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Abstract

Environmental toxicants overwhelmingly occur together as mixtures. The variety of possible

chemical interactions makes it difficult to predict the danger of the mixture. In this work, we

propose the novel Reflected Generalized Concentration Addition (RGCA), a piece-wise,

geometric technique for sigmoidal dose-responsed inverse functions that extends the use of

generalized concentration addition (GCA) for 3+ parameter models. Since experimental

tests of all relevant mixtures is costly and intractable, we rely only on the individual chemical

dose responses. Additionally, RGCA enhances the classical two-step model for the cumula-

tive effects of mixtures, which assumes a combination of GCA and independent action (IA).

We explore how various clustering methods can dramatically improve predictions. We com-

pare our technique to the IA, CA, and GCA models and show in a simulation study that the

two-step approach performs well under a variety of true models. We then apply our method

to a challenging data set of individual chemical and mixture responses where the target is

an androgen receptor (Tox21 AR-luc). Our results show significantly improved predictions

for larger mixtures. Our work complements ongoing efforts to predict environmental expo-

sure to various chemicals and offers a starting point for combining different exposure predic-

tions to quantify a total risk to health.

1 Introduction

For many years, the field of toxicology focused on understanding how individual chemicals

affect biological systems. However, it has become clear in recent years that individual chemi-

cals can have a cumulative effect: exposure to safe levels of multiple chemicals can be toxic in

aggregate [1, 2]. Even worse, durable “forever” chemicals accumulate in the environment and

contribute to the growing list of chemicals people are exposed to every day [3]. Hence, being

able to predict the toxicity of a mixture has moved from being an esoteric toxicological puzzle

to an urgent challenge to understand looming health risks.

Mixture prediction is mainly a logistical problem for standard toxicology methods. For

example, for a set of 10 chemicals, there are more than a thousand combinations of drugs, and

for each of those combinations there are countless ways to set the relative concentrations. How
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does one go about collecting all that data at reasonable cost, and what is to be done if a new

chemical is added to the list? Realistically, there are thousands of chemicals that could poten-

tially contribute to a mixture, so an experimental approach is infeasible. Recent spatial expo-

sure maps such as those created in [4] also illustrate the variety of mixtures that people across

the country are exposed to and present a compelling use-case for a predictive model. An obser-

vational study may seem like a natural work-around to the cost of experiments, but data collec-

tion is still tricky and multicollinearity makes the analysis difficult [5]. For these reasons, we

focus on methodology that can predict a mixture effect directly from the individual chemical

properties rather than a regression approach which requires experimental observations to fit a

model.

The two most popular classical methods for predicting a mixture are concentration addi-

tion [6] and independent action [7]. Concentration addition (CA) models a mixture of chemi-

cals as if they were different amounts of the same molecule; concentrations are scaled relative

to their potency and added together as the name implies. The biological assumption is that all

mixture components have the same mode of action. In contrast, independent action (IA) [8]

assumes all modes of action are different, so a series of chemical responses can be added after

an appropriate relative scaling. This is response addition, in contrast to the doses being scaled

and added as in CA. Both models assume the chemicals are additive and do not synergize, a

shortcoming that is not addressed in this work.

Often, neither CA nor IA is accurate [7], and a number of methods offer a middle path.

Two-step or joint models such as those used in [9–11] apply CA to chemicals assumed to have

similar modes of action and IA to combine the effects from different modes of action. Mode of

action is not always known and quantitative structure-activity relationships (QSAR) can be

used to inform the joint procedure [12, 13], but the relevant QSARs have to be selected either

by an expert or through a procedure fitted to an observed mixture response. When the mixture

response is available, techniques such as fuzzy membership models [14, 15] and integrated

two-step models [16] can also be applied, but as mentioned we wish to avoid the implied

experimental constraint.

When applying a two-step method, it is desirable to use the most accurate models for the

individual dose responses. CA requires all chemical to have equal maximum effects. General-

ized concentration addition (GCA) is a powerful extension of CA [17] that can account for

partial agonists, or chemicals that are less effective than others and serve to antagonize large

effects if present at high concentrations. GCA requires strong simplifying assumptions to

model individual dose effects, so [18] present an alternative to GCA that allows for more com-

plex models by fixing the toxic effect of partial agonists at higher concentrations. While they

have reasonably good empirical results, their algorithm is essentially making the same compro-

mise as GCA: the true sill parameter is sacrificed to correctly model the slope parameter that is

ignored in GCA.

We propose a new technique that provides uncertainty quantification and generalizes the

approach of GCA when the individual toxic responses are modeled with a three-parameter

Hill or logistic function. The parameters represent a maximum effect, a dose to reach 50% of

the maximum effect, and a slope, and our method allows for all three parameters to vary in

contrast to the fixed slope value of 1 required by GCA. A key observation is that the standard

case with unit slope exhibits symmetry that can be applied in the general case by defining an

inverse based on reflection in a piecewise fashion. Like GCA, there is an option to use this

inverse within a two-step framework where chemicals can be grouped together. Chemicals

within a group are combined into a single effective response with GCA and then the responses

are combined with IA.
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The rest of this paper is organized as follows. In section 2 we describe the details of our

method, including the Bayesian model, the reflection argument for extending the inverse, and

possible implementations of the two-step model with uncertainty quantification. In section 2.5

we describe the motivating mixtures problem with data from the Tox21 database [19]. In sec-

tion 3 we describe the results of our method both on simulated data and on the real data,

including diagnostics for the parameter estimation procedures. Section 4 concludes with a dis-

cussion and areas of improvement. Technical details are left to the supplement.

2 Materials and methods

Our goal in this work is to create a tool that can predict the toxicity of an arbitrary collection

of chemicals for a specific assay. This is in contrast to a model that is fit to a specific mixture

using the empirical mixture response. This means our first step is to fit a model to each indi-

vidual chemical for the assay of interest. We then want to use the set of individual models to

predict the mixture effect with uncertainty quantification, and when possible, validate against

empirical data. A summary of our approach is shown as pseudocode in Algorithm 1.

