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Abstract

With the rapid development of the Internet, the continuous increase of malware and its vari-

ants have brought greatly challenges for cyber security. Due to the imbalance of the data

distribution, the research on malware detection focuses on the accuracy of the whole data

sample, while ignoring the detection rate of the minority categories’ malware. In the dataset

sample, the normal data samples account for the majority, while the attacks’ malware

accounts for the minority. However, the minority categories’ attacks will bring great losses to

countries, enterprises, or individuals. For solving the problem, this study proposed the

GNGS algorithm to construct a new balance dataset for the model algorithm to pay more

attention to the feature learning of the minority attacks’ malware to improve the detection

rate of attacks’ malware. The traditional malware detection method is highly dependent on

professional knowledge and static analysis, so we used the Self-Attention with Gate mecha-

nism (SAG) based on the Transformer to carry out feature extraction between the local and

global features and filter irrelevant noise information, then extracted the long-distance

dependency temporal sequence features by the BiGRU network, and obtained the classifi-

cation results through the SoftMax classifier. In the study, we used the Alibaba Cloud data-

set for malware multi-classification. Compared the GSB deep learning network model with

other current studies, the experimental results showed that the Gaussian noise generation

strategy (GNGS) could solve the unbalanced distribution of minority categories’ malware

and the SAG-BiGRU algorithm obtained the accuracy rate of 88.7% on the eight-classifica-

tion, which has better performance than other existing algorithms, and the GSB model also

has a good effect on the NSL-KDD dataset, which showed the GSB model is effective for

other network intrusion detection.

1. Introduction

Cyber security risks brought by malware threats everywhere range from personal information

disclosure to corporate data theft to even vital national secrets. We classify the malware into

viruses, worms, trojans, ransomware, backdoors, etc., according to their different functions.

The malware analysis techniques include static analysis, dynamic behavior analysis, and hybrid
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analysis [1, 2]. Static analysis extracts valuable information from binaries without executing

the software to classify [3, 4]. Dynamic analysis is executing the malware for classification in

an isolated environment by monitoring its behavior, interaction with the system, and impact

on the system [5, 6]. Both static analysis and dynamic analysis of malware have their advan-

tages and disadvantages. Static analysis may be fooled by software encryption and obturation

technology, leading to detection failure [7]. Dynamic analysis requires more computer

resources and provides the target system environment of malware to trigger malicious behav-

iors of malware. The conventional antivirus engine detects malware based on the signature,

runtime behavior, and heuristics.

With the development of artificial intelligence technology, machine learning and deep

learning have made many remarkable research achievements in computer vision, natural lan-

guage processing, and other fields [8, 9]. The scholars continue to explore their applications

and breakthroughs in malware detection. However, there are some problems with current

malware detection technology [10–12].

1. Traditional malware detection methods rely on professional knowledge to extract features

and lack good algorithms for training model to extract features.

2. Some machine learning and deep learning, such as CNN and RNN, made some achieve-

ments, but for some large datasets, the generalization ability is poor, and can’t be calculated

in parallel.

3. Ma et al. [13] only detected the malware, and didn’t classify the malware family, and

ignored the detection rate of the minority categories’ malware.

4. The category distribution of the dataset is unbalanced, with the edge distribution of minor-

ity categories. Machine learning isn’t enough to learn the features of minority categories,

and the detection rate is mediocre.

1.1 Innovations and contributions

Due to the imbalance of malware dataset, the normal data samples account for much more

compared to the minority categories, and the model focuses on the feature learning of the

whole data sample, while ignoring the feature learning of the minority categories’ malware.

The SMOTE algorithm is the most common sampling algorithm, but the SMOTE algorithm

also has some shortcomings that can’t produce the new data sampling. The new synthetic sam-

ples tend to the majority categories sample area, being noise samples, and the new samples are

easy to cause the overfitting of the model. The classification performance for the traditional

machine learning algorithms on unbalanced datasets is poor and can’t identify the minority

attack samples well, which usually cause big loss for the users. To solve the problems, we pro-

posed the Gaussian Noise Generation Strategy (GNGS) algorithm and SAG-BiGRU network

model for the malware detection. The Innovations and contributions of the paper is shown in

Table 1.

2. Literature related work

We divide the malware detection methods into traditional methods and machine learning

methods. Traditional methods strongly rely on professional knowledge to extract effective fea-

tures but need huge human cost and time input, especially when the amount of malware

detected is large. Although the traditional manual analysis method has high accuracy, it is

extremely inefficient and costly. We divide the machine learning models into traditional

machine learning models and deep learning models.
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Literature [14, 15] proposed a malware detection method that combined malware visualiza-

tion technology with the CNN model. Ding et al. [16] presented a static detection method,

which directly extracted a bytecode file from an Android APK file, converted the bytecode file

into a two-dimensional matrix, and then used the CNN algorithm to train the detection

model. Gupta and Rani [17] have designed two methods of the weighted voting strategy based

on ensemble learning to improve the performance of malware detection. Liu et al. [18] pro-

posed the data visualization and adversarial training to detect the malware and its variants.

Zhong and Gu [19] proposed a Multi-Level Deep Learning System that used the tree structure

model to focus on learning a specific data distribution of a particular group.

Venkatraman et al. [20] proposed a unified hybrid deep learning and visualization

approach for malware detection, which aimed to use the image techniques for detecting suspi-

cious behavior and investigate the application of a hybrid image-based approach. Surendran

et al. [21] proposed the Tree Augmented Naive Bayes-based hybrid malware detection mecha-

nism for identifying whether the application is malicious. Jeon et al. [22] used the dynamic

analysis for IoT malware detection, which used the CNN model and analyzed IoT malware

dynamically in the nested cloud environment.

