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2, Gustavo Zampier dos Santos Lima3, Sergio

Roberto LopesID
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Abstract

Brain Complexity (BC) have successfully been applied to study the brain electroencephalo-

graphic signal (EEG) in health and disease. In this study, we employed recurrence entropy

to quantify BC associated with the neurophysiology of movement by comparing BC in both

resting state and cycling movement. We measured EEG in 24 healthy adults and placed the

electrodes on occipital, parietal, temporal and frontal sites on both the right and left sides of

the brain. We computed the recurrence entropy from EEG measurements during cycling

and resting states. Entropy is higher in the resting state than in the cycling state for all brain

regions analysed. This reduction in complexity is a result of the repetitive movements that

occur during cycling. These movements lead to continuous sensorial feedback, resulting in

reduced entropy and sensorimotor processing.

Introduction

Walking involves important cognitive processes governing neural networks incorporating sen-

sory information, motor planning, execution and sensorial feedback [1]. Whilst an essential

component of human life, this complexity is the reason our walking capacity is greatly sensitive

to ageing [2] and can be severely compromised in neurological disorders [3]. Compared to

walking, cycling comprises a cyclical and repetitive movement, consisting of the complete

rotation of the pedal axis around the central axis of the bicycle. While the motor planning and

execution of cycling might have similarities to the cortical control of walking, it is a less cogni-

tively demanding movement. For instance, the need for trunk balance is significantly reduced

when compared to walking [4]. This discrepancy motivated the investigation of the EEG signal

between the resting state, cycling and walking. Storzer et al. [5] contrasted the EEG dynamics

involved in cycling and walking in healthy volunteers. Both cycling and walking resulted in an
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Copyright: © 2024 Ferré et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data acquired in the

context of this study, the code used to generated

the results, figures and statistics in this article are

available in the Open Science Framework

repository at https://doi.org/10.17605/OSF.IO/

https://orcid.org/0000-0003-1748-4040
https://orcid.org/0000-0002-7049-4902
https://orcid.org/0000-0002-7248-3529
https://orcid.org/0000-0003-0853-1319
https://doi.org/10.1371/journal.pone.0298703
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298703&domain=pdf&date_stamp=2024-10-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298703&domain=pdf&date_stamp=2024-10-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298703&domain=pdf&date_stamp=2024-10-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298703&domain=pdf&date_stamp=2024-10-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298703&domain=pdf&date_stamp=2024-10-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298703&domain=pdf&date_stamp=2024-10-02
https://doi.org/10.1371/journal.pone.0298703
https://doi.org/10.1371/journal.pone.0298703
https://doi.org/10.1371/journal.pone.0298703
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17605/OSF.IO/CW87P


increased recruitment of cortical activity compared to resting state. Nevertheless, cycling

exhibited reduced recruitment for the execution of the movement and, therefore, correspond-

ing to simpler dynamics, compared to walking.

Changes in cortical neuron recruitment have been previously analysed with brain complex-

ity (BC) metrics derived from complex system science. Those studies provided insights into

processes in healthy individuals and a number of conditions [6]. One such metric is entropy,

which, when applied to gauge EEG signals, will provide a marker of the information encoded

in those, i.e. changes in neuronal recruitment will modify electrical signals recorded by each

electrode and that can be quantified with entropy. For example, a reduction in complexity is

evident during slow wave sleep or when the eyes are closed during wakefulness [7, 8]. Entropy

has also been proposed as a tool to distinguish the EEG of Parkinson’s disorder patients from

controls [9] and to identify the transitions from walking to freezing in such patients [10].

This study investigated BC, gauged by entropy, and its association with the neurophysiolog-

ical context during cycling in healthy volunteers. We contrasted the scalp electroencephalo-

gram (EEG) of individuals while cycling and at rest. Here we hypothesise that cycling itself

does reduce BC when compared to rest.

Materials and methods

Experimental setup

Sample. The sample consisted of 24 adult volunteers, 13 women (54%; mean age = 21.30;

SE = 0.49) and 11 men (46%; mean age = 21.63; SE = 0.87). We performed an assessment of

the subjects through an interview about the clinical conditions and measurements of blood

pressure and heart rate before the experiment. Subjects who reported any cardio-respiratory

or neurological disease or who had blood pressure values above 90 mmHg and 140 mmHg, for

diastolic and systolic blood pressure respectively, were excluded from the sample. We also

excluded individuals who showed artefacts in the recorded EEG. From the initial 24 individu-

als, 6 individuals were excluded. The excluded individuals showed erratic jumps in the electric

signal, which are typical artefacts that result from poor skin-electrode contact.

