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Abstract

A key metric to determine the performance of a stock in a market is its return over different

investment horizons (τ). Several works have observed heavy-tailed behavior in the distribu-

tions of returns in different markets, which are observable indicators of underlying complex

dynamics. Such prior works study return distributions that are marginalized across the indi-

vidual stocks in the market, and do not track statistics about the joint distributions of returns

conditioned on different stocks, which would be useful for optimizing inter-stock

asset allocation strategies. As a step towards this goal, we study emergent phenomena in

the distributions of returns as captured by their pairwise correlations. In particular, we con-

sider the pairwise (between stocks i, j) partial correlations of returns with respect to the mar-

ket mode, ci,j(τ), (thus, correcting for the baseline return behavior of the market), over

different time horizons (τ), and discover two novel emergent phenomena: (i) the standard-

ized distributions of the ci,j(τ)’s are observed to be invariant of τ ranging from from 1000min

(2.5 days) to 30000min (2.5 months); (ii) the scaling of the standard deviation of ci,j(τ)’s with

τ admits good fits to simple model classes such as a power-law τ−λ or stretched exponential

function e� tb (λ, β > 0). Moreover, the parameters governing these fits provide a summary

view of market health: for instance, in years marked by unprecedented financial crises—for

example 2008 and 2020—values of λ (scaling exponent) are substantially lower. Finally, we

demonstrate that the observed emergent behavior cannot be adequately supported by exist-

ing generative frameworks such as single- and multi-factor models. We introduce a promis-

ing agent-based Vicsek model that closes this gap.

Background

Stock prices demonstrate considerable volatility, a result of several confounding factors such

as traders’ collaborative and competitive decision-making to buy, hold or sell, differing appe-

tites for risk, and various time horizons for expected returns on investment [1–7]. A consid-

erable body of literature has focused on identifying patterns in price fluctuations and on

developing succinct dynamical models that display similar characteristics as a real market.
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Financial experts have, for instance, frequently observed seasonality patterns in individual

stock prices and the fractal nature of price fluctuations [8, 9]. In contrast, macroscopic pat-

terns that concern the ensemble of stocks would emerge because of correlated dynamics in

investment decisions, and would reflect inter-stock asset allocation strategies used by inves-

tors. The abundant literature in swarming and “econophysics” [4, 10] provide a framework

for both numerical analysis of such joint price data and for formulating theoretical genera-

tive models.

Conventionally, investors and economists compute the return [11]: the return over an

investment horizon of τ is defined as the equivalent compounded interest rate if one bought a

stock at time t and sold it at time t + τ, and estimated as r(t;τ)≔ ln(p(t + τ)) − ln(p(t)), where p
(t) and p(t + τ) are the stock prices at time t and t + τ, respectively. Return sequences are a sta-

tionary measure (a parameter constant over the interval τ) of price change characterized by

several statistical properties observed in empirical evidence across markets (often referred to

as stylized facts [12]).

Prior research has explored the statistical properties of these returns as a means to charac-

terize the dynamics of the market. Some [11, 13] have identified linear relationships in the

log-log scale on the distributions of the returns. Plerou et al. [14] discover power law fits [15,

16] on (i) the cumulative distribution function (CDF) of the return distribution and (ii) the

standard deviation of the return distribution as a function of market capitalization. Similarly,

Müller et al. [17] demonstrated evidence of a scaling regime governing the mean of returns

with respect to the return horizon (for τ� 20 seconds). Return distributions and their prop-

erties for longer horizon τ beyond high frequency trading time scales have not been studied.

Moreover, such prior works only study return distributions that are marginalized across the
individual stocks in the market. For example, in [11, 13], they fix a τ and then compute ri(τ)

for all stocks i in a market and then estimate the distribution of this set of r(τ)’s; thus margin-

alizing over all the stocks, and the Complementary CDFs (CCDFs) for our dataset is pre-

sented in Fig 1 of the S1 File and for large enough τ the tails can be fit with that of power-law

distributions. Similarly, in [14] they compute the standard deviation, σi(τ), of returns for a

fixed τ and for all stocks with market capitalization Si and then they show that log(σi(τ) scales

linearly with log(Si); again, the returns are marginalized over all the stocks with the same cap-

italization. None of these works track statistics about the joint distributions of returns condi-

tioned on different stocks, which would be useful for optimizing inter-stock asset allocation

strategies.

To address such issues, other methods have attempted to model the inter-stock return cor-

relations in order to compare stocks’ relative performances over time [4]. These correlations

are particularly useful to construct graphical models of the market, in this case, a fully con-

nected network, where the stocks are nodes and the pair-wise correlations correspond to the

inter-stock edge weights. Structures are distilled from within the network representation by

adopting various graph theory algorithms [18–21]. For example, one can compute the Mini-

mum Spanning Tree (MST), which, for certain return horizons, exhibit a local aggregation of

communities of stocks (nodes), such that each community is shared by stocks belonging to

market sector [11, 22]. Recent studies have attempted to refine this method of identifying clus-

ters by calculating the normalized partial correlations in relation to the market mode [23].