Lu et al. [23] proposed a hybrid deep learning model for malware detection, which com-

bined a Deep Belief Network and Gate Recurrent Unit. Alzaylaee et al. [24] proposed the mali-

cious detection of Android applications based on the deep learning system through dynamic

analysis. Amer et al. [25] introduced the word embedding to understand the contextual rela-

tionship between API functions and call sequences. Arora et al. [26] proposed the PermPair

detection model, which compared the graphs for malware and normal samples through

extracting the permission pairs from the manifest file of an application. Khan et al. [27] utilized

GoogleNet and ResNet models to identify the malware and obtained a testing accuracy of

74.5% on GoogleNet.

In the static detection of malware, the deep learning method represented by CNN and RNN

can achieve a better software classification effect with the help of static feature engineering.

However, due to the interference of software encapsulation, obfuscation, and other technolo-

gies, it is tough to extract static features to catch up with the evolution of malware. The

dynamic detection of malware extracts the features generated in the running process of soft-

ware, and uses the sandbox technology to capture the behavior information of malware during

running, such as creating files, deleting files, encrypting information, creating threads, inter-

acting with the registry, obtaining virtual address space, and so on. The API call sequence is

usually the most crucial dynamic feature in malware detection and classification.

Table 1. Innovations and contributions of the paper.

a) Most researchers can’t detect the minority categories better. In this paper, we proposed the Gaussian Noise

Generation Strategy (GNGS) algorithm to construct a new balance data set for the first time in the field of cyber

security and could perform multiple classifications of data sets. The precision of minority categories is much higher

than other sampling methods, such as random sampling and Smote sampling which generated noise and caused the

overfitting of the model to reduce the precision of malware detection. However, the GNGS algorithm could generate

new sample points and increase the robustness and generalization ability of the model.

b) Most model algorithms can’t learn the temporal sequence and can’t compute in parallel, such as RF, RNN, and

CNN, whose generalization ability is poor for some large datasets. This paper proposed the SAG deep learning

model to learn the temporal sequence features, which is first applied to the Alibaba cloud dataset.

c) We proposed the Self-Attention with Gate mechanism (SAG), which could effectively filter irrelevant noise

information, extract the key features, and extract the long-distance dependency temporal sequence features of data

by the BiGRU network, which is better than other studies that have been done.

d) The SAG-BiGRU deep learning models have a high convergence efficiency and short time consumption

compared with other algorithm models such as CNN, Random Forest, and the like. The GSB model is also better

than previous studies on the NSL-KDD dataset.

https://doi.org/10.1371/journal.pone.0298809.t001
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In recent years, it has proposed the concept of attention mechanism that has been inte-

grated into deep learning models. Jindal et al. [28] got the design inspiration from file classifi-

cation, combined CNN, and BiLSTM network, and proposed a neural network model Neurlex

for dynamic malware detection without feature engineering, whose limitation is that it

requires the execution of the code to determine whether the code is malicious or not. Yoo et al.

[29] proposed a machine learning-based hybrid decision model, which combined a random

forest and a deep learning model to determine malware and benign files, whose experimental

result achieved an 85.1% detection rate. Literature [30] proposed the Adaptive Malware Analy-

sis Dynamic Machine Learning (AMDML) algorithm based on a rule called federated learning,

which obtained better accuracy compared to the machine learning, but the accuracy is still not

high and didn’t classify the malware, and the study will design a flexible environment for appli-

cations. Mazhar et al. [31] proposed image-based malware classification using the VGG19 net-

work and spatial convolutional attention, but didn’t deal with the imbalance of the data

categories and lacked the exploration of the scale data, the feature engineering, and implement

algorithm parallelization calculation.

Xu et al. [32] used a One-hot coding method to classify malicious codes according to API

sequences and other features, and the accuracy of their CNN and LSTM hybrid models. How-

ever, this method didn’t consider the robustness of the model, that is, in the face of the obfus-

cation, shell, and other counter-detection techniques commonly used by malware developers.

Literature [33] used a novel malware classification method that captures suspected operations

in a variety of discrete size image features based on CNN to identify such IoT device malware

families. Hamad Naeem et al. [34] proposed a platform-independent malware detection and

classification scheme with process-based volatile memory forensics and a deep stacked ensem-

ble based on the structural and statistical image textural analysis by the CNN, which achieved a

good classification effect but a large number of features caused the long training time.

For the above literature, they only considered detecting whether the software was malicious

or not. Many studies didn’t consider the imbalance of training datasets and the edge distribu-

tion of minority categories will cause the model algorithm to disregard the characteristics of

the minority data. Many studies lacked the exploration of the scale data, and algorithm model

didn’t perform the parallelization calculation which caused the long training time.

3. Model design

This part will introduce the framework of the method proposed in this study, as shown in Fig

1, including data preprocessing and GNGS for constructing new data, feature extraction, and

algorithm model construction. Since API calls are temporal sequences, we can handle the mal-

ware classification in BiGRU processing the temporal sequence. Malicious snippets of code in

an API sequence are not necessarily contiguous, so added the Transformer to the train model

for learning malicious API sequences.

After handling the data by de-duplicating, concatenating into a long string according to the

thread number for data processing of every file, we use the Random Gaussian algorithm to

learn the distribution of minority categories samples data through the generator to build a bal-

anced data set.

Input the new dataset into the Transformer with SAG module to establish connections

between different features, extract richer feature information and filter the irrelevant noise

information. After that, the data is input into the BiGRU neural network to obtain the relation-

ship between the front and back features to retain their temporal sequence information.

Finally, classify the output by the Softmax classifier. This model draws on the advantages of

various models and can simultaneously consider the connection between different features
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and the temporal sequence information of features. The framework of this model is shown in

Fig 2.