Legal and ethical aspects. The present study was analysed by the Research Ethics Com-

mittee (CEP) of Universidade Federal do Rio Grande do Norte, and approved under CAAE

02979318.0.0000.5537. In order to participate in our project, the volunteers expressed their

consent to participate in the research by signing the informed consent form (written consent)

according to the Helsinki Declaration. The study recruited participants from 1 March to 14

June 2019.

Procedure and electroencephalographic evaluation. We used electroencephalography to

acquire cortical electrical activity data, which records the electrical brain activity with elec-

trodes fixed to the individual’s scalp. Participants started with a 2-minute baseline rest period

sitting on the bicycle. Subsequently, they cycled continuously for 2 minutes. We acquired

those with both open and closed eyes to assess the effect of alpha rhythms on BC [11]. For sig-

nal acquisition, Ag-AgCl electrodes were positioned on the scalp according to the 10-20 sys-

tem. An electroencephalographic assembly was composed of eight electrodes in a bimodal

assembly, the following pairs being F3-Fz, F4-Fz, C3-Cz, C4-Cz, P3-Pz, P4-Pz, O1-A2 and

O2-A1. To facilitate the understanding, we named the electrodes as follows: F, C, P and O, in

addition to the left and right sides. For the placement of the electrodes, the subjects only had to

stop using hair creams on the day of the experiment to facilitate fixation of the EEG cap on the

scalp and data collection. An abrasive paste for skin asepsis was used in the fixation sites of

each electrode, and all electrodes were affixed with a conductive paste at each pre-established

site of the scalp.
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Data were collected at a sampling rate of 1000 Hz using a PowerLab 8/30 system (AdInstru-

ments, Australia). ECG data were recorded on a PowerLab 26T system. Both systems were

integrated, and the data wwere recorded using Labchart 7 Pro Software (AdInstruments, Aus-

tralia). Data were captured with a band-pass filter from 1 to 100 Hz. For analysis, a band-stop

filter of 59-61 Hz was applied to remove noise from the electrical network and, during cycling

activity, a band-pass filter of 3 to 35 Hz was applied.

The bicycle model. There are three main types of stationary bikes: horizontal, upright

and spinning. In this experiment we used a horizontal bicycle, which is generally used as a

form of aerobic exercise for cardiac rehabilitation, weight loss, and as a form of stress testing.

The horizontal bicycle reduces possible sensory interference and the risk of impacts for indi-

viduals who participate in the activity, such as the risk of falls. Moreover, the individuals

cycling in the horizontal bike are more stable and as a consequence the skin electrodes have a

better adhesion. In fact, the electrophysiology artefacts related to a weak skin electrode adhe-

sion have a great impact on the quality of the measurements [12]. The bicycle model used in

this project is the MAX-H by Dream Fitness (Brazil).

Data

From each individual, a total of 32 electrophysiologic recordings were obtained. These record-

ings correspond to eight electrode signals measured in four distinct behavioral states. The

eight electrodes correspond to the places O, P, F and C for right and left sides. Moreover, each

participant was registered at rest and cycling, with both open and closed eyes.

Entropy

Out of several complexity indices used to measure complexity of time series in previous

research, e.g. entropy, Lyapunov exponent, or fractal dimension [13–16], entropy is a long-

standing tool to explore complex phenomena [17] and can be defined according to the relation

in Eq 1.

S ¼
X

i

pi log pi ð1Þ

for pi a probability associated with the time series. In the original work of Shannon [18], the

probability is associated with information carried by the time series. In neuroscience literature,

the probability is usually related to the amplitude of the spectral representation of the signal

[19]. We computed entropy using the recurrence method [20, 21]. This novel technique has

been successfully employed to capture signal complexity by evaluating the periodicity of a time

series and recurrence analysis has been widely employed in dynamical systems research and

time series analyses [22], as it requires smaller data amounts to return reliable results [23, 24].