Algorithm 1: Toxicological Mixture Prediction Algorithm
Data: Individual dose response data (cik, rijk) for chemicals i 2 1: N,

replicate j, and concentration k, Mixture dose C with component
doses c1, . . ., cN

Result: (Step 1) Individual dose-response curve parameters and
uncertainty;

(2) Cluster assignment for
dose-response groups;
(3) Total Mixture dose-response predictions Rmix (Step 1:) Estimate the
individual fixed and random effect parameters for S1 Eq 7 using the
BHM of S2.1 Section in S1 File

rijk ¼
ai þ uij

1þ
�
yi
ck

�bi
þ vij þ �ijk

(Step 2:) Compute grouping, if not random: K-means, sill, etc.
(Step 3a): Sample Parameters
for b  1 to B do
Generate a random cluster assignment or use computed cluster: denote
the grouping as Gb with Kb clusters;
Sample the remaining parameters αb = α1b:Nb, etc, from the BHM

posterior;
Let Pb ¼ fGb; ab;bb; yb;ub;vbg represent a set of parameters for the b’th
sampled curve

end
(Step 3b:) Predict Response
foreach Pb with b  1 to B do
Input: Mixture dose C = (c1, . . ., cN)
for Cluster k  1 to Kb do
Calculate the group response for the bth sample curve Rb,k via RGCA
using Eq 6 for the inverse f � 1

i ;

arg min
Rb;k

�
�
�
�
�

X

q2Qk

cq=f
� 1

q ðRb;kÞ � 1

�
�
�
�
�

end
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Do Calculate total mixture response for the sampled parameters
Rb ¼ amaxð1 �

QK
ki¼1
ð1 � fkiðCki

Þ=amaxÞÞ, Eq 3, using fk(Ck) = Rb,k from the previ-
ous step
end
Output: Median, 5th, and 95th quantiles for the collection {Rb} as the

estimated mixture response Rmix and uncertainty

This section is structured as follows. Section 2.1 reviews the standard methods of Indepen-

dent Action (IA) and Generalized Concentration Addition (GCA) and how they are combined

into a two-step method. A novel extension to GCA is illustrated in Section 2.2, which we call

reflected GCA (RGCA). This device is necessary when applying GCA or CA for slope values

different than 1 and can also be used in a two-step method. The two-step approach requires

parameter estimates and clustering, so the novel extension is followed by a description of the

statistical models used for fitting in Section 2.3 and the interpretation of clustering in Section

2.4. Some information is provided about the motivating data for this work in Section 2.5 and

we conclude with comments about simulation and validation in Section 2.6.

2.1 GCA, IA, and the two-step model

In our notation, r is a response, c a concentration of a chemical, α a maximum response or

effect, θ the concentration to reach 50% of the maximum effect or EC50, and β the slope. An

upper case letter R or C represents the response or concentration of a mixture. Indexing such

as ri represents the i’th response out of a collection of N chemicals, while Ri represents the

response of a mixture of chemicals with index depending on context. An index b = 1, . . ., B
refers to a sample from the Bayesian posterior where we take B total samples. As summarized

in Algorithm 1, Rb refers to the complete mixture response for a particular set of parameters

Pb, Rb,k refers to the response of the kth subcluster for Pb, and Rmix refers to the final estimate

of the mixture response. In this work we assume a Hill function for a toxic response:

r ¼ f ðcja; y; bÞ ¼
a

1þ
� y

x

�b ð1Þ

The standard version of GCA is derived from concentration addition in [17]. The great

advantage of this technique over CA is the ability to make realistic predictions in the case

where one chemical has a smaller maximum effect than another. Theoretically, we expect that

at high concentrations, the less toxic chemical actually prevents some of the damage from the

more effective toxicant. This is the type of antagonism that GCA models, as we will illustrate.

The GCA equation for a mixture of two chemicals is written:

½A�
f � 1
A ðRÞ

þ
½B�

f � 1
B ðRÞ

¼ 1 ð2Þ

Their method is very flexible in terms of the choice of f, the toxic response function, but

they mainly work with the Hill model and we build on this specific case.

Recall that a two-step model in our context means that we cluster a set of chemicals and use

GCA within clusters as step 1 and assume independent action (IA) across clusters as step 2. Eq

3 expresses IA when the index k corresponds to a single chemical and expresses the two-step

model when k corresponds to the k’th set of chemicals. Note the introduction of the parameter
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αmax = maxi αi which rescales the final prediction to the highest observed individual response.

R ¼ amaxð1 �
YK

k¼1

ð1 �
fkðCkÞ

amax
ÞÞ ð3Þ

Existing theory suggests that chemicals with the same mode of action are expected to obey

CA, while chemicals that have unrelated molecular targets are assumed to obey IA [7]. Unfor-

tunately, mode of action is not well understood for many chemicals. Hence we compare the

effectiveness of several clustering methods, including no clustering, for our two-step method-

ology. For completeness we also apply CA, using the same scaling idea that IA applies by reset-

ting all sills to 1, computing the combined effect, and then mutliplying by the largest sill. The

slope parameters for CA do not have to be 1 as in GCA.

2.2 Reflected GCA

We now make a few observations about the Hill function. First, note that aside for a few special

values for β like 1 and 1/2, the inverse is not a real number for large values of r:

c ¼ f � 1ðrja; y; bÞ ¼
y

a

r
� 1

� �1=b ð4Þ

An imaginary component makes the resulting estimate difficult to use and interpret [20].

Next, when β = 1, we have a formula describing a hyperbola:

c ¼ f � 1ðrja; y;b ¼ 1Þ ¼
y

a

r
� 1

� �
ð5Þ

Studying either the plot or the formula, we make the key observation that we can reflect

along the axes x = −θ and y = α to recover the “negative concentration” portion of the graph.

This symmetry is a property of hyperbolic functions and illustrated below in Fig 1. The exis-

tence of the Hill function for response values above the sill is what makes GCA possible, since

this region returns negative concentrations to yield the partial agonist response for large

effects.

There is also a secondary symmetry that is crucial for full generality of our proposed

approach. Focusing on the continuous portion of the curve that includes positive concentra-

tions (Fig 1, pink box), there is a symmetry between the segment before and after the origin

(x = y = 0). This region of symmetry is bounded by the reflection axes and X-Y axes as illus-

trated in Fig 1 with the pink and blue boxes. This additional symmetry is relevant for two rea-

sons. First, the negative reflected component (teal line) of the defined curve (green line)

described earlier does not extend across the full negative support (purple line). By reflection,

the maximum defined effect is only two times the sill, so if some other chemical in the mixture

has a maximum effect above this threshold, there is no defined value. Hence, we need to define

the extension (red line) and reflect it as well (purple line). The second reason the extension is

necessary is because the sill parameter in the observed dose-response can be negative. In this

case, the relevant portion for inversion at positive effects is the extension shown as the red line,

since the entire curve is flipped across the X-axis.