3.1 Data set

The experimental dataset in this study is provided by Alibaba Cloud security malicious pro-

gram detection [35], which contains the latest attack types, and the data error rate is close to

zero. The dataset is suitable for malware detection research. The data comes from the API

instruction sequence recorded by the desensitized Windows binary executable program (PE

file) after simulation running in the sandbox program. There are seven types of malware: ran-

somware, mining program, DDoS Trojan, worm virus, infection virus, backdoor program,

and Trojan program.

In this study, the data records more than 89 million API calls in 13,877 binaries with a data

file size of 2.7GiB. The average number of API calls per file is 6466, with the highest number of

calls being 888,204. The data set consists of file number file_id, file label, API name, thread

number, and sequence number of API calling in the thread index. Taking file_id 2 as an exam-

ple, the data sample is shown in Table 2, in which each file has multiple API calls, and there

Fig 1. Framework of the method.

https://doi.org/10.1371/journal.pone.0298809.g001

Fig 2. The framework of the model.

https://doi.org/10.1371/journal.pone.0298809.g002
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may be some sequence relationship between APIs, but there is no sequence relationship

between different threads. The sequence number Index in Tid of the same thread number

from small to large represents the sequence relationship of calls. The Index is the global order

of execution of a single file in the sandbox. The same thread or different threads may execute

API many times on an Index, but the Index inside Tid with the same thread number is in a cer-

tain order.

3.2 Data preprocessing

Each file in the original data calls multiple APIs in the process of dynamic execution and may

be called by different threads. In this paper, we handle the data by concatenating. That is, the

API called by the same file is concatenated into a long string according to the thread number

and the sequence of intra-thread calls. However, the provider of the dataset states that there is

no sequential relationship between the different threads. We constructed an additional feature

to represent the thread number to reflect the relationship between the input data.

Since there are a large number of adjacent repeating APIs in the API sequence, in the exper-

iment, we de-duplicated the API sequence and converted the API sequence into the sequence

of numbers, as shown in Table 3, by using different numbers to represent the API and the rele-

vant data preprocessing is shown in Algorithm 1. Since the API sequence length correspond-

ing to each file is different, according to the data format requirements of the model input, we

Table 2. Dataset sample.

file_id label api Tid Index

2 2 GetSystemTimeAsFileTime 2320 0

2 2 SetUnhandledExceptionFilter 2320 1

2 2 NtAllocateVirtualMemory 2320 2

2 2 WSAStartup 2320 3

2 2 GetSystemTimeAsFileTime 2320 4

. . . . . . . . . . . . . . .

2 2 NtClose 2604 200

2 2 NtClose 2604 201

2 2 RtlRemoveVectored

ExceptionHandler

2604 202

2 2 NtTerminateProcess 2604 203

https://doi.org/10.1371/journal.pone.0298809.t002

Table 3. Sequence converted from API to digital number.

API sequence Digital number

GetSystemTimeAsFileTime 18

SetUnhandledExceptionFilter 91

NtAllocateVirtualMemory 11

WSAStartup 97

GetSystemTimeAsFileTime 18

GetSystemInfo 56

SetErrorMode 37

LdrGetDllHandle 25

LdrGetProcedureAddress 1

LdrGetProcedureAddress 1

LdrGetProcedureAddres 1

https://doi.org/10.1371/journal.pone.0298809.t003
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need to select a specified sequence length and truncate for the long API sequence length

exceeding.
Algorithm 1: De-duplicate and sorte api and build mappings between
apis and numbers.
1:df = pd.read_csv(’security_train.csv’,low_memory=False)
2: grouped = df.sort_values([’file_id’, ’tid’, ’index’]).groupby
(’file_id’) #Sort and group
#api columns are converted to numbers

3: def api_to_num(api_seq):
4: api_set = sorted(set(api_seq)) #api columns are de-duplicated
and sorted
5: api_num_seq = [api_to_num_dict[api] for api in api_seq] # Build
mappings
6: return api_num_seq
#Each group and the results are stored in a new column
7: df_agg = grouped.agg({’api’: ’ ’.join, ’label’: list}).reset_
index()
8: df_agg[’api_num’] = df_agg[’api’].apply(lambda x: api_to_num(x))
9: api_num_list = df_agg[’api_num’].tolist()
10: label_list = df_agg[’label’].tolist()
11: label_list = [l[0] for l in label_list]

3.2.1 Data processing and GNGS. After converting the API call sequence into a number

sequence and word vector, input the model for training. Take a file as an example to show the

API called by the infectious virus with file_id 1 and label 5 during dynamic execution in the

sandbox, and the call sequence of the first 20 APIs is splicing according to thread number and

API call order within the thread: “LdrLoadDll LdrGetProcedureAddress LdrGetProcedureAd-

dress LdrGetProcedureAddress LdrGetProcedureAddress LdrGetProcedureAddress LdrGet-

ProcedureAddress LdrGetProcedureAddress LdrGetProcedureAddress

LdrGetProcedureAddress NtCreateMutant NtClose NtCreateFile NtWriteFile NtClose Create-