In our case, we split each electrophysiologic recording into 100 pieces to compute the recur-

rence indices.

Statistics

We evaluated the statistical significance of our results with general linear models (GLM),

because they are flexible and can handle a variety of data types and distributions, which is typi-

cal of EEG.

First, we assessed the effect of open and closed eyes on cortical entropy according to GLM1:

MedianEntropy* Eyes(Open/Closed) + (1|Subject). This first analysis was performed as a vali-

dation step and compared with previous results reported elsewhere.
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We then fitted a second general linear mixed effects model (GLMM) due to repeated mea-

sures considering the cycling effect according to GLMM2: MedianEntropy* State(Cycling/

Rest)*Eyes(Open/Closed) + (1|Subject).
The analyses were performed with R version 4.3.2 [25] and auxiliary packages [26, 27]. In

both cases, the statistical significance of the variables of interest was evaluated with two-sided

10,000 repetitions permutation tests as they require fewer assumptions regarding the samples

and their distributions [28]. We established α = 0.05 as the significance level.

Results

Reduced cortical entropy with eyes closed

To validate the recurrence entropy methodology, we compared the signal complexity in a

region of the brain where we expect a strong signal response. The entropy of the electrode sig-

nal from the right side of the occipital region is shown in Fig 1. In this situation, all individuals

Fig 1. Variation of median entropy with closed eyes. A reduced cortical entropy is associated with closed eyes; the variation is statistically significant

as evaluated with the GLM1: MedianEntropy* Eyes(Open/Closed) + (1|Subject) and a two-sided 10,000 repetitions permutation test.

https://doi.org/10.1371/journal.pone.0298703.g001
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are at rest, and we just compared eyes open and closed. The open eye shows larger entropy

compared to closed eyes t(16) = −2.657; p = 0.015.

Cycling is associated with reduced cortical entropy

We then analysed the effect of cycling in the EEG signal. The cycling state shows lower entropy

when compared with the resting state for left and right central (t = −3.824; p = 0.001), left and

right frontal (t = −3.617; p = 0.001 and t = −2.164; p = 0.042, respectively), left and right occipi-

tal (t = −3.337; p = 0.002 and t = −2.901; p = 0.006, respectively), and left and right parietal (t =

−4.754; p< 0.001 and t = −2.497; p = 0.018, respectively) regions, shown in Fig 2A.

Fig 2. Variation of median entropy with cycling. a) A reduced cortical entropy is associated with cycling. b) Measures for closed and open eyes

session. A reduced cortical entropy is also associated with interaction between cycling and having one’s eyes closed. Reported values are statistically

significant as evaluated with the GLMM2: MedianEntropy* State(Cycling/Rest)*Eyes(Open/Closed) + (1|Subject) and a two-sided 10,000 repetitions

permutation test.

https://doi.org/10.1371/journal.pone.0298703.g002
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Reduced cortical entropy whilst cycling with closed eyes

To evaluate the effect of cycling with closed eyes, we have also analysed the interaction term

for our model for closed eyes and cycling. The cycling state with eyes closed shows lower

entropy for right occipital (t = 2.090; p = 0.045) and left parietal (t = −2.994; p = 0.006) regions,

shown in Fig 2B. A topographic plot with the entropy profile for the four different scenarios is

shown in Fig 3.

Discussion

We applied recurrence entropy [20, 21] as a measure of complexity to assess changes in cortical

electrophysiological activity associated with distinct brain functional states. The methodology

for estimating signal complexity via entropy of recurrence was initially validated using the

electrophysiological signal of the occipital region and comparing the signal entropy between

open-eyes and closed-eyes. The result showed a reduction in entropy in the closed-eyes condi-

tion. It is known that the open-eyes condition allows retinal light detection which leads to neu-

ral activity in the occipital region responsible for processing visual information, that is

represented by desynchronised neuronal activity. When we close our eyes and thus prevent

light stimuli, an intrinsic neural activity of the thalamus-cortex circuit dominates the signal

with a predominant frequency between 8 and 12 Hz, known as the alpha rhythm [11, 29, 30].

Our results suggest that the complexity measurement we propose is capable of distinguishing

both: a synchronised pattern with lower entropy (closed eyes) and a desynchronised pattern

with higher entropy (open eyes).

