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Abstract

Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) tech-

nology will lead to significant progress ranging from disease modeling, to drug discovery, to

regenerative tissue engineering. Yet, alongside these potential opportunities comes a criti-

cal challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques

to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols.

However, when it comes to making quantitative comparisons of functional behavior, there

are limited options for reliably and reproducibly computing functional metrics that are suit-

able for direct cross-system comparison. In addition, the current standard functional metrics

obtained from time-lapse images of cardiac microbundle contraction reported in the field

(i.e., post forces, average tissue stress) do not take full advantage of the available informa-

tion present in these data (i.e., full-field tissue displacements and strains). Thus, we present

“MicroBundleCompute,” a computational framework for automatic quantification of morphol-

ogy-based mechanical metrics from movies of cardiac microbundles. Briefly, this computa-

tional framework offers tools for automatic tissue segmentation, tracking, and analysis of

brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward

to implement, runs without user intervention, requires minimal input parameter setting selec-

tion, and is computationally inexpensive. In this paper, we describe the methods underlying

this computational framework, show the results of our extensive validation studies, and

demonstrate the utility of exploring heterogeneous tissue deformations and strains as
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functional metrics. With this manuscript, we disseminate “MicroBundleCompute” as an

open-source computational tool with the aim of making automated quantitative analysis of

beating cardiac microbundles more accessible to the community.

Introduction

Despite significant recent advances in cardiovascular disease prevention and diagnosis [1, 2],

heart disease remains the leading cause of death among adults worldwide [3]. This is due, in

part, to the fact that the native heart has a poor regenerative ability [4, 5], and thus damage to

the heart muscle during an adverse medical event such as a myocardial infarction is irrevers-

ible [6]. Cardiac tissue engineering is a promising approach to address this unmet societal

need [5]. In particular, cardiac tissue engineering with human induced pluripotent stem cell

derived cardiomyocyte (hiPSC-CM) based technology [7] is a promising approach to disease

modeling [8–11], drug discovery [5, 9, 11–13], and regenerative tissue engineering [14–16].

However, the development of viable hiPSC-CM technology is very much ongoing. In particu-

lar, one major challenge is that differentiated hiPSCs initially resemble fetal cardiomyocytes—

they are morphologically and functionally different compared to adult cardiomyocytes [12].

Thus, developing technology to promote the maturation of hiPSC-CMs and, likewise,

hiPSC-CM based tissue is an active area of research [16]. One impactful approach to promot-

ing the maturation of hiPSC-CMs is the use of engineered tissue culture platform designs in

both two [17, 18] and three dimensions [19–23] (Fig 1). Across these different platforms, there

are multiple physical [17, 19, 22, 24], electrical [19, 20, 23–25], and chemical [26–28] knobs to

tune to promote maturation and explore different physiological and pathological conditions.

Even if we restrict our focus to microbundles (i.e., aligned, electromechanically coupled, micro-
scale cardiac tissue bundles formed with hydrogel materials suspended between pillars), there is

massive variability across different experimental setups [17, 19, 20, 22].

Driven by this diversity in experimental approaches and the rapid growth of the field, the

mechanical behavior of cardiac microbundles is challenging to compare across studies. Funda-

mentally, this challenge is driven by multiple factors, ranging from the high volume of data col-

lected with these testbeds [29], to challenges associated with reproducing results when

software and data are not shared under open-source licenses, or when extracting quantities of

interest from data requires significant manual processing. To date, there have been multiple

non-destructive image-based methods for quantifying the contractile action of cardiac micro-

bundles [21, 30–39], often inspired by related approaches to assessing the contractile behavior

of cardiomyocytes [30, 40–50]. Broadly speaking, most of these tools can be grouped into four

main categories: (1) edge detection systems [31, 32], (2) pillar tracking-based methods [33–37,

39], (3) inter-frame pixel disparity methods [21, 38], and (4) optical flow-based tracking [30,

39]. Each one of these methods has benefits and limitations that suit specific platforms, condi-

tions, and research questions (some of these approaches are elaborated on in the “Materials

and methods” Section). Despite this wide range of computational tools, many of which are

available under open-source licenses [21, 33, 34, 38, 39, 51], few options can compare across

multiple experimental testbeds and function on new datasets out of the box. In addition, the

most popular approach to assessing microbundle contractile behavior—pillar tracking—does

not necessarily capture the full richness of mechanical behavior in these systems.

Given this research landscape, there is a clear need for an open-source computational tool

to extract functional metrics from time-lapse images of microbundle contraction. To address
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this need, we have developed the “MicroBundleCompute” computational framework that we

will present in this paper. In brief, “MicroBundleCompute” is disseminated as a Python pack-

age and is based on the Lucas-Kanade optical flow algorithm [52] for computing full-field dis-

placements, subdomain-averaged strains, and displacement and strain derived metrics. In this

manuscript, we introduce the methods underlying the “MicroBundleCompute” framework,

discuss our approach to validating the pipeline primarily via realistic synthetic data, and then

show the results of implementing “MicroBundleCompute” on multiple testbeds, shown in Fig

1. We not only portray the efficacy of our approach, but also show that examining full-field tis-

sue deformation consistently reveals heterogeneous contractile behavior throughout the

domain. Looking forward, our goal is to use this work as a starting point to move beyond pre-

viously developed ad hoc approaches to analyzing these data [53], and establish a computa-

tional foundation for performing cardiac microbundle assessment and quality control at scale.

The remainder of this document is organized as follows. In the “Materials and methods”

Section, we describe our methods to generate synthetic movies of beating cardiac microbun-

dles with known ground truth to validate our computational pipeline, the diverse set of real

examples on which we test the software, and finally, our code pipeline along with the main out-

put metrics. Then in the “Results and discussion” Section, we present the main findings of our

code validation on one synthetic example and show sample outputs on a few real movies.

Finally, in the “Conclusion” Section, we share our final thoughts regarding “MicroBundle-

Compute.” Along with this document, we provide three supplementary documents where we

explain in more details our validation pipeline (S1 Appendix), share our complete set of real

examples (S2 Appendix), and finally provide more information on basic pillar tracking (S3

Appendix), an additional feature of our computational tool. Overall, the intention of this man-

uscript is to outline our method and approach to making a tool of broad utility for the cardiac

tissue engineering research community.

Materials and methods

In a broader sense, capturing full-field soft tissue deformation is critical for a number of

research applications ranging from inverse material characterization [54–57], to high-fidelity

biomechanical modeling of in vivo mechanisms [58–60], and patient-specific modeling and

Fig 1. Examples of 3 microbundle experimental testbeds of different types. We briefly note here that “Type 1” and “Type 3” represent 3D culture

platforms while “Type 2” portrays a significantly thinner (almost 2D) platform. We elaborate more on each type in the “Experimental data” Section and

in S2 Appendix.

https://doi.org/10.1371/journal.pone.0298863.g001
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procedure planning [61, 62]. And recently, there has been keen interest in implementing

image registration-based techniques widely used in the field of computer vision [54, 63] for

full-field measurements, including digital image correlation (DIC) [64–68], 3D-DIC [69, 70],

digital volume correlation (DVC) [71–74], and optical flow algorithms [75–77].

With regards to applications to cardiac microbundles in specific, available image-based

techniques for computing the contractile behavior of microbundles, as categorized in the

“Introduction” into 4 broad approaches, focus mainly on quantifying temporal profiles for the

entire construct and as such, provide averaged results that lump the spatially heterogeneous

tissue behavior into a single value per frame (3 of the 4 approaches). However, tools developed

based on optical flow (4th approach) can extract full-field, as well as directional outputs, such

as directional displacement fields and strains.

To elaborate more, edge-detection approaches rely on quantifying the microbundle shape

change between a relaxed (reference) state and a contracted (deformed) state. For example, in

Ronaldson-Bouchard et al. [31], tissue contractility was calculated by tracking the change in

the tissue area while previously, in Hansen et al. [32], the difference between the ends of the tis-

sue was used to measure contraction. Yet, these tools were custom-developed and are not read-

ily available online for the broader research community. As for pillar tracking-based methods,

there are currently a number of available tools [33, 34, 39] out of the identified implementa-

tions that were developed and kept in-house [35–37]. In these approaches, the pillar or cantile-

ver head deflection is estimated to generate contraction waveforms and extract contraction

kinetics including contraction frequency, force, as well as the time to achieve 10%, 50%, or

90% of the peak contraction or relaxation.

