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Abstract

In recent years, the extraction of hypoglycemic peptides from food proteins has gained

increasing attention. Neuropeptides, hormone peptides, antimicrobial peptides, immune

peptides, antioxidant peptides, hypoglycemic peptides and antihypertensive peptides have

become research hotspots. In this study, bioinformatic methods were used to screen and

predict the properties of pig collagen-derived hypoglycemic peptides, and their inhibitory

effects on α-glucosidase were determined in vitro. Two peptides (RL and NWYR) were

found to exhibit good water solubility, adequate ADMET (absorption, distribution, metabo-

lism, elimination, and toxicity) properties, potentially high biological activity, and non-toxic.

After synthesizing these peptides, NWYR showed the best inhibitory effect on α-glucosidase

with IC50 = 0.200±0.040 mg/mL, and it can regulate a variety of biological processes, play a

variety of molecular functions in different cellular components, and play a hypoglycemic role

by participating in diabetic cardiomyopathy and IL-17 signaling pathway. Molecular docking

results showed that NWYR had the best binding effect with the core target DPP4 (4n8d),

with binding energy of -8.8 kcal/mol. NWYR mainly bonded with the target protein through

hydrogen bonding, and bound with various amino acid residues such as Asp-729, Gln-731,

Leu-765, etc., thus affecting the role of the target in each pathway. It is the best core target

for adjuvant treatment of T2DM. In short, NWYR has the potential to reduce type 2 diabetes,

providing a basis for further research or food applications as well as improved utilization of

pig by-products. However, in subsequent studies, it is necessary to further verify the hypo-

glycemic ability of porcine collagen active peptide (NWYR), and explore the hypoglycemic

mechanism of NWYR from multiple perspectives such as key target genes, protein expres-

sion levels and differences in metabolites in animal models of hyperglycemia, which will pro-

vide further theoretical support for its improvement in the treatment of T2DM.

1. Introduction

During animal processing, nearly 40% of the carcass is considered a by-product. Statistics

show that the annual output of pork was>49 million tonnes in China, producing nearly 5
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million tonnes of viscera, 7 million tonnes of skins, and 8 million tonnes of bones [1]. These

by-products contain a lot of protein, with collagen being the most abundant. Converting these

by-products into collagen, collagen peptide, etc., can increase its utilization value. The global

collagen market is estimated to be worth around US $7 billion by 2027 [2]. Porcine collagen

peptide is similar in structure to human collagen peptide and generally does not cause an aller-

gic response, and contains a large amount of protein, vitamins, calcium, iron, phosphorus and

other nutrients, with nutritional supplement, provide energy, promote bone growth, help

improve anemia and skin conditions and other effects and effects. With the development of

high technology such as combinatorial biotechnology, the high-value utilization of low molec-

ular bioactive peptides has become a research hotspot. At present, a variety of bioactive pep-

tides of pig collagen have been identified from pig by-products by bioinformatics combined

with network pharmacology, which provides an opportunity for high-value utilization of ani-

mal by-products [3, 4]. Diabetes is a chronic, non-infectious condition that can cause a serious

threat to global public health [5]. The most recent data available from the International Diabe-

tes Federation (IDF) in 2021 indicate that the global prevalence of diabetes among people aged

20 to 79 is estimated at 10.5% (about 537 million people) and is expected to increase to 12.2%

(783.2 million people) by 2045 [6]. Clinical drugs, such as sulfonylureas and biguanides, can be

used to control blood glucose levels in T2DM, but they also induce a series of side effects,

including diarrhea, liver damage, and abdominal distention, and drug resistance can occur [7,

8]. In addition, long-term and high-dose use of synthetic drugs is severely restricted because of

the potential health-related risks. It has become an inevitable trend for people to search for low

toxicity, low price and effective natural active substances from natural resources to replace syn-

thetic drugs in the treatment of type 2 diabetes [9, 10]. α-Glucosidase can directly participate

in the metabolic pathway of starch and glycogen, regulate the human sugar chemical metabo-

lism, and is an indispensable enzyme in the biological glucose metabolism pathway. Therefore,

the search for novel α-glucosidase inhibitory peptides is of great significance because of their

potential as components of biopharmaceuticals or nutraceuticals to alleviate diabetes-related

health burdens.