The aim of our study was to evaluate electrophysiological changes between rest and cycling

conditions. Using the same recurrence entropy, we showed that the neural complexity is lower

during the cycling behavior when compared to the resting state. This reduction in entropy was

observed with greater predominance in the anterior areas of the brain, especially in the frontal

area. We suggest that the observed entropy reduction is associated with an increase in cortical

synchronization due to the increase of sensory feedback originating from the lower limbs as a

result of flexion and extension repetitive movements that alternately occur during cycling. Our

results are in line with those from Storzer et al. [5], who demonstrated a different pattern in

the dynamics of neuronal oscillation in the cortex associated with walking and cycling behav-

iors compared to the resting state. Cycling behavior reduces the neuronal activity at high fre-

quencies, in the beta band range (20 to 30 Hz) during the movement, followed by a rebound of

this beta activity when exercise terminates [5]. In this way, decreased beta band power has

been linked to an active neural state in the sensorimotor cortex that is associated with an

increase in cortical excitability [31]. Furthermore, it has been shown that the beta power

remains suppressed during continuous movements [32], but it is maintained in isometric and

sustained movements [33, 34]. As the cycling is continuous, this movement may cause a stron-

ger decrease in beta power, and it would explain the entropy reduction found in our study.

Spectral analysis is widely used by neuroscientists and indeed the identification of brain

waves is built upon frequency bands [35]. Nevertheless, this technique has some important

drawbacks, for example the dependence on noise that pollutes the frequency spectrum, often

making it difficult to identify the dominant frequencies [36]. In addition, the EEG signal is

non-linear and non-stationary with a high degree of complexity [37]. Therefore, the use of the

Fourier transform is not entirely appropriate [7]. Furthermore, the spectral analysis is depen-

dent on some arbitrary factors of choice: the size and shape of the window to analyse the signal

and the type of base used. We point out that the basis of sines and cosines associated with the

Fourier transform is the most common basis, but the Wavelet transforms open the way to

many alternative bases [38]. In recent years, with the availability of mathematical tools based
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Fig 3. Topographic plots for median entropy on F3-Fz, F4-Fz, C3-Cz, C4-Cz, P3-Pz, P4-Pz, O1-A2 and O2-A1 electrodes. The profiles show a

reduction in entropy figures for eyes closed and cycling states—with the lowest values registered for cycling with eyes closed.

https://doi.org/10.1371/journal.pone.0298703.g003
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on complexity theories [15, 16], we have observed the use of entropy-based approaches as a

strategy for nonlinear EEG analysis to provide independent and complementary measure-

ments to conventional EEG spectral analysis, and with this, it has been possible to characterise

these entropy measures with discrete changes in behavioral states [6, 39]. In this context, the

recurrence entropy is a tool that directly uses the time series, without the need for preprocess-

ing involving spectral analysis, to estimate the complexity of an electrophysiological signal.

In addition to exploring how cycling interferes with the complexity of brain electrophysiol-

ogy in healthy individuals, our motivation for performing this study is based on recent

research which demonstrated that cycling instantly decreases Parkinson’s disease (PD) motor

signals while PD patients suffering from difficulties in walking and freezing of gait ride a bicy-

cle [40]. The degeneration in the substantia nigra, the hallmark of PD, can lead to the inability

to take a step associated with short steps that normally occur at the beginning of gait or when

turning during walking, greatly impairing the mobility of patients, and resulting in the

increased risk of falls and drastically reducing their quality of life [41]. As additional impacts,

dynamic cycling increases sensory input to the motor control of movement in Parkinson’s dis-

ease patients, which may be related to improvements in motor speed and quality [42]. In future

work, we intend to use this technique to assess brain complexity in different cycling condi-

tions, such as cycling on horizontal and vertical stationary bicycles or cycling in a virtual reality

environment. Furthermore, we aim to study the brain complexity of healthy, proficient and

non-proficient cyclists and PD patients, using a stationary bicycle as a tool.

Conclusion

Our results clearly indicate that the entropy of neuronal activity in the human adult cortex

decreases during cycling movements. This reduction in complexity is due to the repetitive

movements that occur during cycling, which may cause continuous sensory feedback, result-

ing in less entropy and sensorimotor processing.
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