Our first novel contribution is to apply this reflection argument when the slope parameter β
is not 1. The inverse function is specified for this domain differently from the regular inverse

and the derivation is provided in the next section, resulting in Eq 6 when α> 0. Similar
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equations hold for the case α< 0 with appropriate sign changes for each region, see the

supplement.

This inverse provides a wide enough support to satisfy the invertibility requirements of Eq

2, so we now have the ability to apply GCA to Hill models with non-unit slopes.

2.2.1 Derivation of RGCA. Here, we derive how to extend GCA to non-unit slopes. To

ensure RGCA is a valid function that is fully-defined across the real-number domain, we utilize

geometric techniques such as reflections, extensions, and substitutions. Starting with the three

parameter Hill model in Eq 1 and its inverse, we define three additional functions as combina-

tions of reflections and extensions.

Reflection. The first function is a reflection (teal line, Fig 1) along the axes defined by the

parameters x = −θ and y = α. The calculations are straightforward since the axes are parallel to

the standard X and Y axes. We first subtract the offset for each axis, then negate the sign for

the corresponding variable, and then add back the offset. We represent the concentration as c
and the reflected concentration as c0, and similarly for the response r and r0:

c0 ¼ ð� yÞ � ðc � ð� yÞÞ ¼ � 2y � x

r0 ¼ a � ðr � aÞ ¼ 2a � r

Fig 1. Hill function symmetry. Reflections can be used to extend the Hill function with a slope 6¼1 in green to match the support of the standard GCA

case, shown as a dashed black line. The green line (RGCA) has parameters (Sill, EC50, Slope) = (0.9, 0.5, 0.5 while the shadow lines have slope values

ranging from 0.1 to 4. The teal line is acquired by reflecting the green segment across the vertical line Y = -EC50(Intermediate step, gray) and then

across the horizontal line X = Sill. The Extension (red line) is found by flipping the pink box containing the RGCA line across the diagonal Y = -X (not

shown) and using the EC50 value as the effective sill. The Reflected Extension (purple line) is found by the same procedure as the Reflection (teal) line,

starting with the Extension (red) line.

https://doi.org/10.1371/journal.pone.0298687.g001
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To provide the inverse, we just plug in the new (c0, r0) into the relation f−1(r) = c:

� 2y � c ¼ f � 1ð2a � rÞ ) c ¼ � 2y � y

 
a

2a � r
� 1

!� 1=b

Extension. Next we extend (red line, Fig 1) the Hill function to negative values of c between

the origin and the asymptote c = −θ. The key observation is that, while it is not a direct reflec-

tion along an axis like y = x, it can be thought of as a separate Hill function where the role of

the sill and EC50 have been reversed along with c and r. Hence, the standard Hill function

becomes the inverse, where the two parameters are swapped and the new sill (previously the

EC50) and input response are negated to account for the sign change of the support. While it is

necessary to use the EC50 as the sill (so that there is a vertical asymptote at c = −θ), it is not nec-

essary to use the sill as the new EC50.

c ¼ f � 1

ext ðrÞ ¼
� y

1þ a

� r

� �b ; r ¼ fextðcÞ ¼ � a

 
� y

c
� 1

!� 1=b

Here the equation for x as a function of response R has the form of a Hill function with slope β
even though it represents the inverse; the equation for the response R as a function of c has the

form of the Hill inverse. Finally we create a smooth transition by inverting the slope parameter

to match the slope of the adjacent segment:

c ¼ f � 1

ext ðrÞ ¼
� y

1þ a

� r

� �1=b

If the slope is not inverted, the resulting curve will have a non-smooth kink at 0 and lead to sit-

uations where there is no solution to the RGCA equation.

Reflected Extension. Finally, we reflect the extension we just derived over the axes x = −θ
and y = α (purple line, Fig 1). The method is the same as before so we plug c0 and r0 into

f � 1
ext ðrÞ ¼ c

� 2y � c ¼ f � 1

ext ð2a � rÞ ) c ¼ � 2yþ
y

1þ a

r� 2a

� �1=b

Combined Inverse. Putting the pieces together, we have a piecewise inverse for the four

domains:

c ¼ f � 1ðrja > 0; y;b > 0Þ ¼

� y

1þ ð
� a

r
Þ

1=b
r 2 ð� 1; 0Þ

yð
a

r
� 1Þ

� 1=b r 2 ½0; aÞ

� 2y � y

 
a

2a � r
� 1

!� 1=b

r 2 ða; 2aÞ

� 2yþ
y

1þ ð
a

r � 2a
Þ

1=b
r 2 ð2a;1Þ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð6Þ

The resulting inverse maintains a coarse hyperbolic shape and continuity and is smooth at the
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transitions. This procedure is not limited to the Hill function and can be applied to any mono-

tonic dose response function, but the resulting stability may vary. Note that negative slope

parameters for the Hill function are not supported. The negative sill case α< 0 is shown in the

appendix for completeness.

2.2.2 Limitations. An important property of GCA that partially carries over to RGCA is

the existence and uniqueness of a solution. This means that a set of chemicals with arbitrary

sill and EC50 values will have a single solution for the equivalent response r in Eq 2. This stabil-

ity is due to the fact that slope values are fixed to 1, and that it is extremely unlikely that the

sills and EC50 values will perfectly balance out. In the case of RGCA, it is possible that the solu-

tion may not be unique if any chemical’s sill is negative.

A proof sketch for the existence and uniqueness of the GCA solution is provided in the sup-

plementary material. RGCA has a provable and unique solution when all of the chemicals have

positive sill value, which is applicable across a wide variety of problems in mixtures toxicology.