Bioactive peptides (BPs) are generated from diversified protein resources by enzymatic

hydrolysis, chemical degradation and microbial fermentation methods [11]. In addition to

their widely accepted nutritive value, BPs also have important biological activities, including

anti-diabetes, antioxidant, antihypertensive, anti-inflammatory, hypolipidemic, immunomod-

ulatory and mineral binding, and thus are of great value in promoting human health [11–13].

Then, BPs draw great interest from consumers and have been applied in a wide variety of

products, especially functional food, daily cosmetics, medicinal/pharmaceutical products, and

nutritional supplements [13]. Food components, such as proteins and peptides, are currently

of great interest because of their potential roles in the prevention and control of diabetes

through blood sugar regulation [14–17]. Recent studies have highlighted the potential of colla-

gen from pig skin during slaughtering and processing as a hypoglycemic peptide due to its

high hydroxyproline (Hyp), proline (Pro), and glycine (Gly) content [18]. It has a variety of

beneficial effects in the control of diabetes, including improving hyperglycemia, reducing fast-

ing blood glucose levels, increasing glucose tolerance, mitigating excessive thirst and hunger

symptoms, improving liver and kidney functions, reducing free radical formation due to glu-

cose self-oxidation, and decreasing protein glycosylation [19]. Moreover, collagen peptide has

shown promise in reducing the number of physiological reactions that lead to insulin resis-

tance (IR), including modulating free fatty acid levels, leptin, and resistin, and preventing the

resulting increase in the incidence of T2DM and cardiovascular disease, thus averting compli-

cations of diabetes [20]. Clinical studies have found that collagen peptide supplementation can

improve insulin secretion function and cord sensitivity, improve glucose load after glucose
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area under the curve, meaningfully shorten the blood glucose adjustment period, and reduce

the incidence of nocturnal hypoglycemia in diabetic patients. Additionally, it can improve the

nutritional status and immunity of patients after surgery, as well as shorten the average hospi-

tal stay of patients after surgery [21].

At present, dietary proteins isolated from black beans, fermented soybean, balsam pear, and

other sources have been identified as having anti-diabetic peptide properties [22, 23]. In vitro
experiments have confirmed the hypoglycemic effects of many of these peptides, with some

outperforming clinical drugs [24]. Specifically, Zhang, Y et al. identified four peptides from

silkworm pupae: NSPR, QPPT, SQSPA, and QPGR, which can suppress α-glucosidase activity

and help manage diabetes [25]. He L, et al. isolated five peptides (GPVGPPG, GPPGPT, APG-

GAP, FGPGP, and GPVG) from bovine skin collagen, and all of which exhibited anti-diabetic

properties [26]. The discovery of natural active ingredients for treating T2DM has become a

research hotspot due to their safety, reduced or no side effects, and efficient absorption [25].

Network pharmacology is an efficient approach to predicting the underlying mechanisms

of disease-drug interactions based on systems biology and the integration of various technolo-

gies such as network and pharmacology analysis [27]. In recent years, network pharmacology

has been widely used to predict the mechanism of action between active ingredients and dis-

ease. Pan et al. [28] revealed the hypoglycemic mechanism of aloe emodin through network

pharmacology, and the results showed that aloe emodin has 22 core targets for improving the

treatment of T2DM. Such as serine/Threonine-protein kinase-1 (AKT1), mitogen activated

protein kinase 8 (MAPK8), etc. These targets are mainly concentrated in signaling pathways

such as PI3K-Akt and insulin resistance. Zhou et al. [29] studied the role of GPPGPA, a pep-

tide screened from the skin collagen hydrolysate of Salamandus chinanalis, in T2DM and

related molecular mechanisms, and identified the core targets as AKT1, MAPK8, and tran-

scription factor AP-1 (JUN) by network pharmacology. These targets mainly focus on the

PI3K-Akt signaling pathway related to T2DM, AGE-RAGE signaling pathway in diabetic com-

plications, tumor necrosis factor (TNF) signaling pathway, and insulin resistance. Tian et al.

[30] studied the antibacterial active components and their mechanisms of action of radix isatis

based on network pharmacology, and the results showed that radix isatis mainly regulates apo-

ptosis-related cysteine peptidase (CASP3) through stigmosterol, prostaglandin-endoperoxide

synthase 2 (PTGS2) and other targets, gene functions are enriched in cell apoptosis, transcrip-

tional regulation, and participate in cancer pathway and TNF signaling pathway to play a anti-

bacterial role.