With fixed τ> τ0—where the MST structures are obtained—these partial correlation scores

have been observed to contain enough inter-stock information to facilitate agglomerative clus-

tering of the Korean Stock Exchange (KOSPI) that aligned with GICS sectors, while network

modeling of the partial correlations computed using daily returns have helped uncover specific

stocks that are influential in driving the return patterns in a subset of high-capitalization

NYSE stocks [24].
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Our contributions

Such MST-based studies (see Fig 8) provide only a limited visual representation of the underly-

ing return correlation distribution and its dependence on τ. We extend such MST-based anal-

ysis of the correlation statistics to the study of its density function, governing the return

correlations. In contrast to existing work discussed earlier, we are interested in: (a) the distri-

butions of market-mode adjusted partial correlations computed at both short (1 minute) and

long investment horizons (50000 minutes); and (b) the distribution properties as a function of

the investment horizon τ. As our first main contribution, we find that for a significant range of

τ (varying from approximately 2.5 days to around 2.5 months), the standardized distributions

—scaled by the standard deviation σ(τ) and zero-shifted by mean μ(τ)– of the market-mode

adjusted partial return correlations are invariant of τ.

The above distribution invariance results suggest that both the standard deviation σ(τ) and

the mean μ(τ) of the pairwise partial correlations would be a function of return horizon τ in

the regime where such invariance is observed. We find that μ(τ) has no significant scaling

behavior with respect to τ (see Fig 2 in the S1 File). As our second main contribution, we find

that the standard deviations of the partial return correlations do indeed scale as a function of τ
in the distribution invariance regime, and demonstrate convincing fits via either a power law

or a stretched exponential function. The critical model parameters—the scaling exponent in

the case of the power law (λ), and the stretching parameter (β) in the stretched exponential

function—appear to be rich indicators of macroeconomic volatility patterns. The distribution

invariance as well as the scaling of σ(τ) are observed to hold for 1000min� τ� 30000min. Evi-

dence spans 17 years of real S&P500 stock price data, sampled every minute. Data can be

accessed for research purpose at the Wharton Research Data Services (WRDS) (https://wrds-

www.wharton.upenn.edu/) and the code repository (https://github.com/pholur/stock-market)

is linked.

Finally, we explore if these numerically observed emergent behavior properties can be repli-

cated by an agent-based generative model. We first reexamine the single- and multi-factor

generative models, popular generative frameworks used to model consensus behavior in finan-

cial markets [25]. These models for the most part fail to replicate the above-mentioned emer-

gent trends—the invariant standardized histograms and the power-law/stretched-exponential

fits with respect to τ: (a) The single-factor model fails to reproduce the vine MST structure; (b)

Multi-factor models, while generating the vine, fail to produce both the distribution-invariance

and the scaling phenomena. As our third main contribution, we introduce an alternate frame-

work, a modified Vicsek model—commonly used to describe the dynamics of active matter—

that proves to be a much more promising candidate for reproducing the empirical evidence.

In these approaches, the stock market would be modeled as a closed environment, where indi-

vidual stocks behave as agents in a vector space that influence each other. At each time-step,

the position of an agent corresponds to a particular stock’s instantaneous market behavior.

Agents that exhibit correlated behavior over multiple time steps cluster together as swarms.

Materials and methods

Correlations of returns and partial correlation with respect to market

mode

Suppose a market has N stocks; in the S&P500, N� 500. Let us denote, by pi(t), the price of

stock i at time t for i = 1, 2, . . ., N and tini� t� tfin. Typical macroeconomic market analyses

such as Year-over-Year (YoY) gain, annualized returns and GDP growth, cap Tint ≔ tfin − tini

to 1 year from January 1st to December 31 to avoid seasonality patterns and resulting artifacts
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in the correlations. We similarly consider each calendar year separately and the evidence of

scaling is thus presented individually for each of the 17 years (2004−2020).