The problem for RGCA arises when the slope values are not all 1 and some sill values are nega-

tive. In this case there can be a “battle” where one chemical dominates in one region and

Fig 2. Multiple solutions with RGCA. Isobologram (A) with inset plots showing curves used to solve RGCA based on Eq 2. The isobologram shows

lines of equal mixture effect for different concentrations of two chemicals. In each inset plot, the line for chemical 1 represents the term ½A�=f � 1
A ðRÞ and

similarly for chemical 2, while the line for Mix represents the sum of chemicals 1 and 2 under the assumption that the concentrations [A] and [B]

correspond to the point shown in the isobologram. A solution for the mixture corresponds to the Mix line intersecting the horizontal dotted line at

x = 1, representing the right side of Eq 2. The solution in the subplots equals the value for the contour line in the isobologram. Chemical 1 in yellow has

parameters (Sill, EC50, slope) = (1, -2, 1.5) while chemical 2 in green has parameters (0.6, 1, 1). Plot (E) with concentrations (c1, c2) = (4, 3) is

comparable to GCA, while the lower plots show a progression from one to three solutions and a corresponding phase change in the isobologram caused

by the bifurcation. With enough of chemical 1, the predicted mixture response is either near zero or negative.

https://doi.org/10.1371/journal.pone.0298687.g002
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another chemical dominates in another. This complex behavior is shown in Fig 2, which

shows an isobole plot (A) for two chemicals with a clear change in appearance near the bottom

half. Chemical one (C1) has (sill, slope, EC50) of (-2, 1.5, 1) and chemical two (C2) has parame-

ters (1, 1, 0.6). The four smaller inset plots, B to E, show RGCA coefficients 1=f � 1
i ðRÞ from Eq

2 for specific concentrations pointed out by the black lines. The dotted horizontal lines in each

inset plot represents 1, the intersection of which provides the solution and matches the value

of the contour in the isobole plot. Plot (E) in the top right for concentrations (c1 = 4, c2 = 3)

are similar to the result of GCA, which always has one solution. The bottom plot progression

(B,C,D) shows how the RGCA solution changes from one unique value to three unique values

as the proportion of chemical 1 to the total mixture increases. With chemical 2 at a fixed con-

centration, chemical 1 becomes the primary driver of the mixture and introduces a negative

response. The boundary between regions is a bifurcation point where there is just enough

chemical 1 to create a second solution (but not a third). Mathematically, the additional solu-

tions are just the result of the slope parameters determining the rate at which particular func-

tions go to zero or infinity.

Numerical precision can be an issue. For example, in the bottom right inset plot for (c1 = 4,

c2 = 2), a local optima at the positive boundary or a negative optima may be found rather than

the true positive optima near the origin. This is the reason for the denser region in the lower

half of Fig 2. Similar patterns can be seen in S1 Fig in S1 File in the supplement. Extending to

larger mixtures is expected to yield similar results, as all positive sill terms can be added

together and likewise for negative terms, reducing to the binary case shown.

In summary, when the sills of the chemicals are different signs, some combinations of

parameters lead to multiple solutions. Fig 2 suggests a linear boundary beyond which multiple

solutions and numerical issues may be a problem, but a general formula for when there are

three solutions does not appear tractable. To avoid ambiguity, we could choose to always select

the positive solution if available, but it is not clear that a positive solution near 0 is more correct

than a negative solution with larger magnitude. Since the numerical issues are difficult to pre-

dict, our recommendation is to simply note any optimization messages or errors when using

this method.

2.3 Bayesian data model

As illustrated in Fig 3, chemicals have replicates and high variability between replicates. We

express the Hill function as a statistical model by introducing random effect and noise terms

(u, v, �) and use additional indices to track the chemical (i) and replicate (j) and concentration

sample (k):

Rijk ¼
ai þ uij

1þ

 
yi
xk

!bj
þ vij þ �ijk

ð7Þ

The noise term � represents the standard assumption of independent and identically dis-

tributed Gaussian noise and allows for negative values of the response R, which are observed

in the data even though we might presume that negative effects are unrealistic. The term uij is

a random effect that accounts for the replicates having variable maximum effects. The vij term

acts as a y-intercept random effect; naturally when the concentration is 0 we expect a response

of 0, but due to the data collection procedure this is not guaranteed.
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Since this model does not have a closed form solution for the parameter estimates, and we

care about the uncertainty in the estimates, we fit a Bayesian model using Markov Chain

Monte Carlo, see [21] for a full reference. Note that the variance of the noise term is specified

for each chemical rather than globally. This was done for two reasons: there are at least three

replicates for each chemical, and a global variance parameter can be influenced by a chemical

with a large sill, while chemicals with small but noticeable effects will get treated as noise.

Using 25,000 iterations, posterior estimates of the parameters are found using a burn-in of

5000 and thinning the remaining 20,000 iterations by taking every 20th sample and then taking

the median as a robust estimate of the center of the distribution. For sampling curves, we sam-

ple directly from the thinned set of posterior samples as described below in section 2.1. The

priors for the main parameters are Gaussian with mean 0 and variance 200 for the sill, Gamma

with mean and variance 1 for the slope, and Gamma with mean 1 and variance 100 for the

EC50, respectively. The sill and EC50 priors are weakly informative to avoid absurdly large val-

ues when the dose response curve is incomplete [22]. The slope parameters are given Gamma

priors centered at 1 because our method requires a positive slope and a center of 1 reflects the

baseline assumption from GCA. The full model specification is in the Supplement, S2 Section

in S1 File, and R code is available on Github.

An immediate concern may be that our model does not allow for a null or no-effect chemi-

cal. This is a deliberate choice. In the context of CA, the natural thing to do is to assume

extreme parameters, such as a very small sill, a very large EC50, and fix the slope to 1, or simply

ignore the no-effect chemicals. We make an assumption that all chemicals are relevant so we

do not want to throw any out. We also intend to use the slope parameter for clustering, so the

Fig 3. Examples of Tox21 data. Example dose response curves from the Tox21 data set with chemical name (CAS number). Clockwise from the top

left, each plot shows replicates exhibiting: no effect, a random intercept effect, a random sill effect, and a consistent response without random effects. Eq

7 can account for all of the random effects, but we do not explicitly model a no-effect response with a null model because we include all chemicals when

predicting a mixture response, even if there is no effect. A sharp decrease in response implies cytotoxicity and such points are removed before analysis.

https://doi.org/10.1371/journal.pone.0298687.g003
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choice of a null model becomes consequential. Rather than attempt to justify a fixed null

model, we leave it to the algorithm to find the best fit. We comment in the conclusion that this

question is a direction for future work.