Available tissue tracking methods via pixel intensity disparity have been implemented

based on different approaches. For example, in “MUSCLEMOTION” [51], which is offered as

an ImageJ [78] plugin, the absolute difference in pixel intensity between a reference frame and

a frame of interest is calculated, whereas the MATLAB-based [79] “CardiacContractileMo-

tion” [21] identifies the tissue region in a relaxed baseline state and tracks, within this region

of interest, changes in pixel motion with time. Another MATLAB-based [79] tool, “Contrac-

tQuant” [38], which was specifically developed for implementation with micron-scale 2D car-

diac muscle bundles, uses cross-correlation to track pixel features and find the best match for a

specified region of interest across consecutive frames. Outputs from these software are in gen-

eral similar to those extracted with pillar tracking approaches and include contraction and

relaxation profiles and velocities, as well as contraction and relaxation times.

Overall, these approaches are suitable when only averaged values, such as the mean value

and the time rate or velocity of tissue shortening, shrink or contraction, are enough. However,

tools developed based on optical flow can provide richer outputs. For example, Huebsch et al.

[30] implemented block-matching optical flow [80] methods in MATLAB [79] to estimate

absolute as well as directional full-field contractility. And very recently, a particle image veloci-

metry toolbox in MATLAB [79] was utilized in [39] to calculate displacement vectors of sub-

regions or patches identified within a manually selected region of interest in the “reference”

frame using a cross-correlation approach. And from these displacement fields, strain maps

were subsequently derived. To the best of our knowledge, these methods appear to be robust

and relatively versatile, yet at present they lack automation.

Within this scope, we present here our high-throughput optical flow-based computational

framework to extract full-field deformation metrics from lab-grown cardiac microbundles. In

the Sections that follow, we describe both the data used for testing and validating the “Micro-

BundleCompute” software, and the details of our computational methods. First, in the “Data”

Section, we introduce the two general categories of cardiac microbundle data that we have

used in developing the software: synthetic data with a known ground truth and experimental
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data. Next, in the “Code” Section, we explain the details of the code pipeline and describe core

functionalities and output metrics.

Data

To validate our pipeline, we first invest significant effort into creating labeled data with a

known ground truth. In the “Synthetic data generation” Section, we outline our process for

synthetic data generation. As a brief note, this is complemented with additional information in

S1 Appendix where we show comparisons to another form of synthetic data and manually

labeled experimental data. In the “Experimental data” Section, we then show three distinct

classes of microbundle experimental testbeds that we will use to showcase the function and

versatility of our software.

Synthetic data generation. Here, we describe the steps to generate realistic synthetic

brightfield movies of beating cardiac microbundles based on examples from “Type 1,” as

described in the “Experimental data” Section. In Fig 2, we summarize the main steps of this

pipeline. For each synthetic data example, we begin with a frame from an experimental movie

(Fig 2a). As the first step of this pipeline, we manually trace the tissue region in a relaxed valley

frame, and use the traced region to obtain both tissue geometry and image texture. From the

traced region, we extract the coordinates of the external contour to generate Finite Element

(FE) simulation geometry, and isolate the tissue texture that will be warped following the FE

simulation results (Fig 2b).

To inform our FE simulations, we first generate a simplified three-dimensional microbun-

dle geometry based on the contour coordinates of a mask extracted from the single representa-

tive valley frame (Fig 2c). Specifically, we extrude the 2D surface created by connecting these

contour coordinates to a thickness of 400μm, a reasonable microbundle thickness given our

target experimental setups [22]. To approximate the pillars, we implement the geometry and

dimensions detailed in [22], which matches one of the main platforms used in our experimen-

tal dataset (“Type 1”). To create the FE mesh, we use Gmsh 4.10.5 [81], where the final mesh

consists of 205, 524 tetrahedral elements which was deemed sufficient for our purpose, follow-

ing a mesh refinement study. We provide a detailed schematic of the three-dimensional mesh

geometry in S1 Appendix.

In Fig 2d, we briefly summarize the main components of the FE model as implemented in

FEniCS 2019.1.0 [82, 83]. Following popular recent work in the field of soft tissue biomechan-

ics [84–86], we model the cardiac tissue as a nearly-incompressible transversely isotropic

hyperelastic material where deformation is driven by periodic activation [84, 86, 87]. Of note,

Fig 2. Schematic representation of the synthetic data generation pipeline. Illustrations of the main elements of the synthetic data generation pipeline

in order of implementation: (a) an image of a microbundle movie frame; (b) a mask of the microbundle, extracted contour coordinates, and a

segmented tissue texture; (c) a three-dimensional mesh for the FE model; (d) main variables within the FE simulations in order from left to right: profile

of a linearly variable fiber direction with respect to depth, an illustration of the tissue depth direction, a uniform time series activation; (e) extracted

surface displacement results and a warped image texture based on an estimated projective transformation.

https://doi.org/10.1371/journal.pone.0298863.g002
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we create synthetic data with heterogeneous deformation fields (specifically, (1) a fully actively

contracting tissue domain, (2) a passive circular inclusion at the center of the actively contract-

ing tissue), and we vary the direction of contractile alignment (1) through the thickness or

depth of the tissue or (2) along its length. We model the poly(dimethylsiloxane) (PDMS) pillars

as passive Neo-Hookean material, and treat the interface between the cardiac tissue and the

pillars as perfectly bonded. For each FE simulation, we extract, with respect to time, the X, Y,

and Z positions of the mesh cell centers at the top surface of the microbundle for each step and

save the results as text files. This simplified FE model serves a single purpose: to computation-

ally generate synthetic data of realistically beating microbundles with known ground truth

deformation. Then, following the schematic illustration in Fig 2e, we estimate a projective

transformation based on the initial and deformed positions of the mesh cell centers and warp

the image texture accordingly using the warp transform function in the scikit-image 0.19.3

Python library [88]. To enable a heterogeneous transformation, we subdivide the image

domain and perform subdomain specific warping. Additional details are available in S1

Appendix.

Overall, our main synthetic dataset consists of 60 generated movies of beating experimen-

tally derived image textures. To obtain these 60 examples, we use 15 different base texture

images extracted from 5 experimental movies of “Type 1” as described in the “Experimental

data” Section. We then deform these extracted textures with FE results obtained from 4 differ-

ent FE simulations run under the variable conditions specified above. To perform quantitative

evaluation, we extract a 90 × 90 pixel region from each domain center and make all direct com-

parisons based on this domain.

In addition, we perform additional validation against a single computationally generated

synthetic example of “Type 2” data based on a more sophisticated tissue-specific FE model

described in detail in Jilberto et al. [89] and S1 Appendix. For more information on imple-

menting the Finite Element model, image warping, and the addition of Perlin noise [90], we

refer the reader to S1 Appendix. We also make the entire synthetic dataset prior to the addition

of Perlin noise available along with all the Python code and files that are necessary to re-gener-

ate our dataset available on GitHub (https://github.com/HibaKob/SyntheticMicroBundle).

Experimental data. Our experimental dataset can be systematically categorized into 3 dif-

ferent types (Fig 1). “Type 1” includes movies obtained from standard experimental microbun-

dle strain gauge devices [91–93]. We refer to data collected from non-standard platforms

termed FibroTUGs [94] as “Type 2” data. As for “Type 3,” they represent data obtained from a

highly versatile experimental platform [19, 20] and as such, include the most diverse examples

in this collection.