Therefore, this study screened peptides through an online database, synthesized peptides

with the highest activity, and further screened them through in vitro experiments. The poten-

tial mechanism of action of hypoglycemic peptides derived from porcine collagen was revealed

through network pharmacology and molecular docking. The purpose of this research was to

offer a new perspective on improving the utilization value of pig by-products, identifying

food-derived hypoglycemic peptides, and establishing a theoretical foundation for understand-

ing the machine-processed porcine collagen peptides’ multi-target and multi-channel treat-

ment of type 2 diabetes.

2. Materials and methods

2.1 Materials

Peptides RL and NWYR were synthesized by Xi’an Na Microbiology Co., Ltd. pNPG (4-nitro-

benzene-α-D-glucopyranose) and α-glucosidase were bought from Shanghai Yuanye Bio-

Technology Co., Ltd. PBS (phosphate-buffered saline, formulated from KH2PO4 and

NaH2PO4) and Na2CO3 were obtained from Chengdu Colon Chemical Co., Ltd. The
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microplate reader used was an iMark made in Japan, and the 37˚C incubator used was a SPX-

250F-III from Shanghai Longyue Instrument Equipment Co., Ltd.

2.2 Acquisition and activity evaluation of porcine collagen

The sequences of porcine collagens were obtained from the NCBI database (National Center

for Biotechnology Information, http://www.ncbi.nlm.nih.gov/protein).The potential of por-

cine collagen to release α-glucosidase inhibitory peptides was evaluated using BIOPEP-UWM

[31] (https://biochemia.uwm.edu.pl/biopep-uwm/). The calculation of the α-glucosidase

inhibitory peptide (A) release quantity is as follows:

A% ¼
a
N
� 100% ð1Þ

where a is the amount of α-glucosidase inhibiting peptide fragments in the protein sequence,

and N is the length of the protein sequence.

2.3 In silico digestion analysis and virtual screening

The theoretical peptide sequence was obtained by virtual enzymatic hydrolysis of the screened

porcine collagen with pepsin (EC3.4.23.1) and trypsin (EC3.4.21.4) in ExPASy PeptideCutter

[32] (https://www.expasy.org/resources/peptidecutter) program. The activity fractions of

released dipeptides, tripeptides, and tetrapeptids were numerated by PeptideRanker (http://

distilldeep.ucd.ie/PeptideRanker/). Generally, peptides with an activity score >0.5 were con-

sidered prospective bioactive peptides, and the tool available online at Innovagen was used to

predict water solubility [33] (http://www.innovagen.com/proteomics-tools). The BBB (blood

brain barrier), HIA (human intestinal absorption), absorption, distribution, metabolism, elim-

ination, and toxicity (ADMET) properties, including toxicity, metabolism, and Caco-2 perme-

ability, were analyzed in admetSAR (http://lmmd.ecust.edu.cn/admetsar1/) [34]. To forecast

the potential toxicity of the identified peptides, the online tool ToxinPred (https://webs.iiitd.

edu.in/raghava/toxinpred/index.html) was used.

2.4 Peptide synthesis

The purity, amino acid composition, and molecular weight of the peptides were provided by

the manufacturer. The peptides that were screened in silico were synthesized using solid-phase

synthesis by Xi’an Na Microbiology Co., Ltd, and their α-glucosidase inhibitory activity was

tested in vitro.

2.5 α-Glucosidase activity inhibition test

The α-glucosidase test was conducted based on Ramadhan’s method with minor modifications

[35]. The samples were prepared at different concentrations (1–7 mg/mL), and the following

compounds were prepared: α-glucosidase (0.1 Ua), PBS (pH 6.8, 0.05 mol/L), PNPG (2.5

mmol/L), and Na2CO3 (1 mol/L). The control, sample blank, and sample groups were incu-

bated at their appropriate temperature and time, and the absorbance at 405 nm was measured

using a microplate reader. The inhibitory activity was calculated using Eq (2). The inhibition

rate of α-glucosidase was solved according to the concentration of different mass samples. The

IC50 values were calculated based on the fitting curves.

Inhibition% ¼ 1 �
A0 � A1

B0 � B1

� �

� 100% ð2Þ
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where A0, A1, B0, and B1 are the absorbance of sample, blank, control, and sample blank,

respectively.