2.4 Clustering as interpolation

Clustering is a nuanced task that involves many decisions. Functional data such as dose

response curves can be clustered according to the parameters or prior information, with multi-

ple settings to adjust depending on what specific cluster method is used. In the context of the

mixture problem, the benefit of clustering for a two-step or joint method is to serve as an inter-

polation between IA and CA [13]. A simple but motivating example is a mixture composed of

androgen receptor (AR) agonists and estrogen receptor (ER) agonists. If this mixture is applied

to an an AR assay, one would expect the significant effect to come from the AR agonists. How-

ever, a naive application of CA on this kind of mixture will significantly underestimate the pre-

dicted response because the ER agonists have low or zero responses individually that dilute the

effect.

In some cases like the example given, there is a clear candidate for clustering method. But

as we will show in the Results, in practice this clustering isn’t enough to correctly recover the

mixture response because the independence assumption ignores molecular dynamics such as

binding affinity or synergy, and is also unaware of whatever grouping would result from know-

ing the true modes of action. As a secondary contribution of this work, we explore the effec-

tiveness of a few different clustering methods to improve predictions when true modes of

action are not known.

The first clustering approach we consider is to group chemicals on the binary condition of

having a positive response versus a non-positive response. This is a simple clustering on the sill

parameter. A second approach we consider is a partial random clustering. The chemicals are

randomly assigned into one of two to five groups (hence partial, rather than allowing any pos-

sible group), along with one assignment representing the single group of CA and one assign-

ment to represent the completely separated grouping of IA. The last cluster approach we

explore is a K-means grouping based on all of the parameters, a logical extension of the argu-

ment that zero-effect chemicals should be grouped separately from positive-effect chemicals.

The assignments are computed using the posterior median parameter estimates and a few rea-

sonable options are taken based on the Elbow criteria (the cluster count beyond which addi-

tional clusters do not significantly decrease the within-group variability).

Our two-stage approach can now be summarized as follows (See Algorithm 1). We first fit

Hill functions with random effects to the individual chemicals using a Bayesian model. To

make a single prediction, we sample the parameters from the posterior distributions for each

chemical, propagating variance by adding noise according to the estimated random effect. If

the clustering method has any randomness (eg random clustering), we sample a cluster assign-

ment. Given the parameters and a clustering assignment, we apply RGCA to the chemicals in

each group to get a combined group effect, and then apply the IA model of Eq 3 to the set of

group effects. GCA and CA predictions rely only on posterior mean parameter estimates for

purposes of comparison, but could be adapted to use the Bayesian approach.

The uncertainty quantification for a predicted effect at a given concentration is achieved by

generating multiple predictions (eg B = 100)) and estimating point-wise quantiles. For com-

parison to existing methods, we compute curves for regular IA where every chemical gets its

own cluster and GCA and CA where all chemicals are in one cluster. For GCA we fix the slope

values to 1 while CA scales all sills to 1 and applies GCA, multiplying the final prediction by

the largest sill. IA uses all of the same fitted parameters as our two-step method. For these
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standard methods, we do not compute uncertainty intervals to improve contrast with our

Bayesian method. In practice, all of these techniques can be used with the Bayesian framework

and will result in similar uncertainty intervals.

2.5 Tox21 data

Tox21 [23] is a library of 10,000 chemicals selected for their potential relevance to health and

amenability to testing. Quantitative high throughput screening (qHTS) with specific assays is

used to efficiently find which chemicals are relevant for pathways or targets of interest [19].

We focus on a subset of Tox21 that evaluates responses with the androgen receptor lucifer-

ase (AR-luc) assay. AR-luc is a cell line derived from human breast cancer cells that includes a

gene to express a firefly luciferase protein. A promoter, MMTV, is introduced into the cell line

DNA as the response element for the AR, while the luciferase gene is added as a reporter in the

regulatory sequence with MMTV. In other words, MMTV is used as the piece of DNA (pro-

moter) that the AR first attaches to in the nucleus (regulatory sequence) to begin transcription,

and the luciferase gene is the subsequent section that is transcribed to create a measurable

effect (reporter). This corresponds to the last step of the AR pathway, right before RNA tran-

scription begins, so the data collected should be highly correlated with a count of how often a

gene is expressed or protein produced. See [24, 25] for additional details on the analysis of

Tox21 data for the AR-luc assay.

The input data consists of individual dose responses for 18 chemicals. Six of the chemicals

are clear AR agonists, one is a weak agonist, and the remaining 11 are known estrogen receptor

(ER) agonists but appear to have no effect on AR. Other assays in Tox21 suggest that some of

these known ER agonists can act as AR antagonists. There are dose responses for 69 different

mixtures as part of the same Tox21 data set, including binary, equipotent, equiconcentration,

and combinations dominated by one or two chemicals. Some of the mixtures include only the

AR or ER agonists. Many mixtures were designed by referring to their activity in a previous

study, with chemical concentrations in the mixtures at different proportions of their EC50 val-

ues [25]. As a part of quality control of the original data, doses that exhibited cytotoxic

responses were flagged. These data points were subsequently excluded in our analysis.

Because our approach does not account for synergy or direct antagonism, the mixtures that

are more sensitive to these interactions are expected to have greater prediction error. In fact,

some binary mixtures were found to have antagonistic responses that entirely ignore the effect

of one toxic compound. Furthermore, clustering for a binary mixture reduces to either GCA

(i.e. one cluster) or IA (i.e. two clusters). Our focus is on “large” mixtures that contain propor-

tions of many chemicals, which corresponds to a more realistic exposure scenario in which

humans are exposed to a wide variety of complex chemicals and stressors through their life

course—i.e. a complete exposome [26]. Additionally, with large, complex mixtures, the effects

of synergy or antagonism are less likely to impact the whole mixture response [27]).

A positive control chemical is used as a benchmark to define a response of 100 while a vehi-

cle control defines a response of 0. The response does not have defined units because the

response is a measure of relative fluorescence, and negative values simply mean less response

than the vehicle control.

2.6 Simulation and validation

We conduct a simulation study to explore relative performance of RGCA and/or a two step

approach. A single simulation run consists of generating Hill parameters and assigning a clus-

ter grouping for 10 or 20 chemicals, treating this as the true mixture model. The models are

then fit using the true parameters where possible and the clustering according to the method.
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Mixture doses are computed as equipotent vectors for a range of dilutions. For example, a

GCA prediction will use the correct parameters but fix the slope values to 1 and assume a sin-

gle group (all chemicals in one cluster). There are 50 simulation runs per model per mixture

size. The set of true models is describe in Table 1. The EC50 parameters are sampled uniformly

from 0.1 to 20 for all models. The models used for fitting include the true models along with

CA and IA. When the fitted model is the true model, we expect 0 error, with the exception of

the random clustering method which always creates a random grouping. When the random

model is used as the truth, only one random grouping is chosen to generate a mixture

response; when used as fitting procedure, ten random groupings are pre-generated with four

assignments having two clusters, four assignments having three clusters, and an assignment

each for CA and IA. When GCA is the truth, RGCA should yield identical results because

RGCA generalizes GCA. Under RGCA, we expect a large error for all other methods when the

slope parameter is different from 1. It is not clear how much relative error to expect when the

two-step model is the true model or used for fitting.