Specifically, “Type 1” examples were prepared as previously detailed in [53]. Briefly, PDMS

(Dow Silicones Corporation, Midland, MI) microbundle devices were first cast from 3D

printed molds (Protolabs). Each device contains 6 wells, each with two pillars with rectangular

cross sections and spherical caps, where the cardiac microbundles are seeded. Up to 2 days

before seeding, the devices were sequentially treated with 0.01% poly-l-lysine (ScienCell) and

then with 0.1% glutaraldehyde (EMS) to promote cell attachment to the caps. On the day of

seeding, devices were cleaned with 70% ethanol and ultraviolet (UV) sterilized. Next, the

device wells were incubated with a small volume of 2% Pluronic F-127 (Sigma) to prevent cell

attachment at the base of the well. hiPSC-CMs, differentiated and purified as described by

Lian et al. [95], were seeded with human ventricular cardiac fibroblasts in a Matrigel (Corning)

and fibrin (Sigma) extracellular matrix (ECM) solution. Microbundles were maintained in

growth medium, with replacement every other day. Time-lapse videos of tissue contractions

were acquired 5–7 days after seeding at 30 Hz using a 4× objective on a Nikon Eclipse Ti
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(Nikon Instruments Inc.) with an Evolve EMCCD camera (Photometrics), while maintaining

a temperature of 37˚C and 5% CO2.

As for the second type, FibroTUG microbundles were fabricated as described previously

[17, 94]. First, arrays of PDMS cantilevers were fabricated by soft lithography as detailed in

[94]. Then, fiber matrices, suspended between pairs of these cantilevers, were generated by

selective photo-crosslinking of electrospun dextran vinyl sulfone (DVS) fiber matrices depos-

ited onto the microfabricated PDMS cantilevers [17, 94]. Matrix and cantilever stiffnesses were

tuned by adjusting photoinitiator concentrations and cantilever height, respectively, while

matrix alignment was controlled by altering the translation speed of collection substrates dur-

ing fiber deposition [17, 94]. Following functionalization of the electrospun fiber matrices with

cell adhesive cRGD peptides, iPSC-CMs, differentiated and purified [17], were patterned onto

matrices using microfabricated seeding masks cast from 3D-printed molds. Finally, time-lapse

videos of the microbundle’s spontaneous contractions were acquired at * 65 Hz on Zeiss

LSM800 equipped with an Axiocam 503 camera while maintaining a temperature of 37˚C and

5% CO2.

Examples from “Type 3” were generated using the protocol previously described in [19, 20].

In brief, a combination of soft lithography and two-photon direct laser writing (DLW, Nano-

scribe Photonic Professional GT+) was used to fabricate the seeding platforms. The process

involves printing negative master molds using DLW, casting PDMS onto the molds, followed

by sandwiching, curing and demolding. This results in 0.5—0.6 mm-thick PDMS devices with

embedded microfluidic channels and deformable seeding wells. As a final step, cage-like

microstructures were printed using DLW on the sides of the wells of the demolded PDMS

devices to facilitate cell attachment. After device fabrication, differentiated hiPSC-CMs as per

the procedures described in [19], were seeded into the wells with human mesenchymal stem

cells in a collagen ECM solution, with the growth medium changed every other day. Time-

lapse videos of the tissue contractions were acquired 4–9 days after seeding at 30 Hz using 4×
or 10× objectives on a Nikon Eclipse Ti (Nikon Instruments Inc.) with an Evolve EMCCD

camera (Photometrics) equipped with a temperature and CO2 equilibrated environmental

chamber.

In total, we include in this framework 24 real experimental data, 11 examples from “Type

1,” 7 from “Type 2,” and 6 from “Type 3.” This diverse pool of examples allows us to not only

demonstrate the adaptability of our computational pipeline to different input examples, but

also gain valuable insight about the heterogeneous contractile action of cardiac tissue by

extracting and observing relevant mechanical metrics, such as full-field displacements, subdo-

main-averaged strains, and displacement and strain-derived outputs, as shown in the “Experi-

mental data examples” Section and in S2 Appendix. We note that details about each specific

experimental example are provided in S2 Appendix as well as on Dryad [96] (https://doi.org/

10.5061/dryad.5x69p8d8g) where the whole dataset, “Microbundle Time-lapse Dataset,” is

made available.

Code

In this Section, we describe the main working components of our “MicroBundleCompute”

software for the automatic analysis of deformation in brightfield and phase contrast movies of

cardiac microbundles. Because our goal is to implement an approach with simplicity, versatil-

ity, and adaptability in mind, our pipeline is structured with four modular components: (1)

image pre-processing and mask creation, (2) deformation tracking, (3) post-processing (e.g.,

rotation, interpolation, strain analysis), and (4) visualization. In Fig 3, we provide a graphical

summary of the major functionalities included in this pipeline and the computational
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workflow. As a brief note, the software GitHub repository (https://github.com/HibaKob/

MicroBundleCompute) contains instructions on how to install and run the code, detailed

explanations of each main function, and a more thorough description of the formatting of out-

put files.

The implementation of these methods is divided across four Python files: create_
tissue_mask, image_analysis, strain_analysis, and optional_
preprocessing. The bulk of core functionality is contained in image_ analysis, and

all functions of the code are designed to be modular when possible such that they can be

replaced in the future if a need arises. In addition, many of the specific post-processing steps

are optional, and adaptation to compute additional quantities of interest should be straightfor-

ward. As we describe our pipeline, we will specify which Python file a given function is located

in. Essential functions included in our pipeline are as follows, following the order illustrated in

Fig 3.

Tracking region mask generation. Within create_tissue_mask, we provide two

different options for creating a binary mask of the tissue region: manual or automatic (Fig 3I).

At present, we provide 3 basic segmentation functions for automatic microbundle mask crea-

tion: 1) a straightforward threshold-based mask, 2) a threshold-based mask that is applied after

a Sobel filter, and 3) a threshold-based mask that is applied to either the minimum or the

Fig 3. Schematic illustration of the “MicroBundleCompute” computational framework. Two main inputs are required: I) a binary mask generated

either automatically using the software or manually and consecutive movie frames of the beating microbundle. II) For tracking, (a) marker points are

identified on the first frame and (b) tracked across all frames to identify individual beats and perform time segmentation. (c) This allows us to perform

the analysis per beat and correct for the observed drift as discussed in the “Temporal segmentation” Section. (d) Finally, we save the row and column

positions of the tracked markers per a single beat and use these saved outputs to compute full-field displacements and derive strain results. III) Post-

processing functionalities include (a) rotation of the images and tracking results, (b) interpolation of the results at query points, and (c) segmentation

into subdomains for which (d) average deformation gradients and subsequently, subdomain-averaged strains are calculated. IV) Finally, to visualize the

results, the software outputs (a) time series plots per beat and movies of (b) full-field and (c) subdomain-averaged results.

https://doi.org/10.1371/journal.pone.0298863.g003
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maximum (specified by the user as an input) of all movie frames. We implement our tissue

segmentation pipeline mainly based on the threshold_otsu and sobel functions pro-

vided within the filters module in scikit-image 0.19.3 Python library [88].

In addition to programming alternative automated mask generation functions, software

users can provide an externally generated tissue mask (e.g., a manually generated mask) by

including a file named “tissue_mask.txt” where the mask is a two-dimensional array in which

the tissue domain is denoted by “1” and the background domain is denoted by “0” to allow for

the analysis of domains that may fall outside the original scope of this endeavor.

Sparse optical flow algorithm for tracking. Within image_analysis, we provide all

of the essential functions to automatically run the tracking algorithm illustrated in Fig 3II. Our

tracking pipeline is built on OpenCV’s [97] pyramidal implementation of the Lucas-Kanade

sparse optical flow algorithm [52] where we identify markers as Shi-Tomasi “good features to

track” corner points [98] that fall within the specified tissue mask. In brief, these corner points

are points where a slight shift in location leads to “large” changes in intensity along both the

horizontal and vertical axes. There are two key parameters required to tune OpenCV’s

goodFeaturesToTrack function: qualityLevel, a minimum score to measure if a

feature can be tracked well, and minDistance, the minimum permitted Euclidean distance

between two identified corners. We initialize minDistance = 3 and qualityLevel =

0.1. Then, we iteratively decrease qualityLevel until coverage> 40, where

coverage is defined as the average number of pixels associated with each tracking point, for

up to 15 iterations. As for minDistance, we define a local_coverage measure, which

is the coverage computed on 20 × 20 pixel subdivisions. The minDistance is automati-

cally incremented by 1 as long as the largest 3 local_coverage values are less than or

equal to 50 and the number of iterations does not exceed 2. We note that we adjust

qualityLevel and minDistance simultaneously.