ProcessInternal NtClose NtClose LdrUnloadDll NtAllocateVirtualMemory. . .”. For example,

the call of LdrLoadDLL makes the function of the infectious virus difficult to understand by

reverse analysis of engineers because LdrLoadDLL is an undisclosed API in the Windows

ntdll.dll code base. Windows system provides Windows developers with many code libraries

to access its functions, such as kernel32.dll and ntdll.dll, kernel32.dll code library provides all

the basic core functions of the program, including reading files and writing files, etc. ntdll.dll is

the back-end code base of kernel32.dll to support the basic functions of kernel32.dll. Due to

the different functions and purposes of each software, the behavior of the dynamic execution

process is diverse, and the length of the API call sequence is also distinct. Even more, some

malware is created by benign software inserting malicious code snippets, and some malware

uses obfuscation techniques to repeatedly call a large number of useless APIs. In the data set,

the average number of API calls per file is 6466, the maximum number of API calls is 888204,

and the average length of API calls is much longer than the sequence length for the model text

processing. To make full use of the information in the API call sequence, and take into account

the computational power, we need to truncate or fill sequences of different lengths for training

and testing. We will set the maximum length to 780, truncate the sequences that exceed the

maximum length, and fill the sequences that are less than the maximum length with -1, as

shown in Algorithm 2. To convert a string API call sequence into a numeric vector, we first

need to tokenize the above text. Each file corresponds to a sequence of strings representing the

API to call.
Algorithm 2: Trimmed and padded for api.
1: def trim_and_pad(api_seq, seq_len=780):
2: if len(api_seq) > seq_len:
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3: return api_seq[:seq_len]
4: else:
5: return api_seq + [–1] * (seq_len - len(api_seq))
6: api_num_trimmed_list = [trim_and_pad(seq) for seq in api_num_list]
7: api_num_tensor_list = [torch.tensor(seq, dtype=torch.long) for
seq in api_num_trimmed_list]
8: padded_api_num_tensor = torch.nn.utils.rnn.pad_sequence(api_
num_tensor_list, batch_first=True, padding_value=-1)
9: input_ids = padded_api_num_tensor
10: attention_mask = input_ids != -1
11: labels = torch.tensor(label_list)
12: print(input_ids.shape)
13: print(labels.shape)

Most existing studies use the Smote algorithm to deal with the imbalance of the dataset.

The Smote algorithm adopts an interpolation method when synthesizing new samples. For

minority category sample a, the algorithm randomly selects sample b from its nearest neigh-

bor, and then randomly selects a point on the line between a and b as the newly synthesized

minority category sample.

3.2.2 GNGS. However, the Smote algorithm also has some shortcomings which are sensi-

tive to noise and don’t have a good effect on the large-scale samples, and the synthetic sample

is easy to be in the majority of class sample areas, forming noise samples. Finally, it causes the

overfitting of the model to reduce the precision of malware detection. In order to compensate

for the shortcomings of Smote, we proposed the GNGS algorithm to deal with unbalanced

minority attack data categories. The GNGS algorithm is not only used for clustering but also

for estimating probability density. More importantly, the GNGS algorithm can generate new

sample points and increase the robustness and generalization ability of the model.

After the data processing, the data samples are perturbed by the Gaussian Noise Generation

Strategy (GNGS). In this process, we add the Random Gaussian noise to each continuous fea-

ture, with its standard deviation proportional to the original feature value, as shown in Algo-

rithm 3. The GNGS expanded and homogenized the data set, realizing the processing of the

unbalanced dataset, which generated a new dataset with a more balanced distribution of cate-

gories. Random.gauss (mu,sigma) is a Gaussian random number generator, Where mu is the

mean value and sigma is the variance. In the experiment, the mean value is 0, and the variance

is 0.01. In this method, the generated new sample features will be highly homogenous, and the

training model will pay more attention to the useful minority category features.
Algorithm 3: Gaussian Noise Generation Strategy.
1: def generate_new_sample(row, std_dev=0.01):
2: new_row = row.copy()
3: for feature in new_row.index:
4: if isinstance(new_row[feature], (int, float)):
5: new_row[feature] += random.gauss(0, std_dev * new_row
[feature])
6: return new_row
7: DDoS_indices = label_data[label_data["label"] == "DDoS"].index
8: new_samples_count = 2900 # Generate the number of new samples
generate
9: new_DDoS_samples = []
10: new_DDoS_labels = [] # Generate a new DDoS sample
11: for _ in range(new_samples_count):
12: random_row = DDoS_data.sample()
13: index = random_row.index[0]
14: new_sample = generate_new_sample(random_row.iloc[0])
15: new_DDoS_samples.append(new_sample)
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16: new_DDoS_labels.append("DDoS")

3.3 SAG unit based on transformer

Transformer is a deep learning model launched in 2017, mainly used in the natural language

processing (NLP) field [36, 37]. Transformer is designed to process sequential data such as

translation and text classification. Compared with RNN, the Transformer can support paralle-

lization, thus greatly reducing the training time [38, 39].

The transformer includes the encoder-decoder architecture, as shown in Fig 3. An encoder

consists of a set of coding layers that iterate through the input layer after layer, and a decoder

consists of decoding layers that perform the same action on the output. Each encoder consists

of a Self-Attention layer and a Feed Forward Network. Word vectors flow through the two

sublayers of the encoder.

3.3.1 Attention mechanism. In all the APIs invoked, it is not hard to see that each has the

same impact on the dynamic behavior of the software for each category. However, Attention

mechanisms can extract malicious features that are crucial to behavior classification at a single

API level. Taking the sequence "NtCreateFile NtWriteFile NtClose" as an example, calculate

the attention score for the first word NtCreateFile. We need to calculate the correlation score

of each of the other words to NtCreateFile, which determines how much attention should be

given to the other words when encoding the current word.

The attention mechanism uses dot product attention, which has three inputs: Query, Key,

and Value. Use Query and Key to calculate the weight score assigned to each value, and then

the weight and value are weighted to obtain the output. Using dot product attention can per-

form parallel operations, reducing training time. Its calculation Formula (1) is as follows.

Attention ðQ;K;VÞ ¼ soft max
QKT

ffiffiffiffiffi
dk

p

 !