We do not perform a simulation study for the mixed effect model, as this performance can

be evaluated empirically and is compared to a simpler approach of maximum likelihood using

an existing dose response curve fitting package called drc from [28].

For the data application, we evaluate the same methods we simulated but expand the ran-

dom clustering from ten to 100 possible assignments to match the number of samples B = 100

used to generate uncertainty intervals: 1 each for GCA and IA, then 10 that group among 2

clusters, 20 that group among 3 clusters, 30 that group among 4 clusters, and 38 that group

among 5 clusters. The number of assignments per cluster count is arbitrary and roughly

reflects the fact that there are many more possible assignments when the number of clusters

increases.

Error can be quantified with mean squared error (MSE), log likelihood (LLH) or a continu-

ous ranked probability score (CRPS). CRPS is a proper scoring rule: the true model will give

the best score (but other models may give equally good scores) [29]. Intuitively, a CRPS mea-

sures how well the current distribution predicts the observed value in comparison to a perfect

predictive distribution which puts all mass on the observed value. The empirical CRPS at a

concentration xj with observed response R is computed as

CRPSðFj;RÞ ¼
XN

i¼1

½F̂ jðyiÞ � 1ðyi > RÞ�2; F̂ jðyÞ ¼
1

N

XN

i¼1

1ðfiðxjÞ < yÞ ð8Þ

This equation describes the empirical cumulative distribution function Fj of the predicted

responses yi at point xj, for index i representing the sampled curves.

When the prediction is far from the truth, the CRPS score may give identical results for all

methods, so we also include LLH and MSE. LLH is computed using a kernel density estimate

Table 1. Simulation setup. Parameters for the mixture response are sampled uniformly from the specified intervals

according to the true model.

True Model Slope Range Sill Range Clustering

GCA 1 [1.5, 10] None

RGCA (slope * 1) U[0.5, 1.5] U[1.5, 10] None

RGCA (slope >> 1) U[0.1, 10] U[1.5, 10] None

RGCA (sill < 0) U[0.5, 1.5] U[-10, 10] Postive vs non-positive sills

RGCA (2-step) U[0.5, 1.5] U[1.5, 10] Random, 2–3 clusters

RGCA (2-step KM) U[0.5, 1.5] U[1.5, 10] K-Means on all parameters

https://doi.org/10.1371/journal.pone.0298687.t001
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rather than the empirical CDF used in the CRPS:

LLðRÞ ¼ � log
1

N

X

i
�ðRjyi; sbwÞ ð9Þ

The kernel ϕ is a Gaussian centered at the value yi with a computed bin width. When there is

only one data point, the LLH is not provided since it depends entirely on the bin width. In

cases where the data is far from the truth, the LLH may be infinity (representing a likelihood

that is effectively 0). MSE for our data is computed as

MSE ¼
X

i;j

ðRij � f ðxijkÞÞ
2

ð10Þ

For the simulation study, since we are only testing the applicability of various models to

each other rather than the statistical accuracy of a fitting procedure with noisy data, so we

compare fits using MSE. All three scores are computed for our predictions with the Tox21

data, which is used for validation. The R package scoringRules described in [30] is used

to compute the empirical CRPS and LLH. Each score emphasizes a different quality. MSE

ignores uncertainty and just tells how closely we recovered the observations; CRPS emphasizes

both centering and uncertainty; LLH is more lenient when it comes to the mean or center

being wrong as long as the uncertainty is wide enough to represent the data.

3 Results

3.1 Simulation study

Our simulation study illustrated in Fig 4 shows that RGCA and two-step methods can be help-

ful for improving predictions when the true model is not GCA. We can make a number of

qualitative comparisons because of the variety of true models we tested. For example, the error

between GCA (as truth) and IA is roughly twice the error between GCA and a joint model,

which is reasonable since the joint models interpolate between GCA and IA. When slope

parameters are near 1, GCA and RGCA are nearly identical and the two-step methods have

large errors; when slope parameters are allowed to vary from 0.1 to 10 (slope >>1), the error

of GCA and two-step method become comparable. These observations suggest that extreme

slopes have an interpolating effect similar to the two-step methods, decreasing the difference

between GCA and IA. A similar conclusion seems to hold for simulations that allow negative

sills, an edge case discussed in Section 2.2.2. When the two-step methods are the true

responses, all of the methods have less error, again due to the interpolation effect. It is surpris-

ing that our implementation of CA has the lowest error among one-step approaches when the

true model is two-step, especially in larger mixture sets.

The main conclusions from this simulation study are that 1) RGCA alone may not provide

much benefit if the slopes are around 1 and sills have the same sign, and 2) a two-step approach

using RGCA with random clusters tends to perform well in a variety of settings, including

unknown groupings into modes of action. The benefits often increased with the size of the

mixture, but our study looked at equipotent dose vectors. If a mixture is driven by a few potent

chemicals, the effective mixture size and resulting errors may be smaller.

3.2 Parameter estimates and clustering

The parameter estimates for our Bayesian random effect model and for the maximum likeli-

hood found with the R package drc is shown below in Table 2. For the chemicals with large

responses, the models arrive at nearly identical results. The random effect model has different
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sill estimates compared to drc because all of the curve effects are averaged for drc, while our

model takes just one replicate and adds offsets (realizations of random effects) for the other

replicates. The differences between the small or no effect chemical parameters is due to the reg-

ularizing effect of priors which were chosen to prevent extreme values and ambiguities in the

likelihood. For example, note that the 17th chemical (benzyl butyl phthalate) has an estimated

sill of 1.175 and an EC50 of 2e-12 under our method, suggesting a no-effect chemical, while the

drc package finds a sill of -7500 and an EC50 of about 4e-3. Both parameter sets explain the

data and offer similar likelihood, but extrapolated responses for higher doses could be more

misleading with the drc parameters. In the supplement, see S2 Table in S1 File for additional

parameter estimates, S2 Fig in S1 File for trace plots showing convergence of parameter sam-

ples to stationary distributions, and S3 Fig in S1 File for a visualization of the resulting curve

fit.