For running OpenCV’s [97] Lucas-Kanade optical flow [52] function

(calcOpticalFlowPyrLK), we automatically tune the parameter winSize, which dic-

tates the size of the integration window. Crucially, the window size in both horizontal and ver-

tical directions, wx and wy, should be larger than the maximum tracked pixel motion between

frames. To specify winSize, we adopt a pragmatic approach where we initialize winSize =

5, perform a preliminary tracking step, calculate the maximum absolute displacement, and

compare its magnitude to the initial window size. If the calculated displacement is larger, we

increase winSize by 5, and continue to iterate until the condition is met or the number of

iterations exceeds 15. Critically, keeping winSize from being larger than necessary reduces

error during tracking. In the remainder of this Section, we will describe our methods for

leveraging this basic sparse optical flow algorithm to effectively and automatically analyze

microbundle domains.

Temporal segmentation. After automatic identification of features and tracking algo-

rithm parameters, we run a preliminary tracking step. Representative results of preliminary

tracking are shown in Fig 3II.b as a plot of mean absolute displacement vs. frame number. We

use these preliminary tracking results to perform temporal segmentation where we delineate

individual tissue beats. To accomplish this, we use the SciPy signal processing library function

find_peaks [99]. The find_peaks input parameters, distance, the minimum hori-

zontal distance between neighbouring peaks, and prominence, minimum prominence for a

perturbation to be recognized as a peak, are identified automatically. Specifically, we initialize

distance and prominence to values of 20 and 0.1 respectively. Then distance is

updated to take a value equal to 1.5× the horizontal distance separating two consecutive inter-

section points between the time series and its mean. For the prominence parameter, we

keep it constant at a value of 0.1, which we found to be suitable for all the example videos that
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we have analyzed to date. After peaks are identified, we define valleys as the midpoints of two

consecutive peaks. As such, to be able to identify a pair of valleys, or in other words a single

beat, a minimum of 3 beats should be present in any movie to enable automatic analysis and

an accurate approximation of beat period. Temporal segmentation into individual beats is

then performed based on the temporal location of each valley.

Beyond the determination of microbundle time-related properties (e.g., beat period), tem-

poral segmentation is an essential part of our pipeline as we use it to work around the tracked

feature drift observed over the duration of the movie (see Fig 3II.b for an illustration of drift).

After identifying individual beats, we split, based on the first and last beat frame numbers,

the main two arrays storing column (horizontal) and row (vertical) locations of marker points

obtained during preliminary tracking into multiple arrays corresponding to each segmented

beat. Likewise, instead of frame 0 being the reference configuration for the whole tracking

duration, the fiducial marker positions in the first frame of each beat become the baseline for

all future output calculations within the beat.

Optional rotation and interpolation. After the tracking step is complete, we include two

optional features for post-processing: sample rotation and fiducial marker displacement inter-

polation. First, we include an option to rotate both the images and the tracking results based

on a specified center of rotation and desired horizontal axis vector. The center of rotation and

desired horizontal axis vector can be either specified manually or identified automatically

based on the geometry of the tissue mask. As a brief note, rotation is performed after tracking

as the process involves interpolation which can lead to loss of image resolution. Also, we auto-

matically rotate the tissue domain before performing strain subdomain calculations to match

the global row (vertical) and column (horizontal) coordinate system. The second optional fea-

ture, interpolation, allows the user to interpolate the tracking results returned at the automati-

cally identified fiducial marker points to user-specified locations, on a structured grid for

example. This step can be performed after tracking and optional rotation, and will output the

interpolated displacement fields to specified sampling points for either visualization or down-

stream analysis.

Subdomain spatial segmentation. In contrast to standard approaches to analyzing car-

diac microbundles [51], our approach is unique in that we compute full-field quantities of

interest over the tissue domain. In order to better analyze these full-field results and reliably

post-process displacement fields to compute strain, we perform spatial segmentation to define

tissue subdomains over which we can report average strain quantities [100, 101]. This subdo-

main spatial segmentation is implemented in the strain_analysis file within “Micro-

BundleCompute.” We provide two options to specify the subdomain extents defined as a

rectangle: 1) automatic subdomain generation via clipping the input tissue mask or 2) manu-

ally providing subdomain extent coordinates. Given rectangular subdomain extents, we then

delineate individual subdomain tiles by specifying either the target number of tiles in each col-

umn and row or by specifying the target tile dimensions in pixels. Representative subdomain

segmentation results are illustrated in Fig 3III.c.

Strain computation. With these defined subdomain regions, we then compute the aver-

age deformation gradient Favg of each subdomain and use it to compute relevant strain met-

rics. As stated previously, we compute average subdomain strain rather than full-field strain

due to: (1) the desire to reduce the influence of imaging artifacts and noise, and (2) increased

ease of comparison between samples. Within each subdomain, we define the standard contin-

uum mechanics deformation gradient F as follows:

FdX ¼ dx ð1Þ
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where F maps a vector dX in the initial or reference configuration to its deformed configura-

tion dx [102]. To apply this within the context of our tracking pipeline, we define a set of n vec-

tors, Λ0, that connect each potential pair of fiducial markers that lie within the extents of each

subdomain in the reference configuration. We define the reference configuration with respect

to each cardiac tissue beat as the first frame in the segmented beat frame. Thus, Λ0 is defined

in frames that represent the most relaxed tissue state. We then compute Λ following the same

structure as Λ0 for each subsequent movie frame, where the updated fiducial marker positions

capture the subdomain deformed configuration. With this definition, we can set up the over-

determined system of equations:

FavgΛ0 ¼ Λ where Λ0 ¼ ½v01; v02; . . . ; v0n� and Λ ¼ ½v1; v2; . . . ; vn� ð2Þ

where Favg is a 2 × 2 matrix, and Λ0 and Λ are 2 × n matrices of vectors in the initial (reference)

and current (deformed) configurations, respectively. Of note, when the initial and current

frames are identical, Λ0 = Λ, Favg = I, a 2 × 2 identity matrix. To solve this over-determined

system, we can use the normal equation to find the best fit average deformation gradient as:

Favg ¼ ΛΛT
0
½Λ0ΛT

0
�
� 1
: ð3Þ

We schematically illustrate our method to compute the mean deformation gradient in Fig

3III.d. With the computed Favg, finding the average Green-Lagrange strain tensor is straight-

forward:

Eavg ¼
1

2
Cavg � I
� �

where Cavg ¼ FT
avg

Favg
ð4Þ

and we can then compute strain on a per subdomain per beat basis to obtain subdomain time

series results for Favg and subsequently Eavg.

Data structure preparation. Tracking all identified fiducial markers for an extended

number of frames produces a large quantity of output data for each movie. Thus, we selectively

save output results such that they are both comprehensible and easily accessible for down-

stream data analysis. First, we save information regarding the column (horizontal) and row

(vertical) positions of the tracked marker points per beat. Specifically, we store one row-posi-

tion text file and one col-position text file for each beat formatted as a M × N array where M is

the number of markers that were tracked and N is the number of frames in the beat. Similarly,

we output mean deformation gradient results as text files saving the column and row positions

of the center for each subdomain and the 4 components of the 2 × 2 mean deformation gradi-

ent per subdomain per beat.

Data analysis, key metrics, and visualization. In Fig 3IV, we show key output metrics

and their visualizations. In brief, we provide tools to visualize full-field displacement and aver-

age subdomain strain, and provide key quantities of interest such as maximum strain, beat

period, and synchrony. In all cases, we build on the popular matplotlib package [103] for pro-

ducing all visualizations. In addition to the metrics directly enabled by our novel pipeline, we

provide other commonly pursued relevant outputs including beat frequency, beat mean ampli-

tude, and tissue width at the domain center. To convert the numerical outputs from dimen-

sions of pixels and frame numbers to physical units, the user can specify: 1) frames per second

and 2) the length scale in units of μm/pixel.