ð1Þ

In the Formula (1), Q, K, and V respectively represent Query, Key, and Value, and dk is the

dimension of Key. To enrich the extracted features, this study uses the structure of multi-head

attention, whose Formulas are as follows (2–4).

Qi ¼ QW
Q
i ;Ki ¼ KW

K
i ;Vi ¼ VW

V
i i ¼ 1; . . . ; n ð2Þ

headi ¼ Attention ðQi;Ki;ViÞ i ¼ 1; . . . ; n ð3Þ

MultiHead ðQ;K;VÞ ¼ concat ðhead1. . .headnÞW
o ð4Þ

3.3.2 SAG unit. Transformer uses a self-attention layer to encode understanding of

related words into the current word. The Multi-head attention mechanism extends the model’s

ability to focus on different locations. We use an additional position encoder to reflect the

position between API sequences, generate the position vector, and add the position vector to

the word vector, which can better represent the distance relationship between words. We pro-

posed the Self-Attention with Gate mechanism (SAG) to extract the key feature information

and effectively filter irrelevant noise information, as shown in the Fig 4.

Input X into the SAG unit to learn the more important and rich features information and

filter the invalid information by the Gate mechanism. The feature matrix formula are shown

in the Eq (5–10).

X1 ¼ MHAðQX;KX;VXÞ ¼ concatðhead1. . .headnÞW
o ð5Þ
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Fig 3. The framework of the transformer.

https://doi.org/10.1371/journal.pone.0298809.g003
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X2 ¼ FFNðX1Þ ¼ maxð0;X1W1 þ b1ÞW2 þ b2 ð6Þ

X3 ¼ concatðX2;X1Þ ð7Þ

Xt ¼ tanhðX3Þ ð8Þ

Xs ¼ sigmoidðX3Þ ð9Þ

XðLÞ ¼ Xt∗Xs þ ð1 � XsÞ∗X2 ð10Þ

Where W1, W2 represent the weight and b1, b2 represent bias variable. We obtained the fea-

ture matrix XL by the gate mechanism layer. Where XL is the final output feature matrix

through the SAG unit filter the invalid information. The X1 is output of the multi-head self-

attention mechanism and the X2 is the output of the feedforward neural network X2. By

concatenating the X1 and X2 in the Formula (7), which can thoroughly combine the semantic

dependencies captured by the Multi-Attention mechanism and the local features captured by

the feedforward network; It can limit the information effectively by concatenating the feature

vector X3 in the Eq (8–9) so that the Gated Linear Unit (GLU) in Formula (10) can control the

information inflow of the limited feature vector adaptively; By fusing X2 in Formula (10), it

can retain the more low-level and high-level semantic features and filter irrelevant noise and

redundant information. The SAG model can better capture the crucial feature information in

the text through local and global feature learning.

3.4 BiGRU

The API call sequence extracted during the dynamic execution of software is a long-time

sequence. Using BiGRU to model the API call sequence can effectively avoid the problem of

gradient disappearing and gradient explosion [40, 41], so it can effectively model the long-time

Fig 4. Self-Attention with Gate mechanism (SAG) model for encoder. (a) Self-Attention in Transformer and (b)

Self-Attention with Gate mechanism.

https://doi.org/10.1371/journal.pone.0298809.g004
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API call sequence. The gated recurrent unit network (GRU) is an improvement of LSTM,

which has the characteristics of fewer parameters and reduces overfitting. The GRU module

structure is shown in Fig 5.

The GRU is mainly composed of an update gate and a reset gate. The update gate mainly

controls the past information to the current state, and the reset gate mainly controls the previ-

ous state information to write into the current candidate set. Set the current moment t, and the

GRU calculation Formulas (11–14) are as follows.

rt ¼ sðorxt þ Urht� 1 þ brÞ ð11Þ

zt ¼ sðozxt þ Uzht� 1 þ bzÞ; t 2 ½1;m� ð12Þ

h~t ¼ tanhðohxt þ Uðrt∗ht� 1Þ þ bhÞ ð13Þ

ht ¼ zt∗ht� 1 þ ð1 � ztÞ∗h~t ð14Þ

Where σ is the sigmoid function, ωr, ωz, ωh are input weight matrix, br, bz, bh are the bias

value. Ur, Uz, U are state weight matrix, rt is the reset gate, zt is the update gate, ~ht is the candi-

date set of the current state, ht is the final output.

Since GRU introduces an update gate and a reset gate structure, it is very effective for cap-

turing long-distance features. When xt input to the network unit, it is multiplied by its weight

ωz. The same is done for ht−1, which keeps the information of the first t−1 units and is multi-

plied by its weight Uz as shown in Formula (12). These two results are added together, and

then the sigmoid activation function is applied to compress the result to between 0 and 1.

Update gates help the model determine how much information from the past needs to be

passed on to the future. This is very powerful because the model can decide to copy all the

information from the past and eliminate the risk of the gradient disappearing problem.

The reset gate is used by the model to determine how much past information is forgotten,

as shown in Formula (11). ~Ht is the current memory content, as shown in Formula (13), which

Fig 5. GRU module structure.

https://doi.org/10.1371/journal.pone.0298809.g005
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will use the reset gate to store relevant information from the past. Ht is the final memory of the

current time step, as shown in Formula (14). The model can learn to set the vector zt close to 1

and retain most of the previous information. Since it will be close to 1 at this time step, (1− zt)

will be close to 0, which will ignore most of the current information.

The BiGRU consists of a forward GRU and a backward GRU, and its backward sequence

captures the information to make more accurate judgments. The BiGRU consists of two GRUs

in different directions, as shown in Fig 6. At the moment t, the specific calculation formulas of

BiGRU are shown in the Eqs (15–17). The final output of the BiGRU is denoted by Ht = [h1,

h2,. . .,ht].

ht
!