We sample each of the stock prices at a granularity of 1 − minute. Let the price sequence of

a stock i be pi. For Tint = 1year, there are *98000 values per sequence. We compute the effec-

tive return or interest rate ri(t;τ) of the stock i at time t over a time horizon of τ (τ� Tint), a

preferred first-order metric for investing than the absolute price. An investment in the ith stock

at time t (say, a sum of mpi(t) by purchasing m units) when compounded continuously at the

given rate would yield the same amount as that which would be obtained by selling the stock at

time (t + τ) (i.e., mpi(t + τ)). Quantitatively,

mpiðt þ tÞ ¼ mpiðtÞ limn!1
1þ

riðt; tÞ
nt

� �nt

¼ mpiðtÞe
riðt;tÞ. Thus, we get:

riðt; tÞ≔ln piðt þ tÞ � ln piðtÞ; ð1Þ

for tini� t� tfin − τ. Therefore, an investment horizon of τ yields a return sequence of length,

Tint − τ + 1. Note that for the longest considered τ = 30000min, the return sequence for each

stock still contains a significant number of return values (*68000). After computing the

return sequences of all stocks, we can find the market-mode return sequence as:

r0ðt; tÞ≔
1

N

XN

i¼1

riðt; tÞ: ð2Þ

We denote the time average of ri(�;τ) and ri(�;τ)rj(�;τ) for i, j = 0, 1, 2, . . ., N by

rið�; tÞ≔
Z tfin� t

tini

dt riðt; tÞ; ð3Þ

rið�; tÞrjð�; tÞ≔
Z tfin � t

tini

dt riðt; tÞrjðt; tÞ: ð4Þ

Now we are ready to define the conventional correlation. Between any pair of stocks i, j = 1,

2, . . ., N:

ri;jðtÞ≔
si;jðtÞ

siðtÞsjðtÞ
; ð5Þ

where

siðtÞ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
i ð�; tÞ � rið�; tÞ

2

q

; ð6Þ

si;jðtÞ≔rið�; tÞrjð�; tÞ � rið�; tÞ � rjð�; tÞ: ð7Þ

Note: In an optimized market, the cross-correlation between ri(t) and rj(t + Δ) for non-zero

Δ can be written by replacing the right-hand side of Eq (4) by:

Z tfin � t� D

tini

dt riðt; tÞrjðt þ D; tÞ: ð8Þ

However, these correlation should equal 0; otherwise investors would use one return series

to predict another stock’s return (recall Stylized Fact I [12]).
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Next we introduce the concept of partial correlation between stocks i and j with respect to

the market mode [26]: let ~riðt; tÞ be the residuals while predicting ri(t;τ) with respect to r0(t;τ)

using a linear fit. Then the correlation between these residuals associated to stocks i and j is the

partial correlation and is given by,

ci;jðtÞ≔
ri;jðtÞ � ri;0ðtÞrj;0ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

i;0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

j;0

q : ð9Þ

where ρi,j(τ) is the (conventional) correlation between stocks i and j, and ρi,0, ρj,0 are correla-

tions of returns of stocks i and j with respect to the market return.

Distributions and invariance of partial correlations

Let pτ(x) be the probability density function of ci,j(τ) empirically estimated as:

ptðxÞ �
2

NðN � 1Þ

X

i<j

dDðx � ci;jðtÞÞ; ð10Þ

where δD(�) is the Dirac delta function. We observe that as to be expected, the functional form

of pτ(�) is τ-dependent (see Fig 1). However, the standardized distributions—the distribution

when ci,j(τ) are mean-shifted and scaled by standard deviation,

~ptðxÞ≔
1

bðtÞ
pt

x � mðtÞ
bðtÞ

� �

; ð11Þ

are invariant over a significant regime of τ; i.e. τmax� τ� τmin. This indicates that the scal-

ing factor—in this case, the standard deviation—scales with τ.

Scaling phenomena during distribution invariance

Let σ(τ) be the standard deviation and m(τ) the mean. In this work, we use the inverse of the

standard deviation—rather than the standard deviation—as an interpretable measure of preci-
sion, bðtÞ ¼ 1

sðtÞ
.

We will demonstrate that during the regime where the standardized distributions are

invariant (τ> τ0), the dependence between τ and the precision b(τ) is well-explained by simple

models with few and interpretable parameters such as the power law,

bðtÞ � t� l; or logbðtÞ � � llogðtÞ þ C ð12Þ

and the stretched exponential function:

bðtÞ � et� b ; or logbðtÞ � at� b þ g ð13Þ

Aside from convincing model fits, the critical model parameters—the scaling exponent λ
(in the case of the power law) and the stretching parameter β (in the case of the stretched expo-

nential)—once trained, emerge as candidates for macroeconomic indicators of market volatil-

ity. Indeed, we suspect that any other simple model class that can convincingly fit and validate
the (near-linear in log-log scale) dependence of b(τ) with respect to τ should similarly express the
market characteristics within its model parameters.

Empirical results: Emergent phenomena in real-world data

Recall the dataset descriptors: Tint = 1 year; the sampling time interval of stock prices is 1 min-

ute; there are *251 business days in a year when the stock market is open from 9: 30 to 16: 00
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Fig 1. Empirically-estimated probability density function pτ(x) of ci,j(τ)s: The PDF defined in Eq (10) is visualized for

6 years—1 year per row: (a) Left: τ = 1 min to 1000 min and (b) Right: τ = 1000 min to 30000 min. For τ> τ0, the

normalized PDFs are invariant to τ (see Fig 2).

https://doi.org/10.1371/journal.pone.0298789.g001
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ET; for every day the market is open, each stock has *390 prices. For Tint = 1 year, each stock

has a*98000-length price series; the price series is arranged such that the closing price at 16:

00 ET on the current market day immediately precedes the opening price at 9: 30 ET on the

following market day. While volatility in after-hours trading may result in drastic price fluctu-

ations at particular indices in the series, an increasing τ has a smoothing effect on these spikes,

and we believe that the return correlation PDFs are not significantly affected by these gaps.