2.6 Network pharmacology analysis

2.6.1 Target prediction. The molecular structure and SMILES format of the peptides

were confirmed using PepDraw (http://pepdraw.com/) and NovoPro (https://www.novopro.

cn/tools/), respectively. The target gene associated with the selected peptide was appraised uti-

lizing the SwissTargetPrediction data bank (http://www.swisstargetprediction.ch/) with

"Homo sapiens" as the selected species (probability�0.1). Using "type 2 diabetes" and "T2DM"

as the operative words, targets associated with type 2 diabetes were screened from the OMIM

data bank (http://www.omim.org), the human genome database GeneCards (https://www.

genecards.org/), and the TTD data bank (http://bidd.nus.edu.sg/group/cjttd) [29].

2.6.2 Construction of protein-protein interaction network. Target peptide-related tar-

get genes and type 2 diabetes targets were plotted by Venny 2.1.0 (https://bioinfogp.cnb.csic.

es/tools/venny/index.html) and common targets were derived. These were then investigated as

potential therapeutic peptide targets in T2DM treatment. The identified common targets were

uploaded to the STRING database [36] (http://string-db.org/), with "Homo sapiens" picked

out as the species and the minimum interaction threshold set to "medium confidence (0.4)".

The resulting protein-protein interaction (PPI) network was analyzed using Cytoscape 3.9.1

(http://www.cytoscape.org/) and visualized to gain further insights.

2.6.3 KEGG and GO pathway enrichment analysis. The collective targets related to tar-

get peptides and type 2 diabetes were imported into the Metscape platform (https://metascape.

org/gp/index.html), and KEGG (kyoto encyclopedia of genes and genomes) pathway analysis

and GO (gene ontology) analysis were performed with a P-value of� 0.01 as the threshold

[37]. Finally, the obtained data are visualized and analyzed by the bioinformatics platform.

2.7 Molecular docking

The data including grid sizes, ligand (. pdbqt) and protein files were utilized for simulation,

followed by further processing using AutoDock Tools 1.5.6, which is devised to be compatible

with .pdbqt format. The PDB (Protein Data Bank; http://www.rcsb.org) is an archive of 3D

structural data of biological macromolecules, such as complex assemblies, nucleic acids, and

proteins [38]. The key target was selected, and the corresponding protein with a higher resolu-

tion was found in the PDB. The 3D structural formula was downloaded, and water molecules

and hydrogenated proteins were removed by Autodock Tools 1.5.6 software. The key targets

and screened peptide structures were imported into Autodock Vina for molecular docking

verification tests. Finally, the 3D schematic diagram was constructed using PyMol 2.5.2

software.

2.8 Statistical analysis

All experiments were conducted in triplicate and the data are expressed as the

mean ± standard deviation (SD). Statistical analysis was performed using SPSS 27.0 software

with Duncan’s multiple and one-way ANOVA tests to determine the differences among the

mean values. The mapping was done using prism and bioinformatics tools (http://www.

bioinformatics.com.cn/).
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3. Results

3.1 Subsection

A search for collagen in the NCBI database, with the species set to “Sus scrofa domesticus”, the

chain structure of collagen type-Ⅰ was obtained, specifically the α-1 chain and α-2 chain with

accession numbers of BAX02568.1 GI: 1159729721 and BAX02569.1 GI: 1159729723, respec-

tively. The lengths of the chains were 1466 aa and 1366 aa, respectively. Moreover, the BIOPE-

P-UWM predicted that the theoretical release amounts of the two α-glucosidase inhibitory

peptides were 5.2% and 4.1%, and their theoretical fragments were 76 and 57, respectively.

Thus, both porcine collagen chains had the potential to release α-glucosidase inhibitory

peptides.

3.2 In silico identification of α-glucosidase inhibitory peptides in porcine

collagen proteins

FASTA formats of the α-1 and α-2 chain structures were retrieved from NCBI and copied into

PeptideCutter for collagen hydrolysis. Two gastrointestinal hydrolases, pepsin and trypsin,

were selected to hydrolyze porcine collagen and evaluate potential α-glucosidase inhibitory

peptides [3]. Since their versatile cleavage sites, these enzymes have also been applied in food

industry. The two porcine collagen chains were enzymatically hydrolyzed, and di-, tri-, and tet-

rapeptides were collected. After removing repetitive peptides, a total of 54 oligopeptides were

screened, and their water solubility and biological activities were predicted. In general, bioac-

tive peptides are defined as those with a PeptideRanker score greater than 0.5 on a scale of 0 to

1, with a higher value indicating a higher likelihood of being biologically active [32, 33]. To

reduce false positive scores, peptides with a threshold value� 0.6 were selected. As a result, a

total of five peptide sequences with good water solubility and potential biological activity were

obtained, as shown in Table 1.