¼ GRU ðht; ht� 1

!

Þ ð15Þ

ht
 

¼ GRU ðht; ht� 1

 

Þ ð16Þ

hi ¼ ½hi
!

; hi
 

� ð17Þ

BiGRU has a natural advantage for long-distance feature extraction. The CNN is limited by

the receptive field of the convolutional kernel for extracting long-distance features. Increasing

the size of the convolutional kernel and the depth of the network can increase the long-dis-

tance feature-capturing ability. However, it is still not as good as BiGRU. For Transformer, its

long-distance feature capture capability is mainly affected by the number of multi-heads. The

more multi-heads, the stronger the long-range feature capture capability of the Transformer.

4. Experiment and analysis

4.1 Experimental environment

Experimental configuration: The operating system is Ubuntu20.04 Server Edition, the proces-

sor is Intel Xeon Silver 4210, the memory is 64.0GB, the GPU is NVIDIA RTX A5000 16GB,

and the programming language is Python3.9. The learning framework is Pytorch 1.11.0.

Fig 6. BiGRU module structure.

https://doi.org/10.1371/journal.pone.0298809.g006
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4.2 Training and test set

The experimental dataset in this paper comes from the training set provided by Alibaba cloud

security malicious program detection data. Since the test set provided by the official data is not

labeled, the data of the test set is discarded. We take the training set provided by the official as

the total data sample and divide it into the training set and the test set according to the ratio of

4:1. The data comes from the API instruction sequence recorded after the desensitized Win-

dows binary executable (PE file) is simulated in the sandbox program.

After the analysis of the training data, we found that the normal category of samples in the

data set is the largest, accounting for 35.85%. Infectious virus is the largest type of malicious

sample, accounting for 30.89% of the total samples. The number of worms is the least in the

total sample, accounting for only 0.72%. The quantity distribution in the data set is shown in

Table 4, which shows that the quantity of different samples in the data set is not balanced. We

analyzed 295 different APIs in the dataset.

The details of the training set after GNGS data preprocessing are shown in Table 5. Com-

pared with the original data set, the new data set is generated with more balanced minority cat-

egories. It avoids the edge distribution of the minority categories, and the model training will

not focus on the majority categories features while discarding the learning of the minorities

features.

4.3 Evaluation criteria

In Table 6 Confusion matrix [42, 43], true positive (TP) is the number of normal samples pre-

dicted as normal. True negative (TN) is the number of abnormal samples predicted as abnor-

mal; False negative (FN) is the number of normal samples predicted as abnormal; False

Positive (FP) is the number of abnormal samples predicted as normal.

Table 4. Different category in the dataset.

Label Category Total

0 normal 4978

1 Ransomware virus 502

2 Mining program 1196

3 DDoS 820

4 Worms virus 100

5 Infectious virus 4289

6 Backdoor program 515

7 Trojan program 1487

https://doi.org/10.1371/journal.pone.0298809.t004

Table 5. Different category in the new dataset.

Label Category Total percent

0 normal 5200 16.1%

1 Ransomware virus 3100 9.6%

2 Mining program 4300 13.3%

3 DdoS 3700 11.4%

4 Worms virus 3200 9.9%

5 Infectious virus 4900 15.1%

6 Backdoor program 3350 10.3%

7 Trojan program 4600 14.2%

https://doi.org/10.1371/journal.pone.0298809.t005
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The evaluation indicators include the Accuracy (accuracy rate), Precision (precision rate),

Recall (recall rate), and F1-score whose calculation formula are shown in the Eq (18–21).

Accuracy ¼
TP þ TN

TP þ FN þ FP þ TN
ð18Þ

Precision ¼
TP

TP þ FP
ð19Þ

Recall ¼
TP

TPþ FN
ð20Þ

F1 � score ¼
2∗P∗R
P þ R

ð21Þ

For the multiple classification problems, Literature [44] adopted the added weight based on

the Macro F1value calculation method, which is the same evaluation model as Chai et al. [45],

whose precision, recall, and F1 value are with the weight by adopting the weighted mean, cal-

culate evaluation indicators of each category, Taking Precision as an example, its calculation

Formula is shown in (22). However, the evaluation method can’t reflect indicators of minority

categories and will make the experimental results higher. For example, the experimental result

of the minority category is very low, but the overall experimental result is still very high.

In this paper, the number of data correctly classified is divided by the total number of data

to obtain the Accuracy of the multi-classification tasks, whose Formula is shown in (23). The

Precision, Recall, and F1-score of each category are calculated respectively, and then these val-

ues were added and averaged to obtain the evaluation criteria of multi-category tasks. Taking

Precision as an example, its calculation Formula is shown in (24).

Precisionweighted ¼
Xn

i¼1
wi

TPi
TPi þ FPi

� �

ð22Þ

Accuracymulti ¼

Xn

i¼1
TPi

Xn

i¼1
ðTPi þ FPiÞ

ð23Þ

Precisionmulti ¼

Xn

i¼1
Pi

n
ð24Þ

4.4 Parameter setting

The different hyperparameters settings will affect model convergence speed and experimental

results. The configuration of hyperparameters in this experiment is shown in Table 7. The

GSB model optimized the experiment parameters by the Adam optimizer, which can adjust

the learning rate and achieve a good effect through some experiments.

Table 6. Confusion matrix.

Situation Predict result

Positive Negative

True TP FN

False FP TN

https://doi.org/10.1371/journal.pone.0298809.t006
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4.5 Experimental results

We proposed the GNGS model for processing the unbalanced data and the SAG-BiGRU

model for malware detection. The GSB model experimental results for multi-classification

malware detection are shown in Table 8.