Results presented below are replicated for a shorter Tint = 3 months (see S1 File).

Functional form of the standardized partial correlation PDF is invariant

during a finite τ regime

We provide qualitative and quantitative evidence of the invariance of the functional form of

the standardized distribution for a finite regime 30000min > τ> 1000min. First, in Fig 2, we

plot the standardized histograms for 6 years (remaining years can be verified using the

attached codebase), by superimposing the functions ~ptð�Þ across different τ. Quantitative evi-

dence is provided next:

• Pairwise KL divergence between standardized partial correlation PDFs: For each year

from 2004 to 2020, we compute the KL divergence (KLD) between ~pt1ð�Þ and ~pt2ð�Þ, the stan-

dardized partial correlation PDFs computed with τ1 and τ2 respectively. We would like to

show that inside the regime where functional invariance was visually observed (1000min� τ
� 30000min), DKLð~pt1 jj~pt2Þ for any pair {τ1, τ2} is small compared to the KLD computed

between a pair of standardized PDFs for which τ is outside the scaling region. The pairwise

KL divergence between the standardized partial correlation PDFs across 6 evaluated years

are presented in Fig 3. The dark square block in the bottom right of each heatmap implies

that the KL divergence between any pair of standardized distributions sampled from the

region of τ specifying the functional invariance is low. In order to compute the KL diver-

gence in a consistent and comparable fashion, each standardized PDF is re-sampled

(N = 10000) using Gaussian smoothing, N ð0; 0:2Þ.

• Probing the onset of the function invariance using Gaussian Mixture Models and Kur-

tosis: We fit a Gaussian Mixture Model (GMM) (2-mode) on ~ptð�Þ and probe the weights

of the two components across τ. We expect to see a transition as the function invariance

sets in. As shown in Fig 4, initially, one mode is dominant, and as τ> 1000, the weights of

the two modes become comparable. Such transitions are observed with 3, 4, 5-mode fits as

well.

• Kurtosis of the density function with respect to τ: In Fig 5, we demonstrate the same tran-

sition (from τ< 1000min to τ> 1000min) by plotting the kurtosis of ~ptð�Þ with respect to τ.

When the invariance property takes effect, the kurtosis values suggest a corresponding tran-

sition from a leptokurtic (>3) to platykurtic (<3) regime.

The scaling behavior and its emergent properties

Motivated by the observed function invariance in the standardized distributions of the partial

return correlations, in Fig 6 we plot b(τ)—the precision (defined in Materials and Methods)—

as a function of τ for each year, 2004 to 2020, to find evidence of a scaling phenomenon.

Within the τ range where the invariance is identified (τ = 1000 min to 30000 min)—the regime

highlighted by light cyan, we observe a near-linear relationship between lnτ and lnb suggesting

a Stretched Exponential or Power law fit. Note that for very small values of 1min� τ�
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Fig 2. Qualitatively demonstrating the stability of the functional form for increasing τ: Standardized PDF ~pτð�Þ in

Eq (11) visualized for 6 years—1 year per row: (a) Left: τ = 1 min to 1000 min and (b) Right: τ = 1000 min to 30000

min. As τ exceeds 1000 min, the shape of ~ptð�Þ takes a more stable form. A similar analysis with Tint = 3 months is

presented in the Fig 5 in S1 File.

https://doi.org/10.1371/journal.pone.0298789.g002
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Fig 3. Pairwise KL divergence between standardized partial correlation PDFs for 6 years of analysis: Dark blocks along the major diagonal

(circumscribed in blue) indicate that when the invariance is visually observed (1000� τ� 30000), the pairwise KL divergence is low.

https://doi.org/10.1371/journal.pone.0298789.g003

Fig 4. Capturing the onset of function invariance by fitting 2-mode GMM onto the standardized partial correlation PDFs: Across 6 years of

analysis, we plot the weights of the 2 GMM components after fitting to ~ptð�Þ for different τ. Mode 1 corresponds to the mode with the lower

standard deviation. As τ is increases, the second mode starts contributing significantly to the fit signaling the onset (shaded cyan).

https://doi.org/10.1371/journal.pone.0298789.g004
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200min, the estimated pairwise correlations aren’t reliable due to Epps effect [27]. We now

evaluate these fits using Model Architecture Search (MAS).