Quality checking and rejection of unsuitable examples. In our extensive experience test-

ing our code on different synthetic and real examples, we have identified three main instances

that negatively influence the fidelity of our outputs and decrease our confidence in analysis

results:
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1. blurred input movie frames that prevent effective identification of corner points for the

tracking described in the “Sparse optical flow algorithm for tracking” Section.

2. movies that start from a contracted tissue position that confounds the temporal segmenta-

tion step described in the “Temporal segmentation” Section.

3. movies where all displacement is on sub-pixel length scales lead to large relative errors

given our choice of tracking algorithm.

The specific influence of these conditions are explored in S1 Appendix. To address these

conditions, we provide both warnings in the code when we detect that these conditions arise

and functions to correct these scenarios (e.g., removing initial movie frames to address case 2).

Note on pillar tracking. In the broader cardiac microbundle and microtissue literature

[33, 39], pillar force and tissue stress are two commonly computed metrics. Broadly speaking,

pillar force is computed by tracking pillar displacement and converting displacement to force

via cantilever beam equations where the pillars are treated as beams with known elastic modu-

lus and geometry [104]. Stress is then computed from pillar force by dividing force by tissue

cross sectional area where tissue width is measured from the in-plane images [34] and tissue

depth is assumed based on typical values observed via three dimensional imaging modalities

[105]. We are able to adapt our framework to readily track pillar displacement by simply speci-

fying pillar regions as the area to track rather than the tissue domain. Due to lack of novelty,

we do not emphasize this functionality in this paper. However, we do provide additional

details on this topic in S3 Appendix.

Results and discussion

In this Section, we show a summary of our main results. In the “Synthetic data examples” Sec-

tion, we present representative validation examples from validating our pipeline on an exam-

ple from the synthetic dataset of “Type 1” with known ground truth behavior, and in the

“Experimental data examples” Section, we share examples of implementing our computational

framework on 3 different experimental platforms (i.e., 3 different data types as explained in

the “Experimental data” Section). As a brief note, we provide a more comprehensive set of

results in S1 Appendix on validation, S2 Appendix on additional real data examples, and S3

Appendix on pillar tracking.

Synthetic data examples

Here, we briefly summarize the results of our validation studies. In Fig 4, we show the perfor-

mance of our pipeline on a single representative synthetic example ST_1. In S1 Appendix, we

provide a comprehensive summary of all 416 synthetic validation examples based on data of

“Type 1” as well as a single synthetic example of “Type 2” data. In our validation studies, we

compare “MicroBundleCompute” displacement and strain outputs against the known ground

truth for synthetic data as originally generated (without noise) and for the same examples with

added Perlin noise of different magnitude ratios and octaves. As a brief note, other types of

noise such as shot noise [106] would be appropriate alternatives to Perlin noise for the purpose

of this investigation. In preliminary studies, we found that Perlin noise with a range of magni-

tudes and octaves was a sufficiently general choice to provide a robust challenge for our frame-

work. The code required to reproduce all synthetic data examples of “Type 1” can be found on

GitHub (https://github.com/HibaKob/SyntheticMicroBundle).

In Fig 4a, we specify the synthetic data domain for which the validation studies were per-

formed, a 90 × 90 domain warped with FEA-informed displacements as briefly described in

the “Synthetic data generation” Section and presented in more details in S1 Appendix. In Fig

PLOS ONE Automated analysis of subdomain deformation in cardiac microbundles

PLOS ONE | https://doi.org/10.1371/journal.pone.0298863 March 26, 2024 12 / 28

https://github.com/HibaKob/SyntheticMicroBundle
https://doi.org/10.1371/journal.pone.0298863


4b, we plot the mean absolute displacement with respect to frame number for beat 4, the beat

with the maximum error at the peak displacement (full contraction) for the synthetic example

with Perlin noise of magnitude ratio of 12% and octaves of 40. We specifically highlight these

Perlin noise parameters because they mimic, to a great extent, noise artifacts found in the real

Fig 4. Validation against a single synthetic example. Validation results against synthetic example ST_1 in its original

(no noise) state as well as after the addition of Perlin noise (magnitude ratio of 12% and octaves of 40): (a) a schematic

representation of the synthetic data domain and subdomain divisions for strain calculations; (b) tracked and FEA-

extracted (ground truth) mean absolute displacement of the full-field data for a single beat (beat 4), where maximum

error for synthetic data with noise is observed; (c-i)–(c-iv) tracked and FEA-extracted (ground truth) subdomain-

averaged Ecc strain for beat 4 for each subdomain. Overall, the R2 values indicate relatively good agreement between

the tracking output and ground truth data. For more information on validation with synthetic data, refer to S1

Appendix.

https://doi.org/10.1371/journal.pone.0298863.g004
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experimental data. A direct comparison between both tracked and ground truth mean absolute

displacements per beat revealed that the percentage error at peak displacement is less than

2.5% for the example shown in Fig 4b, with the addition of Perlin noise slightly raising this

error to 3.2%. In addition, we assessed the ability of our computational framework to “predict”

the mean absolute displacement by calculating the coefficient of determination (R2) and found

good agreement. Overall, considering all validation examples in S1 Appendix prior to the addi-

tion of Perlin noise, peak mean displacement errors were found to be less than 7% for super-
pixel displacements (Table S1 _1 and Fig S1_5 in S1 Appendix) whereas sub-pixel displace-

ments had higher errors that reach up to 15% (Table S1_1 and Fig S1_6 in S1 Appendix) with

a minimum R2 value of 0.939. Furthermore, it is evident that the addition of Perlin noise pro-

duces higher shifts within the tracked outputs, with higher errors reported for higher magni-

tude ratios and lower octaves (Figs S1_23 and S1_24 in S1 Appendix). Specifically, as shown in

Table S1_4 and Fig S1_23 in S1 Appendix, the percentage error at the peak mean absolute dis-

placement increases to around 14.4% for super-pixel displacement examples. For the sub-pixel

displacement examples, mean absolute displacement errors become unreasonably high in the

majority of the synthetic examples and are on the order of 103 − 104 (Fig S1_24 in S1 Appen-

dix). And, in some of these sub-pixel displacement examples where the added Perlin noise is

unrealistically extreme (higher magnitude ratios and lower octaves), the code fails to produce

meaningful outputs as indicated by missing data points in Fig S1_24 in S1 Appendix.

In Fig 4ci–4civ, we show the error on the column-column direction (i.e., horizontal)

Green-Lagrange strain (Ecc) per subdomain for beat 4. We refer to this direction as the “col-

umn-column” direction to be consistent with the row (vertical) and column (horizontal) direc-

tions defined by our input images. Here, the reported R2 values reveal that the minimum value

of 0.943 occurs in subdomain B1. And, in general, these plots indicate that strain magnitudes

tend to be underestimated. Furthermore, errors on Ecc follow the observed trend for displace-

ment errors, where synthetic examples of sub-pixel displacements exhibit higher errors with

some cases having negative R2 values (Tables S1_2 and S1_3 and Fig S1_8 in S1 Appendix).

In S1 Appendix, we share the validation results for all synthetic examples. We note that

strain outputs are sensitive to subdomain divisions, specifically subdomain size. Determining

a suitable subdomain size is a delicate process that is governed by two main opposing factors.

The subdomain size should be large enough such that each subdivision contains an appropri-

ate number of automatically identified fiducial markers to ensure that the computations are

less sensitive to noise. On the contrary, the subdomain size should be small enough to avoid

the loss or reduction of information due to averaging the heterogeneous deformation, or put

more explicitly, obtaining attenuated or zero strain values due to lumping regions that are

experiencing opposing deformations, for example extension versus compression. In general,

based on our comprehensive experience with implementing the code on a number of synthetic

and real examples, we recommend a subdomain side length that is between 30 and 40 pixels.

From a methodological perspective, we propose that the user observes the displacement field

and avoids having subdomains that span regions where the change in displacement flips sign.