The GSB model algorithm studies the distribution of the minority categories to avoid edge

distribution problems. From the experimental results, each category is ideal. There is no very

low accuracy for minority categories, indicating that the model has a good effect on the feature

extraction of datasets. The precision of the normal category is relatively high, which can reach

95%, mainly because the proportion of normal training samples is large, and the model extrac-

tion features are more abundant. For the detection of minority categories, the precision of half

categories can exceed 90%, and the model’s performance for malware detection of minority

categories can achieve the expected effect. But the precision for Worms virus and DDoS is not

high, because there are too few attack samples for Worms virus and DDoS categories in the

original dataset, the training features extracted by the model are not rich enough, and the gen-

eralization ability is not enough, resulting in the test precision is not high.

4.6 Experimental discussion

This paper proposed the GNGS and SAG-BiGRU network for malware dynamic detection,

which achieved an accuracy of 88.7% for the eight-classification and separated malicious soft-

ware from benign software for the binary classification detection, which achieved an accuracy

rate of 97.6%. Our model is compared with the other current studies, as shown in the figure.

a) Compared with current studies on the Alibaba Cloud dataset. As for the study on

the Alibaba Cloud dataset as shown in Fig 7, the current researches, Literature [46] and Litera-

ture [13] only conduct binary classification and can’t do the multi-classification research of

malware. They only conducted de-duplication of the dataset and used deep learning

CNN-LSTM algorithm for feature extraction to perform binary classification. Our GSB model

Table 7. The configuration of parameter.

Parameter name Value

BatchSize 512

Input_dim 32

LearningRate 0.0001

Dropout 0.5

Attention_head 4

FeedForward_hidden_size 64

BiGRU_hidden_size 64

https://doi.org/10.1371/journal.pone.0298809.t007

Table 8. Comparison of eight-classification experimental results.

Category Precision Recall f1-score

Normal 0.95 0.98 0.97

Ransomware virus 0.86 0.91 0.89

Mining program 0.92 0.94 0.89

DDoS 0.83 0.85 0.79

Worms virus 0.81 0.83 0.87

Infectious virus 0.93 0.93 0.91

Backdoor program 0.87 0.85 0.91

Trojan program 0.91 0.93 0.94

https://doi.org/10.1371/journal.pone.0298809.t008
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performs better than CNN-LSTM binary classification, and also performs well for multi-classi-

fication of the minority categories.

The CNN model outperforms the Xgboost in terms of accuracy, and Xgboost needs to

extract relevant features manually to achieve better results, besides, it needs more time and

cost in actual use. The GSB model performs better than CNN, mainly due to the inevitable

problem of forgetting when the sequence is too long. Of course, two-way BiGRU can alleviate

such forgetting phenomenon to a certain extent, and the Transformer model has better seman-

tic feature extraction and long-distance feature capture capabilities.

The main advantage of the SAG model based on Transformer is its excellent performance

in processing long sequence data, especially for large dataset. Compared to traditional RNN or

CNN, SAG model has better parallelism and shorter training times, which also has the ability

to learn dependencies between sequences through self-attention mechanisms.

BiGRU has a natural advantage for long-distance feature extraction. The CNN is limited by

the receptive field of the convolutional kernel for extracting long-distance features. Increasing

the size of the convolutional kernel and the depth of the network can increase the long-dis-

tance feature-capturing ability. However, it is still not as good as BiGRU.

b) The GSB model for multi-classification on the Alibaba Cloud dataset. Most studies

focus on majority categories in the whole data set and neglect to pay attention to the detection

rate of the minority categories. However, these minority attacks usually cause more damage to

the network than common attacks, so we should pay more attention to the detection of minor-

ity attacks.

In this paper, the deep learning model methods are used to explore the advantages of the

GSB model compared with the common machine learning and deep learning methods such as

Random Forest (RF), as shown in Table 9, the GSB model is superior to the traditional

machine learning models.

We propose the GNGS model for processing unbalanced data and the SB model for mal-

ware detection. The accuracy of the GSB has a great improvement compared to the SB model,

which proves that Gaussian noise generation strategies obtain a positive effect on processing

unbalanced data.

The GSB model considers the extraction of temporal sequence features and long-distance

dependency information compared with GS models, and the model explores whether the

Fig 7. Accuracy of different algorithms in binary classification on Alibaba Cloud data set.

https://doi.org/10.1371/journal.pone.0298809.g007
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BiGRU module has an impact on classification results in terms of its role in preserving data

temporal sequence features and long-distance dependency information. GRU is naturally suit-

able for processing temporal sequence data. Even if there is a gating mechanism, the problem

of forgetting will inevitably exist when the sequence is too long, but the BiGRU can alleviate

such a forgetting phenomenon to some extent. The SB model has better feature extraction abil-

ity and long-distance feature capture ability compared to the BiGRU model, and the self-atten-

tion mechanism gives the model better attention. By allowing it to focus on crucial relevant

sequences of API calls, it can better solve the problem of forgetting. The Self-Attention with

Gate mechanism (SAG) can carry out the key feature extraction and filter irrelevant noise

information, which has better parallelism and shorter training time when dealing with large

scale data, which also has the ability to learn dependencies between sequences through self-

attention mechanisms.

The GSB model has a good effect on multi-classification detection compared to the SB and

SSB model. Solving the unbalanced classification problem from the data level can make the

classification model sensitive to unbalanced data. The Smote resampling method is often used

to deal with category imbalances, but by comparing experimental results on datasets, GNGS

method is more effective in improving the recognition rate of the model to the minority sam-

ples, and the training model will pay more attention to the useful minority category features.