Because of identifiability or flat likelihood issues, some of the MCMC chains do not exhibit

convergence to a stationary distribution. In brief, for no-effect curves, one could set the sill to

0 and the other parameters could be completely free. While this could pose an issue in our

sampling by creating a sample curve with a non-zero sill and an extreme EC50, we find that

Fig 4. Simulation study results. A simulation study suggests that a two-step approach with cluster uncertainty cannot be adequately substituted with

either GCA or IA. Mean Square Error (MSE) and Continuous Rank Probability Score (CRPS) are used to compare predictions of simulated mixtures

and lower scores are better. The scores for the simpler methods deteriorate as the size of the mixture increases, suggesting that the benefit of our method

increases with larger mixtures. Mixture sizes are n = 10 and n = 20 as shown on the right side of each plot and each box consists of 50 simulations.

https://doi.org/10.1371/journal.pone.0298687.g004
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practically it doesn’t cause an issue because the chance of a bad combination of parameters is

low. Very strong priors could be used to improve identifiability, but at a cost of introducing

additional bias. See S1 Table and S2 Fig in the S1 File for an analysis of the MCMC conver-

gence to stationarity.

3.3 Application results

For the 17 Tox21 mixtures tested, a joint or two-step method with RGCA was superior to

GCA and CA for a majority of the cases. In particular, our predictions with RGCA were bet-

ter for most of the mixtures tested using the CRPS metric and about half of the mixtures

based on MSE, see S3 and S4 Tables in S1 File respectively. LLH is included for complete-

ness in S5 Table in S1 File. When comparing just RGCA with random clustering to GCA,

the RGCA joint method was superior in 14 out of the 17 mixtures by both CRPS and MSE.

The best results relative to GCA and CA were with mixtures which include large concentra-

tions of the ER agonist (4x EC50) in addition to the AR agonists. We had less success with

smaller mixtures, such as when the ER agonists were excluded, suggesting that mixtures

with more chemicals may help cancel out synergistic or antagonistic effects. See S6 Table in

S1 File for descriptions of the mixtures. We illustrate the scores in aggregate as boxplots in

Fig 5.

Although our methods are significantly better than GCA or CA, IA proved surprisingly

effective at predicting the mixture response, especially when measured by MSE. When mea-

sured by CRPS, the results are comparable to our joint methods and occasionally inferior. This

illustrates a trade off where a method with some error but with uncertainty quantification can

do a better job of explaining all of the data compared to a method that predicts the center of

the data well but does help understand the spread. A series of representative figures, Figs 6–8,

is shown below. See the supplement, S4 and S5 Figs in S1 File for additional plots across the

tested mixtures.

Table 2. Fitted parameters for Tox21. Comparison of parameter estimates from the random effect model and the maximum likelihood of drc.

CAS Name Sill EC50 Slope Sill (drc) EC50(drc) Slope (drc)

107–15–3 Ethylenediamine 8.91 2.55e − 01 1.12 0.60 2.35e − 06 −0.05

143–50–0 Kepone −18.10 1.16e − 04 1.60 −10.07 4.99e − 05 3.46

15972–60–8 Alachlor −38.42 4.98e − 04 0.81 −58.53 7.87e − 04 0.77

17924–92–4 Zearalenone −30.38 3.26e − 04 0.70 −25.75 2.21e − 04 0.68

34256–82–1 Acetochlor −27.35 2.83e − 04 0.85 1.02 2.24e − 06 −4.51

434–07–1 Oxymetholone 90.34 6.20e − 09 1.16 93.00 5.91e − 09 1.14

50–02–2 Dexamethasone 357.85 5.52e − 09 1.05 398.32 5.12e − 09 0.90

50–29–3 p,p’-DDT −25.05 1.07e − 04 4.94 −64.83 1.63e − 04 3.40

52806–53–8 Hydroxyflutamide 33.58 4.01e − 06 1.83 21.85 3.49e − 06 2.22

57–83–0 Progesterone 96.79 1.45e − 06 0.88 98.23 1.47e − 06 0.87

63–05–8 4-Androstene-3,17-dione 109.96 3.19e − 08 0.89 110.67 3.25e − 08 0.88

71–58–9 Medroxyprogesterone acetate 238.26 7.87e − 09 0.59 265.92 6.76e − 09 0.53

76–43–7 Fluoxymestrone 152.85 7.74e − 09 0.17 274.83 5.14e − 06 0.10

80–05–7 Bisphenol A −17.06 5.67e − 04 0.55 −4.95 1.31e − 05 0.89

80–43–3 Dicumyl peroxide −10.72 3.17e − 03 0.51 0.86 1.77e − 07 −1.89

84852–15–3 4-Nonylphenol, branched −31.41 2.05e − 03 0.52 −30.07 7.15e − 04 0.59

85–68–7 Benzyl butyl phthalate 1.17 2.08e − 12 0.78 −7502.20 4.24e − 03 9.24

90–05–1 2-Methoxyphenol 20.11 8.27e − 02 0.34 2.27 3.12e − 05 0.43

https://doi.org/10.1371/journal.pone.0298687.t002
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Fig 5. Application results. Comparison of methods applied to the Tox21 dataset, lower scores are better. We compare a total of six methods: CA, IA,

GCA, RGCA, RGCA grouped by sill, clustering by K-means on all parameters, and random clustering. The scoring metrics are the continuous rank

probability score (CRPS), mean squared error from the median curve (MSE), and log likelihood (LLH). Score Summary A at top shows scores across all

of the mixtures in tables S3-S5 Tables in S1 File from the supplement. Summary B is restricted to mixtures with large doses of ER agonists: mix 12, 20,

43, 52, 55, 57, 62. Note log-scaled y-axis. GCA, IA, and CA do not have LLH values since they were computed without uncertainty. IA and the two-step

methods with RGCA perform best, suggesting that larger mixtures are following IA more than CA.

https://doi.org/10.1371/journal.pone.0298687.g005
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In summary, our results suggest that the two-step method is more likely to cover the true

mixture response when the truth is unknown.