We recommend that manual examination of subdomain size be carried out once per dataset,

for example, select a single movie from a batch of 100 to confirm that the subdomain division

is appropriate. In the future, we plan to investigate the approach adopted in [76, 77] where

strains are directly informed from affine warping functions optimized via the Lucas-Kanade

algorithm [75] without computing displacement fields.

As described in this Section and in S1 Appendix, we have performed extensive validation

studies for the “MicroBundleCompute” computational framework against a total of 416 syn-

thetic examples of “Type 1” (16 examples generated under baseline conditions and the remain-

ing 400 created by adversely altering the original 16 examples via the addition of Perlin noise)
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and a single synthetic example of “Type 2” with known ground truth. These validation studies:

1) corroborate the output of the software against FEA-labelled data, 2) test its performance

against realistic synthetic examples, and 3) evaluate its robustness against challenging examples

with excessive noise artifacts. The obtained results reveal that for super-pixel displacements,

our software is quite robust to all tested cases with relatively low magnitudes and high octaves,

or in other words, when the Perlin noise patterns resemble speckle noise rather than pro-

nounced textures (see Fig S1_4 in S1 Appendix). However, for examples with entirely sub-

pixel displacements, the performance of the software degrades. In summary, “MicroBundle-

Compute” breaks down when the synthetic data has noise artifacts that appear similar to the

original texture, and for sub-pixel displacements. Yet, given that real experimental examples of

beating microbundles generally produce displacements that exceed a single pixel and that Per-

lin noise examples with higher octaves more faithfully represent naturally occurring noise in

real microbundle data than lower values, we anticipate that “MicroBundleCompute” will out-

put reliable mechanical metrics in real experimental settings on condition that the natural con-

trast of the microbundle textures is visibly present and in focus in the time-lapse videos.

Experimental data examples

We provide here a summary of implementing “MicroBundleCompute” on the experimental

dataset described in the “Experimental data” Section and S2 Appendix, and shared on Dryad

(https://doi.org/10.5061/dryad.5x69p8d8g) under a Creative Commons CC0 1.0 Universal

Public Domain Dedication. Specifically, the “Microbundle Time-lapse Dataset’’ [96] contains

all raw videos in “.tif’’ format for the 24 experimental time-lapse images of beating cardiac

microbundles, 23 of which are brightfield videos, while the remaining single example is a

phase contrast video. Besides the raw videos and the experimental metadata describing the

conditions under which they were obtained, we include the tissue mask used for each example,

whether generated automatically via our computational pipeline or manually via tracing in

ImageJ [78]. These time-lapse videos and masks were used to generate the results shown here

and in S2 Appendix. We note briefly that it is only possible to develop automatic mask seg-

mentation functions for examples where there is imaging consistency and when we have an

ample number of examples to identify a pattern. Future extensions of this framework will

include automatic mask functions tailored to specific experimental needs.

In Fig 5, we show visualizations of output results generated by running “MicroBundleCom-

pute” on 3 experimental examples, each from a different data type. Of note, we only visualize 3

of many potential software outputs: (1) full-field absolute displacement, (2) spatially distrib-

uted subdomain-averaged Green-Lagrange strain Ecc (automatically rotated to align with the

column-column horizontal direction and plotted at beat 0 strain peak), and (3) time series plot

of Ecc strains with respect to beat 0 frames. These are representative examples from the com-

prehensive list of outputs described in the software GitHub repository (https://github.com/

HibaKob/MicroBundleCompute). While displacement and strain visualizations reveal spatial

information on tissue heterogeneous behavior and spatial contraction patterns, time series

strain plots highlight this spatial synchrony (or lack of synchrony) of subdomain contraction

across each beat.

To complement the results in Fig 5, we show, in S2 Appendix, representative results

obtained for all 24 real examples following the same format. Critically, all of the results pre-

sented in the supplementary document, for all 3 of the data types, were obtained without the

need for any parameter tuning. As is evident in Fig S2_1 in S2 Appendix, we can group data

from “Type 1” into 2 different categories: 1) examples 1–6 which constitute relatively challeng-

ing examples to the code since the imaging brightness/contrast is not optimized to fully
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accentuate the natural tissue texture, and 2) examples 7–11 where a texture is clearly visible in

the microbundle region, making them a set of optimal examples for running the code. Despite

the fact that “Type 1” data comprises the most consistent and well studied experimental plat-

form, the full-field absolute displacement plots reveal wide variation in spatially distributed

behavior. However, magnitude ranges are relatively consistent across samples with mean abso-

lute displacement values at the peaks varying between 1.2 and 2.3 pixels (4.8 and 9.2 μm). We

anticipate that this observation might be attributed to variations in pillar-tissue attachment

behavior across different examples (see Fig S3_1 in S3 Appendix). However, further investiga-

tions are required to develop a systematic way to assess the effect of this pillar-tissue interac-

tion on microbundle contractility and analyze the extracted metrics in this context.

Similar spatial heterogeneity is observed for the “Type 2” samples (Fig S2_2 in S2 Appen-

dix), where examples 1–5, which were prepared under the same experimental conditions (soft,

aligned matrix), exhibit discrepant displacement distributions but fairly consistent magnitude

Fig 5. Examples of “MicroBundleCompute” outputs. We show sample outputs of the code when run on 3 examples from the 3 different data types,

specifically Example 9 from “Type 1,” Example 5 from “Type 2,” and Example 1 from “Type 3” as shared on Dryad [96]. Note that the strain output for

“Type 2” data is automatically rotated such that Ecc aligns with the column-column direction. Additionally, the “Type 3” example shows an actuated

microbundle at 0.5 Hz by applying sawtooth pressure waves with*—6 kPa peak amplitude (equivalent to* 2.5% strain) on the right side using a

microfluidic pump (Elveflow OB1), and hence, the considerable discrepancy of the Ecc time series plot from 0 at the end of beat 0.

https://doi.org/10.1371/journal.pone.0298863.g005
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ranges (mean absolute displacement values at the maximum contraction vary between 5.0 and

7.9 pixels or equivalently, 4.54 and 7.17 μm). For examples 6 and 7, which are prepared with

stiff matrices, the results reveal lower contraction magnitudes where an aligned stiff matrix

(example 6) shows higher contractions than the randomly distributed one (example 7) [94]. Of

note, by examining all results of cardiac microbundle “Type 1” and “Type 2” data, a noticeable

diagonal contraction pattern is apparent, especially in examples 2, 7, 9, and 10 from “Type 1”

(Fig S2_1 in S2 Appendix) and examples 2, 3, and 5 from “Type 2” (Fig S2_2 in S2 Appendix).

This observation, enabled by full-field tracking, indicates that future study to investigate the

association between microbundle contraction, fiber alignment, and emergent load paths

between the pillars, would be meaningful future work.

The diversity of “Type 3” experimental data prevents direct comparison between samples.

However, the time series strain visualizations (Fig S2_3 in S2 Appendix) reveal that cardiac

microbundles grown on these experimental constructs typically contract more synchronously

than microbundles of “Type 1” and “Type 2,” where the strain time series plots in Figs S2_1

and S2_2 in S2 Appendix respectively, show aspects of temporal heterogeneity for which peak

contractions do not occur at the same frame within all subdomains per beat. Finally, the visual-

ized average subdomain Ecc strains, as well as the remaining two strain components (row-row

direction Green-Lagrange strain Err and column-row direction Green-Lagrange strain Ecr)
that are computed and saved but not included in the set of representative outputs that we visu-

alize here, give insight about the regions within the microbundle that are contracting or bulg-

ing in a given direction across each beat.