Model architecture search

We consider 6 candidate regression models to fit the {τ, b(τ)} data samples from τ = 1000min

to 30000min: Linear, Polynomial (degree = 2,5), Exponential, Stretched Exponential, and

Power Law. A 4 − fold cross-validation setup is used: For every year between 2004 and 2020,

Fig 5. Leptokurtic-to-platykurtic kurtoses transition in the correlation PDFs as the scaling (shaded cyan) takes effect: The higher values of

kurtosis for smaller τ indicate sharper peaks in the correlation PDFs (compared to a normal distribution) (leptokurtic regime). As τ increases, the

correlation distribution becomes more flat resulting in lower kurtosis (platykurtic regime).

https://doi.org/10.1371/journal.pone.0298789.g005

Fig 6. Dependence of the scaling factor b(τ) on τ: (a) from 2004 to 2011; and (b) from 2012 to 2020. From τ = 1000 min to 30000 min (the regime

highlighted by light cyan), observe the near-linear relationship between lnτ and lnb. A similar visualization with Tint = 3 months is presented in the Fig

6 in S1 File.

https://doi.org/10.1371/journal.pone.0298789.g006
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we fit each candidate model on 75% of the samples and report the training and validation

Mean Squared Error (MSE) on the remaining 25%. Error bars indicate the standard deviation

of the MSE across the 4 folds. In the case of log-transformed target variables, the MSE is com-

puted in the original scale to ensure fair comparison. Fig 7 indicates that the Power Law and

Stretched Exponential models have the best fits among the candidates. When Tint = 1year, the

Stretched Exponential fit is slightly better. When Tint = 3months, the Power Law fit is margin-

ally better (see Fig 7 in S1 File).

Generative models

We have observed so far that real S&P500 data demonstrates a functional invariance in the

standardized distributions of the partial return correlations and an associated linear depen-

dence of the precision with respect to τ. Economists attempt to construct generative models to

explain these results in order to better characterize the consensus-forming taking place in the

stock market. A starting point—as noted in the Introduction—is the correlation graph of

inter-connected stocks, which reveals emergent stock communities for a return horizon τ> τ0

corresponding to industry sectors. These are shown in Fig 8.

Many generative models—such as the single- and multi-factor models—have been pro-

posed to explain these interactions by quantifying the pair-wise inter-stock interactions. We

show that these do not replicate the observed functional invariance and/or scaling behavior

and propose a suitable replacement—a modified Vicsek model—that is more promising.

Factor models

Single factor model. The conventional single-factor model [28] uses only the fluctuations

of the market mode and individual stock prices to model the correlations of return, i.e.,

riðtÞ ¼ ai þ bir0ðtÞ þ xiðtÞ ; ð14Þ

where r0(t) represents the market mode describing the overall fluctuation of the financial mar-

ket. In Eq (14), ξi(t) is the part not included in the market mode. In the one-factor model, ξi(t)
is a zero mean Gaussian distributed time series with hx

2

i i ¼ �
2
i and is independent of each

other and r0(t). In fact, we can derive the values of the correlation coefficients in the one-factor

Fig 7. Model architecture search—Training and validation MSE: The MSE (CI = σ between folds) is reported as a measure-of-fit of every model

for each year for {τ, b(τ)} samples within the identified τ regime. Observe that the Power Law and the Stretched Exponential fits consistently reports

lower validation MSE. Error bars are computed across 4 folds of cross-validation. Polynomial models demonstrate clear signs of overfitting while the

exponential model (β = 1) is only slightly worse than the best fits. A similar analysis with Tint = 3 months is presented in the Fig 7 in S1 File.

https://doi.org/10.1371/journal.pone.0298789.g007
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model: ρij = ρi0ρj0, and the residuals fci;jðtÞg
N
i;j¼1
¼ 0 in Eq (9). The standardized distribution

~ptð�Þ in Eq (11) reduces to the delta function (μ = 0, b(τ)!1) violating the structure of the

empirically observed correlation distribution.

Multi-Factor model. The MSTs of the pairwise stock correlations clearly show clustering

of stocks belonging to the same sector, and one can formulate a multi-factor model [29–31]

wherein we supply additional parameters that correspond to the individual sectors. Since the

computational models we are considering directly output returns (not the prices), one needs

to introduce an additional parameter to simulate the effect of time scale τ: by varying this

parameter, one can control whether the market mode dominates –drowning out the effect of

the sectors (as observed for small τ in real data)– or is suppressed, allowing the sector correla-

tions to emerge (as observed for large τ).