Smote algorithm is sensitive to noise and doesn’t have good effect for large-scale samples, and

the synthetic sample is easy to be in the majority categories sample areas, forming noise sam-

ples. Finally it causes the overfitting of the model to reduce the precision of malware detection.

We proposed the GNGS algorithm to deal with unbalanced minority attack data categories.

GNGS algorithm is not only used for clustering, but also for estimating probability density.

More importantly, the GNGS algorithm can generate new sample points and increase the

robustness and generalization ability of the model. It shows that GNGS has a good effect on

the unbalanced processing of data sets and is more reasonable for the feature extraction and

the learning for the model.

c) The GSB model for multi-classification on NSL-KDD dataset. We used the GSB

model for multi-classification on the NSL-KDD dataset. The NSL-KDD dataset is shown in

Table 10, which is a new dataset generated from KDD_cup99 [47, 48].

The details of the training set after GNGS processing are shown in Table 11. We obtained a

more balanced training dataset, especially for the minority categories R2L and U2R, which are

more balanced after processing.

After the GNGS processing, the GSB model experimental results on the NSL-KDD, as

shown in Fig 8. The precision of the minority categories is more than 90% on the NSL-KDD

dataset, which is much better than other algorithm models for the multi-classification.

The GSB model is much better than the RSSB model, as shown in Table 12, which produces

a new dataset by using the Random undersampling and Smote oversampling algorithms that

Table 9. Comparison of eight-classification with different algorithms on the Alibaba Cloud dataset.

Model Accuracy Precision Recall F1-score

RF 0.687 0.690 0.512 0.576

BiGRU 0.722 0.472 0.502 0.512

Smote-BiGRU 0.768 0.686 0.612 0.585

SAG+BiGRU(SB) 0.784 0.613 0.576 0.492

Smote-SAG+BiGRU(SSB) 0.816 0.723 0.668 0.618

GNGS+SAG(GS) 0.862 0.858 0.866 0.862

GNGS+SAG-BiGRU(GSB) 0.887 0.885 0.902 0.896

https://doi.org/10.1371/journal.pone.0298809.t009
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are popular data unbalanced sampling method. It can be seen that GNGS has a good effect in

processing unbalanced data categories and the importance of processing unbalanced datasets

for algorithm models.

It can be seen that the GSB model is better than other algorithm models, as shown in Fig 9,

especially for the detection of minority categories. Other research literatures [49–52] are

Table 10. The details of the NSL-KDD dataset.

Type KDDTrain KDDTest

Record Percent Record Percent

Normal 13449 53.38% 9711 43.07%

Probing 2289 9.08% 2421 10.73%

R2L 209 0.83% 2576 12.21%

U2R 11 0.04% 200 0.89%

DOS 9234 36.65% 7636 33.08%

Total 25192 22544

https://doi.org/10.1371/journal.pone.0298809.t010

Table 11. The details balancing training data after GNGS processing.

Type Record Percent

Normal 10711 20.38%

Probing 10421 19.83%

R2L 10576 20.13%

U2R 10200 19.41%

DOS 10636 20.24%

Total 52544

https://doi.org/10.1371/journal.pone.0298809.t011

Fig 8. GSB model experimental results on the NSL-KDD.

https://doi.org/10.1371/journal.pone.0298809.g008
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difficult to detect the categories of U2R and R2L on the NSL-KDD dataset. Literature [53] pro-

posed the conditional Generative Adversarial Networks (cGAN) to deal with the data unbal-

ance, but the pricision is not high for the U2R and R2L categories. It can be seen that the GSB

model has great advantages on the NSL-KDD dataset.

The shortcomings of the GSB model applied to the NSL-KDD dataset are mainly due to the

small number of categories samples in the dataset, especially for U2R and R2L categories.

Although the detection effect of U2R and R2L on the test set of the model can reach 90%, it is

still hoped to further improve.

5. Conclusion

Malware detection and classification tasks from a dynamic analysis perspective, the study pro-

posed the Gaussian Noise Generation Strategy (GNGS) algorithm to solve the problem of

unbalanced distribution of data categories. The GNGS algorithm can generate new sample

points and increase the robustness and generalization ability of the model. The training model

will pay more attention to the useful minority category features, which is much better than

other sampling methods, so that the precision of minority categories is much higher than the

other research, and the accuracy of the majority categories is even up to 95%.

We proposed the Transformer deep learning models to learn the temporal sequence fea-

tures and used the Self-Attention with Gate mechanism (SAG), which can effectively filter

irrelevant noise information and extract the key features. The main advantage of the SAG

model based on Transformer is its excellent performance in processing long sequence data,

Table 12. Comparison of five-classification with different algorithms on the NSL-KDD dataset.

Model Accuracy Precision Recall F1-score

Random-Smote+ SAG-BiGRU (RSSB) 0.834 0.753 0.671 0.696

GNGS+SAG (GS) 0.968 0.967 0.966 0.967

GNGS+SAG-BiGRU (GSB) 0.978 0.976 0.975 0.975

https://doi.org/10.1371/journal.pone.0298809.t012

Fig 9. Accuracy of different algorithms model in five classification on the NSL-KDD dataset.

https://doi.org/10.1371/journal.pone.0298809.g009
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especially for large dataset models. Compared to traditional RNN or CNN, Transformer has

better parallelism and shorter training times when dealing with long text, which also has the

ability to learn dependencies between sequences through self-attention mechanisms. The GSB

model also shows that the accuracy for the minority categories is close to 90% on the

NSL-KDD data set, which is much better than other algorithm models for multi-classification.

The shortcoming of the paper is that we need more attack samples of the minority attack

categories in the dataset, and the generalization ability of the training model for the minority

attack categories is insufficient. It is hoped that we can continue to improve it in the future.
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