As we mention in the “Note on pillar tracking” Section and describe in more detail in S3

Appendix, it is straightforward to implement our computational framework to track pillar dis-

placements, adding to the versatility of the “MicroBundleCompute” software framework. In

Fig 6, we show, side by side, the outputs obtained via pillar tracking (Fig 6a-i and 6b-i) and via

tracking the entire tissue domain (Fig 6a-ii, 6a-iii and 6b-ii, 6b-iii) for an example from “Type

1” and “Type 2” data respectively. Pillar tracking enables the calculation of an average absolute

or directional pillar displacement based tissue force, which can be used to infer an average tis-

sue stress given approximate tissue width and thickness as described in more detail in S3

Appendix. On the other hand, tissue tracking reveals abundant information regarding the

inherent heterogeneous nature of microbundle beating. For example, full-field displacement

fields (Fig 6a-ii and 6b-ii) show regions where maximum or minimum tissue contractions are

taking place. Furthermore, while subdomain-averaged strains also underline the spatial hetero-

geneity of the tissue contractions, visualizing them with respect to time (or frame number)

reveals the nature of temporal synchrony across the different subdivisions of the beating

microbundle (Fig 6a-iii and 6b-iii). We note that a similar comparison can be carried out for

all “Type 1” and “Type 2” data for which pillar tracking results are included in S3 Appendix,

while tissue tracking results are shared in S2 Appendix.

Finally, we include in Fig 7 an example of “Type 3” data which clearly indicates that the

microbundle is experiencing positive Ecc strains at the center, specifically in subdomains A2
and A3 as indicated in the inset legend on the lower left corner of the strain time series plot.

According to Wang et al. [107], this observation suggests that a necking instability is forming

on this tissue over time, which is also supported by the thinning tissue width at the center.

Within this context, being able to extract and examine strain distributions and magnitudes

enables further investigations into understanding and determining the factors, such as pillar

stiffness and ECM density [107], that produce microbundles that are more stable against

necking.

Based on the results shown in this Section and in S2 Appendix, conventional metrics com-

prising tissue force and tissue stress obtained via basic pillar tracking offer insightful yet
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lumped information about the microbundle behavior. Complemented with reliable and

reproducible full-field data, such as displacement distributions and subdomain-averaged

strains, as in [53] for example, these metrics become more useful to assessing the highly het-

erogeneous cardiac tissue behavior and understanding the complex underlying mechanisms

driving this behavior. Furthermore, this spatial information would allow us to study injury

Fig 6. Direct comparison of pillar tracking and tissue tracking. Implementing the pillar tracking functionality of “MicroBundleCompute” on (a)

Example 10 from “Type 1” data, (a-i) we obtain the pillar displacement based tissue force to describe the microbundle beating behavior, whereas full-

field tissue tracking reveals the heterogeneous (a-ii) full displacement field as well as (a-iii) subdomain-averaged strains computed within the region

marked by the dashed white box in (a-ii) where marker points within this region only are considered. In (b) we show the same outputs for Example 3

from “Type 2.” We note that, for this example, we show the rotated displacement output to be consistent with the subdomain segmentation orientation.

To view the original non-rotated displacement results, refer to Fig S2_2 in S2 Appendix.

https://doi.org/10.1371/journal.pone.0298863.g006

Fig 7. Outputs of “MicroBundleCompute” run on Example 6 from “Type 3” reveal regions of tissue extension at the center. We briefly note that

for displacement outputs, rotating the results is optional, while for strain outputs, the frames are rotated such that the major axis of the microbundle

automatically aligns with the column (i.e., horizontal) axis. To view the original orientation of this example, refer to Fig S2_3 in S2 Appendix.

https://doi.org/10.1371/journal.pone.0298863.g007
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models of tissue [53], as well as further investigate mechanical observations from pillar track-

ing, for example, the unbalanced pillar forces noted in Figs S3_1 and S3_2 in S3 Appendix.

Finally, with sufficient collected data, this approach would enable the development of appro-

priate statistical models of the whole tissue. These endeavors are planned as part of our future

work.

Conclusion

In this work, we describe our approach to creating a computational tool for analyzing bright-

field and phase contrast movies of beating microbundles. In brief, we describe our process for

converting movies of beating microbundles to meaningful quantitative metrics, validating our

approach against synthetically generated data, and testing it on a diverse pool of real experi-

mental examples. In addition to ease of use, limited requirements for user intervention, rela-

tively short run time, and no parameter tuning, “MicroBundleCompute” is easy to implement

out of the box on new experimental datasets. Because it relies solely on the natural contrast of

brightfield and/or phase contrast microbundle images and the resulting intensity gradients, it

is also straightforward to integrate with existing experimental workflows. To enable broad

adoption, we share the software under open-source license and look forward to receiving feed-

back from different users on how to adapt the code to tailor to their specific needs and enhance

the overall user experience.

Looking forward, we aim to constantly improve the code. Future extensions will include

automated quality control and pre-processing of input data, as well as enhancements to cur-

rent functionality such as automatic adjustment of input movies that do not start from a fully

relaxed frame. As viable alternatives arise, we also plan to benchmark it against available car-

diac microbundle tissue analysis tools. In addition, we plan to continue developing our pipe-

line to address alternative quantitative metrics and different imaging modalities such as

calcium imaging [108] and integrate these results with structural information such as sarco-

mere geometry and alignment [101, 109]. From the results shown in the “Experimental data

examples” Section as well as S2 and S3 Appendices, it is also clear that there is significant varia-

tion across individual microbundle behavior both within and across testbeds. One key motiva-

tion for applying the “MicroBundleCompute” framework to these data moving forward is that

it will make it possible to better understand and analyze this heterogeneity. In addition,

extracting comparable mechanical metrics reliably and reproducibly across different testbeds

allows for the identification of the favorable configurations and conditions that promote

hiPSC-CM based tissue maturation, and ultimately, converge to an optimum system. Overall,

our intention is for other researchers to directly benefit from disseminating this work. As a

final note, here we demonstrate the utility and functionality of “MicroBundleCompute” for a

particular highly used engineered cardiac tissue format: cardiac microbundles. In concurrent

work [110], we leverage the fundamental core of this computational framework and make

some minor modifications and extensions to extract mechanical metrics from actuated 2D

muscle sheets. Looking forward, we will continue to generalize our framework to provide non-

invasive, label-free, and high-throughput tools to facilitate contraction measurements across

different engineered contractile tissue platforms to benefit the tissue engineering research

community.

Supporting information

S1 Appendix. Additional details on pipeline validation against synthetic data. Generating

synthetic examples of both “Type 1” and “Type 2” as well as validating “MicroBundleCom-

pute” against these synthetic data in their original form and with added Perlin noise are
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described and discussed in more detail. Table S1_1. Summary of validating tracked displace-

ment against synthetic data of “Type 1” without any added Perlin noise. Tracked mean

absolute displacement is compared against a known ground truth. Table S1_2. Summary of

validating Ecc strain against synthetic data of “Type 1” without any added Perlin noise.

Computed Ecc strain from tracked displacement data is compared against a known ground

truth. Table S1_3. Tabulated summary of validating Ecc strain outputs of “MicroBundle-

Compute” against all synthetic data of “Type 1” without any added Perlin noise. Computed

Ecc strain from tracked displacement data is compared against a known ground truth.

Table S1_4. Summary of validating tracked displacement against synthetic data of “Type

1” based on homogeneous activation with added Perlin noise. Tracked mean absolute dis-

placement is compared against a known ground truth and the “best” and “worst” results are

reported. Table S1_5. Summary of validating Ecc strain from tracked displacement data

against synthetic data of “Type 1” based on homogeneous activation with added Perlin

noise. Computed Ecc strain from tracked displacement data is compared against a known

ground truth and the “best,” “average,” and “worst” findings are reported. Fig S1_1. Typical

microbundle dimensions of “Type 1.” Schematic representation of the “Type 1” microbundle

mesh implemented in our Finite Element simulations. Fig S1_2. Convergence study of the

grid size used to warp the microbundle textures to generate synthetic data. Both x and y
positions of the mesh cell centers are compared to a ground truth with respect to grid size. Fig

S1_3. A tabulated summary of the implemented conditions to obtain 400 noisy synthetic

examples. Main differences between the generated synthetic examples lie in the type of activa-

tion (homogeneous versus heterogeneous) used within the FEA model and the specific param-

eters of the added Perlin noise. Fig S1_4. The effect of adding Perlin noise of different

magnitude ratios and number of octaves on the tracked output of “MicroBundleCom-

pute.” Real data contains inherent noise that a range of Perlin noise parameters can mimic its

effects. Fig S1_5. Displacement validation against examples based on homogeneous activa-

tion. A detailed comparison is shown between tracked mean absolute displacement and a

known ground truth for 8 different synthetic examples. Fig S1_6. Displacement validation

against examples based on heterogeneous activation. A detailed comparison is shown

between tracked mean absolute displacement and a known ground truth for 8 different syn-

thetic examples. Figs S1_7–S1_22. Detailed validation results of Ecc strain for all 16 syn-

thetic examples without the addition of Perlin noise. Computed Ecc strain from tracked

displacements are compared to a known ground truth within each subdomain. Fig S1_23.