Consider K sectors in a market. The multi-factor model takes the form:

riðt; ~ZÞ ¼ ~a i þ
~birmarðtÞ þ

XK

k¼1

~g i;kr
sec
k ðtÞ þ ~x iðt; ~ZÞ; ð15Þ

where,

rmarðt þ DtÞ � rmarðtÞ � N ð0; 0:050� DtÞ; ð16Þ

rsecðt þ DtÞ � rsecðtÞ � N ð0; 0:10� DtÞ; ð17Þ

and, for i = 1, 2, . . ., N,

~x iðt; ~ZÞ≔
d
dt

~Xiðt; �Þ; ð18Þ

~X iðt þ Dt; tÞ≔N ð0; ~Z2 � DtÞ: ð19Þ

Here, N ðm; s2Þ is the Gaussian perturbation function and ~g i;k is non-zero when stock i
belongs to sector k and 0 otherwise. Additionally, the variance of market and sector returns are

set to 0.05 × Δt, and 0.10 × Δt respectively. Note that increasing ~Z corresponds to larger

Fig 8. MSTs with (left) τ = 1 min and (right) τ = 1000 min in 2004: The starting and end dates are Jan 1st and Dec 31st, respectively. Each vertex is

colored depending on its GICS sector. Edge weights are computed as: di;jðtÞ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � ri;jðtÞÞ

q
. Observe that for larger values of τ, stocks belonging to

the same sector cluster together.

https://doi.org/10.1371/journal.pone.0298789.g008
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perturbations of ~x iðtÞ in successive time steps. Thus it plays the role of 1/τ: a large ~Z implies

market-mode dominance and small ~Z, sector-mode dominance (see Figs 9 and 10).

We performed the numerical simulation of the multi-factor model with K = 2 sectors. We

set N = 500 and the number of stocks in each sector as 250. We swept ~Z in Eq (19) across multi-

ple values. The other parameters are set as follows: m~g ¼ 1:0, ~a i � N ð0:0; 1:0Þ,
~bi � N ð0:0; 1:0Þ, and ~g i;k � N ðm~g; 1:0Þ if stock i belongs to sector k and otherwise zero. In

Fig 9, we show the MSTs of the multi-factor models for ~Z ¼ 0:1; 10:0; 1000:0 and m~g ¼ 1:0.

Observe that for small ~Z, the stocks per sector belong in separate communities in the MST. As

~Z increases, the communities collapse.

In Fig 10, we plot the PDF pτ(�) in Eq. (Eq (10)) of the multi-factor model and standardized

PDF ~ptð�Þ in Eq (11). The following dynamics are observed: (a) For small ~Z—may correspond

to large τ—two peaks originate from two sector modes and one peak originates from the mar-

ket mode; (b) for moderate ~Z, the market mode dissipates and the two sector modes dominate

the distribution; and (c) for large ~Z, the return correlation distribution becomes random due

Fig 9. MSTs of the multi-factor models: The sector for each stock (node) is indicated by its color. We varied ~Z: (left) ~Z ¼ 0:1, (center) ~Z ¼ 10:0, and

(right) ~Z ¼ 1000:0. We set the number of steps 10000 and m~g ¼ 1:0. Observe for small ~Z, the sectors are separated into distinct groups in the MST—

similar to when τ is large. As ~Z increases, the groups lose identity and merge; i.e the sector information is devalued: a similar effect to when τ is small.

Precision in the edge weights is set to 1.

https://doi.org/10.1371/journal.pone.0298789.g009

Fig 10. PDFs for multi-factor models: (a) PDF p~Z ðxÞ in Eq (10) of the multi-factor model; (b) Standardized PDF ~p~Z ðxÞ in Eq (11). We set the

number of steps 10000 and m~g ¼ 1:0.

https://doi.org/10.1371/journal.pone.0298789.g010
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to large perturbations. The multi-factor model explicitly uses sector affiliation as a parameter

resulting in multi-modal correlation distributions. This multi-modal structure of ~ptð�Þ results

in the precision of return correlations b(τ) not scaling with τ.

Modified vicsek model

The Vicsek model is a generative model that can display some of the salient group characteris-

tics of swarming behavior, as observed in the motion patterns of flocks of birds and swarms of

fish. Compared to the multi-factor model where group assignments are provided in advance,

such assignments emerge naturally in the Viscek model: each particle in the swarm is influ-

enced by other particles that are within a neighborhood. Based on such local-only interactions,

long distance order emerges and groups of particles cluster together in their dynamical behav-

ior, akin to sectors emerging in stock markets.

Our model uses the standard setup [32] with the following modifications: (a) Consistent

with the factor model setup, the predicted variable is the return ri(t); (b) Particles (individual

stocks) move in R1 (rather than in R2); a stock’s offset from 0 is the return value. The proxim-

ity of one particle i to another j at time t is the absolute value of the difference of the returns |

ri(t) − rj(t)| rather than the typical cosine distance metric used inR2
; (c) Time steps are discre-

tized rather than continuous. The update step is:

airiðt þ DtÞ ¼ ðai � biDtÞriðtÞ

þ
gi

Ni;d

X

j:jriðtÞ� rjðtÞj<d

ðrjðtÞ � rjðt � DtÞÞ

þ Xiðt þ Dt; tÞ;

ð20Þ

where

Xiðt þ Dt; tÞ � N ð0:0; Z2DtÞ; ð21Þ

and Ni,δ is the number of elements j that satisfy |ri(t) − rj(t)|< δ. An extended derivation of the

Vicsek update step is presented in the S1 File.

