

and which patients may be at risk for developing the most severe phenotypes.

TEK

The TEK gene encodes the tunica interna endothelial cell kinase, which is a tyrosine kinase

protein that mediates embryonic vascular development through angiopoietin signaling [37].

Though its exact function in the development of glaucoma remains unknown, TEK variants

are thought to impair aqueous humor outflow and Schlemm’s canal development [200].

Though no specific variants appear to be predominant among TEK variants described in the

literature, estimates of the prevalence of TEK variants in general range from 4% to 5.9%

among German, Chinese, Australian, and South African populations with PCG, JOAG, and

glaucoma associated with non-acquired ocular anomalies [18, 24, 25, 71, 187]. Unlike other

genetic changes associated with childhood glaucoma, studies have demonstrated that the phe-

notypic penetrance of TEK variants is relatively low. For example, in one study of TEK variants

in Australian patients with early-onset glaucoma, only 75% of those with TEK variants exhib-

ited bilateral glaucoma, as compared to at least 97% of those with CYP1B1, LTBP2, and MYOC
variants, for example [18]. In another study of PCG in Chinese patients, penetrance was only

68.5% [187]. It is worth mentioning that these studies were limited in that they did not investi-

gate the association between penetrance and type of variant in large sample sizes; thus, it is

possible that a dose-dependent or protein-structure effect, or other relationship, exists between

TEK gene expression and phenotype that has yet to be identified. Regardless, one possible

explanation is that TEK gene expression is highly susceptible to the influence of interaction

with other genes. For example, one study has proposed that the SVEP1 gene could be a potent

genetic modifier as SVEP1 loss of function alleles were demonstrated to reduce TEK expres-

sion in vascular endothelial cells in animal models and correlate with increased disease severity

in human families with PCG [186]. The SVEP1 gene encodes an extracellular matrix glycopro-

tein involved in epidermal and lymph vessel development. Another study identified the coexis-

tence of heterozygous TEK and CYP1B1 variants in cases of PCG; they then conducted

functional analyses demonstrating that recombinant CYP1B1 proteins interacted with recom-

binant TEK proteins to decrease TEK signaling [37]. Further studies evaluating modulators of

this gene’s expressivity can help elucidate the pathophysiological mechanism by which it drives
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glaucoma and help predict which patients with TEK variants may be at greatest risk of severe

disease.

Real world genetic testing practice

Though no standard guidelines exist regarding genetic testing for childhood glaucoma, several

studies have investigated its use in the real world. For example, in a cross-sectional study of

pediatric referral practices in India, patients with glaucoma and objective features suggesting

an underlying genetic abnormality were less than half as likely to be referred for formal genetic

evaluation when they met with ophthalmologists than when they met with geneticists [201].

Though these findings may not be generalizable to all provider practices, it suggests that in

general, there is room to improve initiating genetic testing. One potential explanation for this

may relate to providers’ hesitation around the utility of testing relative to the potential financial

and logistical expenditures. A study investigating the diagnostic yield of genetic testing of

early-onset glaucoma patients in a real world practice setting found that next generation

sequencing was able to identify a causative variant in only 19% of those tested [202]. Notably,

diagnostic yield was 32% in patients with glaucoma onset before 3 years of age but only 5% in

patients with onset after three years of age, suggesting more limited utility of testing for later

onset glaucoma. Additionally, in a study of 39 patients with PCG referred to a pediatric ocular

genetics service in England, diagnostic yield of whole exome sequencing was only 12.8% [203].

In another study of 28 preschool-aged probands with anterior segment dysgenesis, including

glaucoma, diagnostic yield was 39%. Additionally, it was found that establishing a molecular

diagnosis altered management in 18% of those patients through avoidance of additional

unnecessary tests and initiation of surveillance for other extraocular manifestations [204]. The

lack of consistent recommendations for genetic testing may also relate to other practical barri-

ers to incorporation of genetics assessments into clinical practice, including shortages of quali-

fied ophthalmic genetic counselors, which can result in long wait times for patients to be

evaluated [205]. Overall, while existing research demonstrates promising data on the utility of

real world genetic testing, especially in patients with earlier onset glaucoma, future research on

its capability to inform disease management is necessary to help shape provider practice

patterns.

Conclusion

Numerous genes and genetic changes have been described in association with childhood glau-

coma, with the most common being CYP1B1, MYOC, and FOXC1. There is significant vari-

ability in genotype-phenotype correlation based on the specific gene and variant identified.

Studies of real world genetic testing reveal a relatively low diagnostic yield, which may limit

the practicality of genetic testing with currently available tools. Understanding the underlying

genetic changes associated with childhood glaucoma has the potential to improve diagnostic,

prognostic, and potentially therapeutic outcomes for children with glaucoma.
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