Effect of adding Perlin noise to synthetic data of “Type 1” based on FE simulations with

homogeneous activation. Perlin noise generated for 5 different magnitude ratios and 5 differ-

ent octaves are added to synthetic data to test the performance of “MicroBundleCompute” in

tracking displacements that exceed a single pixel. Fig S1_24. Effect of adding Perlin noise to

synthetic data of “Type 1” based on FE simulations with heterogeneous activation. Perlin

noise generated for 5 different magnitude ratios and 5 different octaves are added to synthetic

data to test the performance of “MicroBundleCompute” in tracking sub-pixel displacements.

Fig S1_25. Displacement validation against synthetic data of “Type 2.” Tracked displace-

ments in X and Y are compared to a known ground truth. Fig S1_26. Strain validation

against synthetic data of “Type 2.” Computed Ecc strains based on tracked displacements are

compared to a known ground truth. Fig S1_27. Validation via manual tracking against

“Type 2” data. Selected points are manually tracked and the displacements in X and Y are

compared to the equivalent outputs obtained by running “MicroBundleCompute”.

(PDF)
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S2 Appendix. Testing “MicroBundleCompute” with additional examples of real data. The

results of implementing “MicroBundleCompute” on a total of 24 experimental time-lapse

images of cardiac microbundles, 11 examples of “Type 1,” 7 of “Type 2,” and 6 of “Type 3.”

Table S2_1. A summary of the experimental conditions associated with each example

movie. The details of experimental conditions include image acquisition parameters as well as

pillar stiffness values for “Type 1” and “Type 2” data. Table S2_2. Additional details for each

example of “Type 1” data. These details include example-specific information, code imple-

mentation details, and subdomain segmentation parameters. Table S2_3. Additional details

for each example of “Type 2” data. These details include example-specific information, code

implementation details, and subdomain segmentation parameters. Table S2_4. Additional

details for each example of “Type 3” data. These details include example-specific informa-

tion and subdomain segmentation parameters. Fig S2_1. Example outputs of “MicroBundle-

Compute” run on “Type 1” experimental data. The provided outputs include full-field mean

absolute displacement and subdomain-averaged Green-Lagrange Ecc strain at the first tracked

peak, as well as a time series plot of Ecc strain for the first tracked beat. Fig S2_2. Example out-

puts of “MicroBundleCompute” run on “Type 2” experimental data. The provided outputs

include full-field mean absolute displacement and subdomain-averaged Green-Lagrange Ecc
strain at the first tracked peak, as well as a time series plot of Ecc strain for the first tracked beat.

Fig S2_3. Example outputs of “MicroBundleCompute” run on “Type 3” experimental

data. The provided outputs include full-field mean absolute displacement and subdomain-

averaged Green-Lagrange Ecc strain at the first tracked peak, as well as a time series plot of Ecc
strain for the first tracked beat.

(PDF)

S3 Appendix. Additional details on pillar tracking. The implementation of the pillar track-

ing pipeline within “MicroBundleCompute” is explained in more details and demonstrated on

11 examples of “Type 1” and 7 examples of “Type 2.” Fig S3_1. Pillar tracking on “Type 1”

examples. Depicted results include pillar absolute force (μN) obtained on both pillars. Fig

S3_2. Pillar tracking on “Type 2” examples. Depicted results include pillar absolute force

(μN) obtained on both pillars.

(PDF)

S1 Movie. Synthetic example based on “Type 2” data. This movie provides the synthetic

example generated based on “Type 2” data as described in S1 Appendix.

(TIF)

S2 Movie. Movie of tracked absolute displacement for Example 9 from “Type 1” data. This

movie is provided as a supplement to Fig S2_1, Example 9, in S2 Appendix.

(MP4)

S3 Movie. Movie of tracked Ecc strain for Example 9 from “Type 1” data. This movie is pro-

vided as a supplement to Fig S2_1, Example 9, in S2 Appendix.

(MP4)

S4 Movie. Movie of tracked absolute displacement for Example 10 from “Type 1” data.

This movie is provided as a supplement to Fig S2_1, Example 10, in S2 Appendix.

(MP4)

S5 Movie. Movie of tracked Ecc strain for Example 10 from “Type 1” data. This movie is

provided as a supplement to Fig S2_1, Example 10, in S2 Appendix.

(MP4)
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S6 Movie. Movie of tracked absolute displacement for Example 3 from “Type 2” data. This

movie is provided as a supplement to Fig S2_2, Example 3, in S2 Appendix.

(MP4)

S7 Movie. Movie of tracked Ecc strain for Example 3 from “Type 2” data. This movie is pro-

vided as a supplement to Fig S2_2, Example 3, in S2 Appendix.

(MP4)

S8 Movie. Movie of tracked absolute displacement for Example 5 from “Type 2” data. This

movie is provided as a supplement to Fig S2_2, Example 5, in S2 Appendix.

(MP4)

S9 Movie. Movie of tracked Ecc strain for Example 5 from “Type 2” data. This movie is pro-

vided as a supplement to Fig S2_2, Example 5, in S2 Appendix.

(MP4)

S10 Movie. Movie of tracked absolute displacement for Example 1 from “Type 3” data.

This movie is provided as a supplement to Fig S2_3, Example 1, in S2 Appendix.

(MP4)

S11 Movie. Movie of tracked Ecc strain for Example 1 from “Type 3” data. This movie is

provided as a supplement to Fig S2_3, Example 1, in S2 Appendix.

(MP4)

S12 Movie. Movie of tracked absolute displacement for Example 6 from “Type 3” data.

This movie is provided as a supplement to Fig S2_3, Example 6, in S2 Appendix.

(MP4)

S13 Movie. Movie of tracked Ecc strain for Example 6 from “Type 3” data. This movie is

provided as a supplement to Fig S2_3, Example 6, in S2 Appendix.

(MP4)
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34. Rivera-Arbeláez JM, Cofiño-Fabres C, Schwach V, Boonen T, Ten Den SA, Vermeul K, et al. Contrac-

tility analysis of human engineered 3D heart tissues by an automatic tracking technique using a stand-

alone application. Plos one. 2022; 17(4):e0266834. https://doi.org/10.1371/journal.pone.0266834

PMID: 35421132

35. Oyunbaatar NE, Lee DH, Patil SJ, Kim ES, Lee DW. Biomechanical characterization of cardiomyocyte

using PDMS pillar with microgrooves. Sensors. 2016; 16(8):1258. https://doi.org/10.3390/s16081258

PMID: 27517924

36. DostanićM, Windt LM, Stein JM, van Meer BJ, Bellin M, Orlova V, et al. A Miniaturized EHT Platform

for Accurate Measurements of Tissue Contractile Properties. Journal of Microelectromechanical Sys-

tems. 2020; 29(5):881–887. https://doi.org/10.1109/JMEMS.2020.3011196

37. Thavandiran N, Hale C, Blit P, Sandberg ML, McElvain ME, Gagliardi M, et al. Functional arrays of

human pluripotent stem cell-derived cardiac microtissues. Scientific reports. 2020; 10(1):6919. https://

doi.org/10.1038/s41598-020-62955-3 PMID: 32332814

38. Tsan YC, DePalma SJ, Zhao YT, Capilnasiu A, Wu YW, Elder B, et al. Physiologic biomechanics

enhance reproducible contractile development in a stem cell derived cardiac muscle platform. Nature

Communications. 2021; 12(1):6167. https://doi.org/10.1038/s41467-021-26496-1 PMID: 34697315
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