Evaluating the Vicsek model under different parameter settings of δ, η: We next discuss

how parameters δ (radius of influence), and η (standard deviation of noise) -individually and

collaboratively—can play roles analogous to the return horizon parameter τ in the empirical

stock price data. In particular, we analyze the dependence of the distributions of correlation of

returns defined in Eq (20) on δ and η.

• Role of δ: The parameter δ plays a crucial role in determining the extent to which particles in

the model are influenced by their neighbors. We anticipate that very large values of δ lead to

substantial inter-particle influence, producing highly correlated return sequences, while very

small δ values result in independent particle behavior with little correlation. Thus, we would

expect small values of δ to lead to very small return correlations—akin to short return hori-

zons τ—and as δ is increased we expect pockets of correlated returns, just as sectors emerge

in the empirical data with increasing τ. Indeed, as shown in Fig 13, for intermediate values of

δ the precision follows a near-linear dependence in the log-log scale with respect to δ—a

scaling phenomenon.

• Role of η: Injected noise adds randomness to the trajectories of particles and together with

the radius of influence determined by δ, the noise level η facilitates the formation of distinct

pockets. In the absence of this noise and with a sufficiently wide radius of influence, particles

tend to merge into a unified group, exhibiting strong correlations with each other. Visual
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evidence illustrating this effect can be seen in the MST structure in Fig 11(a). As illustrated

in Fig 11(b) and 11(c), increasing the noise factor results in the formation of communities.

Of course if η is increased further, the vine structure will disintegrate.

Indeed, δ and η behave as duals of one another while influencing the distribution of the return
correlations: For example, increasing the noise in particle trajectory (η) has a similar effect to

decreasing each particle’s radius of influence (δ). Given these constraints, we look to discover a

scaling effect with respect to δ, η and functional invariance of ~pdð�Þ; ~pZð�Þ for intermediate δ, η
values. For simulations, we set N = 500, αi = γi = 1.0 and βi = 0.05 for i = 1, 2, . . ., N, and Δt = 1.0.

• Functional form of the correlation PDFs: In Fig 12, we present the standardized correlation

PDF p(�)(�) for various η values (on the left) and δ values (on the right) (compare with the

Fig 11. Minimum Spanning Trees (MSTs) obtained from the modified Vicsek generative model with varying η values: We generated MSTs using

the modified Vicsek generative model with different values of η: (a) η = 0.010, (b) η = 1.0, and (c) η = 100.0. The number of steps was set to 10000,

and δ was fixed at 0.10. For η = 100.0, the vine structure is apparent and we used these vines to define the analogs of sectors in stocks. In particular, we

performed a community finding on MST [33] corresponding to the vine structure, and identified 11 communities corresponding to the number of

GICS sectors. These communities indeed constitute individual vines, as shown by colored nodes in the right-most figure. Next we tracked the

associated stocks as η decreased based on the fixed δ condition. Notably, as η decreases, the sectors collapse due to the fixed neighborhood of δ, which

encourages more particles (stocks) to interact with one another. This increased interaction arises as the particles experience less perturbation from X,

leading to homogeneous behavior and radial MSTs.

https://doi.org/10.1371/journal.pone.0298789.g011

Fig 12. Standardized PDF for the Vicsek model: (a) Standardized PDF ~pZðxÞ in Eq (11) of the modified Vicsek model. Note that the subscript is

changed from τ to η. We set δ = 1.0 and the number of steps 10000. (b) Standardized PDF ~pdðxÞ in Eq (11) of the modified Vicsek model. Note that the

subscript is changed from τ to δ. We set η = 10.0 and the number of steps 10000.

https://doi.org/10.1371/journal.pone.0298789.g012
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empirical result in Fig 2). Notably, within a finite range of η and δ, we observe that the func-

tional form shows invariance properties similar to those observed in the empirical data.

• Scaling behavior with respect to η and δ: In Fig 13, we plot the relationship between the preci-

sion and each of the parameters η (left) and δ (right) keeping the other fixed (please refer to

Fig 6 for a comparison). We observe the scaling phenomenon for intermediate values of η
and δ. While at the extremes, particle trajectories are either completely uncorrelated (high η,

low δ) or globally correlated (low η, high δ), the range in between facilitates particles to be

locally correlated (akin to sectors—see Fig 11 (right)).