4 Discussion

This work is motivated by the critical need for predicting a mixture response of an arbitrary

set of chemicals from single chemical data only. First, we present Reflected Generalized Con-

centration Addition (RGCA), a piece-wise geometric extension of GCA that allows for non-

unit slops. In contrast to existing methods, there are no restrictions on effect sizes or concen-

trations and we can use a 3-parameter Hill model to capture more of the structure in the indi-

vidual dose response curves. Second, we can account for uncertainty in the data and predict a

range of possible mixture responses. This demonstrates the importance of uncertainty quanti-

fication in mixtures toxicity prediction. Our method works best when there are many chemi-

cals and fails (along with GCA and IA) in binary and small mixtures. We attribute this to the

presence of synergy, which can have a strong effect when there are two chemicals of similar

concentrations and can have a much weaker effect when there are many other chemicals to

interfere in the interaction. This situation has been described as a “funnel effect” by [27].

The joint or two-step methods were generally the best approaches for the mixtures tested.

As the mixtures involved more chemicals at significant doses, the IA model did quite well

despite the assumption of a single mode of action with the assay tested. On one hand, this

explains why our methods perform better than GCA: if IA is the truth and the two-step

Fig 6. Accurate predictions with RGCA. A representative plot showing how mixtures are predicted for various concentrations and methods. All

chemicals are present in this mixture, which is described as Mix 20 in the Supplement, S6 Table in S1 File. Our recommended method, RGCA with

random clustering, is labeled as Random RGCA. IA, CA, and GCA are shown in yellow, pink, and blue lines, respectively. IA is better centered while

our method covers most of the data with the credible interval. RGCA without clustering underestimates the truth due to the ER agonists, shown on the

right without stars, that have small or negative sills.

https://doi.org/10.1371/journal.pone.0298687.g006
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method is interpolating between GCA and IA, then the two-step method will surely do better

than GCA. On the other hand, perhaps the assumption of CA can be questioned: the experi-

ment is cell based and the chemicals may be interfering with other processes that impinge on

the AR receptor process, requiring IA rather than CA. In that case, we should be comparing to

IA and will find that our method is not significantly better.

This leads to the main conclusion of our work: the two-step approach with RGCA and

uncertainty quantification is most likely to cover the true mixture response when modes of

action are not known. GCA and IA are likely to be the true boundary conditions for the pre-

diction, but choosing just one carries a risk of large error. The two-step approach with random

clusters or K-means clusters can reduce error and help the user determine which boundary is

more relevant. The results of both simulation study and application support the use of the

RGCA extension with random clustering when the slope parameters are far from 1 (ie outside

of [0.5, 1.5]) and partial agonists are present. Even when CA is the correct model, forcing the

slope parameters to be 1 when they are far from 1 can induce errors comparable to the interpo-

lation error between a two-step method and GCA for moderate sizes mixtures.

4.1 Limitations and future directions

Our reflection argument allows for any positive slope value, but we found that there are

numerical issues for combinations of non-unit slopes and negative sills. Fig 2 shows how mul-

tiple solutions arise and lead to distortions in the isobolograms that cannot be smoothed away.

The problem lies in the optimization process, which can be susceptible to the local optima and

Fig 7. Moderately accurate predictions with RGCA. Only AR agonists are present, which is described as Mix 10 in the Supplement, S6 Table in S1

File. RGCA with random clustering is labeled as Random RGCA. IA, CA, and GCA are shown in yellow, pink, and blue lines, respectively. GCA fits

best at very small concentrations but then underestimates the response. RGCA is similar to GCA at high concentrations but overestimates low doses

because the estimated slopes are less than 1. Random RGCA along with CA and IA may be predicting the correct sill but observations at higher doses

are not available.

https://doi.org/10.1371/journal.pone.0298687.g007
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very steep functions that result from non-unit slopes as shown in Fig 2. We describe a simple

heuristic of always taking the positive solution when present, but it is not possible to specify

which positive solution will be found when there are multiple solutions and the optimization

may simply fail to find the solution because it was lost in a local optima. Investigating better

numerical methods or heuristics is an area of future work. Methods for dealing with stiff differ-

ential equations show promise.

Although our approach demonstrates the applicability of the two-step approach, the ques-

tion of finding a true or correct grouping that reflects the actual modes of action is not

addressed. We explore the use of simple random or K-means clustering and find that it is

often better than using a single cluster, but the predictions are never entirely correct. In short,

the mixture problem isn’t solved by interpolation. Furthermore, our methodology assumes a

dose responses that is increasing, which is not directly applicable for interpolating biphasic

responses that account for effects including cytotoxicity, such as those studied in [31].

Related to the concept of interpolation is whether or not chemicals with no observed effect

should even be included in the calculation. Common sense suggests they should be left out,

especially when using a method like GCA in which the no-effect chemical is treated as a partial

agonist that strongly attenuates the predicted response. However, when an individual dose

response shows no effect, it is not clear if the chemical is actually binding to the receptor with

zero efficacy or not binding at all. If the chemical is binding to the receptor, it could be a com-

petitive antagonist and must be included if possible in a mixture prediction. The Tox21 data-

base contains such antagonist assays and also includes mixtures that include and exclude zero-

effect chemicals; a preliminary study suggested inclusion of zero-effect chemicals, but such a

study is beyond the scope of the present work.

Fig 8. Poor predictions with RGCA. An example of poor predictive performance with a binary mixture. All methods fail to recover the true response.

This mixture is exhibiting antagonism, which is not accounted for in any of the models.

https://doi.org/10.1371/journal.pone.0298687.g008
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The questions about mode-of-action and no-effect chemicals are side effects of the main

limitation of our work: the exclusion of synergy. The challenge with synergy is the introduc-

tion of additional parameters controlling which chemicals synergize or antagonize with others.

These are difficult to determine from individual dose response curves but possible with quanti-

tative structure-activity relationships (QSAR), which would not require experimental data of

the mixture. QSAR and docking or affinity scores may also help address the issue of no-effect

chemicals by distinguishing between chemicals that do not occupy a receptor dock and those

that do. With the inclusion of QSAR, it may be possible to use a true null model but identify

slope parameters or cluster inclusion within our approach; this is useful because the chemical

may have no effect but still synergize or antagonize another chemical. In contrast to IA and

GCA, our approach is flexible enough to incorporate additional parameters or algorithmic

steps utilizing QSAR data to account for synergy, which represents a promising future direc-

tion of research.
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