Concluding remarks

In this paper, we first observe that the standardized distributions of the partial correlation of

returns reaches an invariance for a finite range of τ. Second, within this τ regime, we demon-

strate a scaling phenomenon governing the precision of the raw distributions, b(τ), with

respect to τ—the investment horizon. We additionally review existing stochastic and genera-

tive factor models to show that they fail to model these observed emergent phenomena and

propose a modified Vicsek-inspired framework that is a more promising candidate. The scal-

ing behavior was demonstrated yearly from 2004 to 2020 on real stock price data sampled

every minute of trading hours.

The compelling presence of such a scaling phenomenon warrants investigating the role of

the model parameters that are crucial to the fit that explains the dependence of b(τ) on τ. Spe-

cifically, in the case of a Power Law fit, λ appears as a macro-economic indicator of market

health. A similar analysis on the Stretched Exponential fit—also a good fit of the {τ, b(τ)} data

in Fig 7—shows a similar effect with respect to the β parameter (see S1 File).

Fig 14 plots the scaling exponent across the 17 years of evaluation. The figure shows that λ’s

exhibit inter-annual variations, portraying a distinct linear decline from past to present, char-

acterized by intriguing anomalies (highlighted in cyan). We seek to make sense of this trend

and interpret its significance.

Fig 13. Visualizating the dependency of b(�) w.r.t (a) η and (b) δ: Observe a scaling phenomenon of b(�) with respect to η and δ as the empirically

observed trend in Fig 6: Number of steps = 10000. The highlighted region (in which) denotes the near-linear fit between b(�) and η, δ. For different

parameter settings, the near-linear fit in the log-log plot is visualized in cyan.

https://doi.org/10.1371/journal.pone.0298789.g013
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Setup

Recall that the standard deviation σ of the return correlations is proportional to τλ. To quantify

the change in standard deviation as we transition from a short-term (τI) to a long-term (τF)

investment horizon, we introduce a novel metric defined as follows:

RsðtI; tFÞ ¼
sðtFÞ � sðtIÞ

sðtFÞ
;

where σ(τF) and σ(τI) represent the standard deviations corresponding to the long-term (τF)

and short-term (τI) investment horizons, respectively. This measure captures the fractional

increase in the standard deviation from the short-term to the long-term. A large Rσ indicates

that the standard deviation of the return correlations in the short-term are much smaller than

in the long-term. A small Rσ suggests that the short- and long-term investment horizons look

statistically similar.

Using the scaling law, we get:

RlðtI; tFÞ ¼
tlF � t

l
I

tlF
¼ 1 �

tI

tF

� �l

;

where
tI
tF
2 ð0; 1Þ. Referring back to Fig 14, we observe empirically that λ 2 (0, 1).

Therefore, Rλ is an increasing function in λ. Given that we have noticed a consistent

decrease in the value of λ over the years, our focus now shifts to understanding the implications

of a corresponding declining trend in Rλ across years:

• Market Maturity: We first consider the y-intercepts depicted in Fig 6. Specifically, the values

of σ(τI) (which is 1/b(τI)) demonstrate a consistent and gradual increase from past to present,

while σ(τF) remains relatively constant across the same period. Consequently, the decreasing

trend in Rλ suggests that σ(τI) gets closer to σ(τF) every successive year. In more general

terms, the communities of stocks observed over longer investment horizon in earlier years
appear in shorter time horizons in later ones, a sign that investors are becoming increasingly
efficient and adept at identifying stock return patterns—a sign of market maturity.

• Global Financial Crises: We now consider the cyan-colored windows in Fig 14 correspond-

ing to two recent global crises—subprime mortgage crisis in 2008 and the COVID-19 pan-

demic in 2020. In these cases, λ dips significantly below the linear fit. As markets stabilized

Fig 14. Scaling exponent with respect to year: Values of λ from 2004 to 2020 with interval Tint = 1 year. The definition of λ is given in Eq (12). Error

bars are computed using 4-fold cross-validation while estimating the linear fit. In the blue highlighted regions, anomalies are observed where λ deviates

from the linear fit.

https://doi.org/10.1371/journal.pone.0298789.g014
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post the 2008 crisis, the λ values rebound to the linear trend. Since our data stops at 2020, it

remains to be seen whether a similar rebound will take effect.

In summary, the discovery of such scaling phenomena and its associated summary statistics

in the partial correlations of stock price returns adds to a growing body of work in macro-eco-

nomic modeling. By extending the qualitative observations of the variations in MST structure

to the correlations at large in a quantifiable manner, we demonstrate one robust path to probe

market health based on collective dynamics.

Supporting information

S1 File. Additional experiments and proofs. Reporting the Complementary Cumulative Dis-

tribution Functions (CCDF) of returns, scaling and function invariance for a 3-month invest-

ment horizon, an interpretation of the Stretched Exponential model, and a derivation of the

Vicsek model update rule.

(PDF)
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