To predict the ADMET properties of these five peptides in admetSAR, the Molecular Linear

Input specification (SMILES) format of the peptides was simplified by NovoPro online tool.

Peptide- and protein-based drugs have gained increasing interest; however, their unknown

toxicity has significantly limited development. The toxicity of bioactive peptides has become a

major concern in the development of peptide healthcare products. To investigate the toxicity

of collagen peptides, the in silico tool ToxinPred has been applied, which can predict the toxic-

ity of collagen peptides. The ADMET prediction and toxicity results are shown in Table 1. Out

of the five peptides screened, only NWYR and RL demonstrated acceptable ADMET proper-

ties and were HIA+ and BBB+, indicating that they are easily absorbed and can pass through

the blood-brain barrier. These peptides were also identified with few or no side effects, making

them suitable for use in medicine and food. Therefore, RL and NWYR, with good water solu-

bility, permissible ADMET properties, and a bioactivity fraction greater than 0.6, were selected

for synthesis and in vitro α-glucosidase activity inhibition testing.

3.3 Inhibitory activity of RL and NWYR on α-glucosidase

As shown in Fig 1, RL and NWYR significantly inhibited α-glucosidase activity in a concentra-

tion-dependent manner in vitro. The inhibitory effect of RL and NWYR on α-glucosidase

activity increased with increasing concentration from 0.1 to 0.7 mg/mL. By inhibiting curve

calculation, the IC50 values of α-glucosidase for tetrapeptide (NWYR) and dipeptide (RL) were

0.200 ± 0.040 mg/mL and 0.264 ± 0.005 mg/mL, separately. These data were slightly lower

than that of acarbose (IC50 = 0.346 ± 0.043 mg/mL) (Table 2).
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3.4 Common and key targets of NWYR-T2DM

The 3D structure of NWYR was uploaded to the SwissTargetPrediction website to predict

peptide targets. After eliminating duplicates, 100 related targets were displayed. SwissTarget-

Prediction is a program used to support new drug design and discovery. It provides protein

classification of potential targets of small molecules (Fig 2A). Among the potential proteins

that can interact with the peptides, the most abundant was the Family A G protein-coupled

receptor, accounting for 60.0%. A search based on the keyword "T2DM" in the GeneCards

database yielded 1215 relevant targets, and 614 targets associated with T2DM were gathered

from the OMIM and TTD databases. To complement relevant targets and remove duplicates,

1762 targets associated with T2DM were obtained. The online tool Venny 2.1.0 was used to

draw the interactive network of NWYR and T2DM targets (Fig 2B). After the intersection,

32 common targets of NWYR-T2DM were obtained. These collective targets were then

imported into STRING to draw a PPI network, and two disconnected nodes in the network

were removed (Fig 2C). Topology analysis of the network was conducted using the Centis-

cape 2.2 plug-in in Cytoscape 3.9.1. Screening parameters (Degree = 5.05, Between-

ness = 29.154, Closeness = 0.019) were set based on the calculated median, and five major

targets were ultimately acquired (Table 3), accounting for 15.63%. These targets played criti-

cal roles in the whole network and were identified as significant targets for the treatment of

T2DM.

Table 1. The results of virtual screening analysis of the selected peptides.

Peptide sequence Activity score Water solubility BBB HIA Toxicity Protein sources

(Accession)

Positions of cleavage sites Name of cleaving enzyme(s)

GPR 0.87 Good BBB-

(0.69)

HIA-

(0.67)

None BAX02568.1

BAX02569.1

126, 912

41, 822, 1017

Trypsin

MRL 0.82 Good BBB- (0.63) HIA+

(0.64)

None BAX02569.1 1259 Pepsin (pH 1.3)

NWYR 0.82 Good BBB+

(0.50)

HIA+

(0.85)

None BAX02569.1 1218 Trypsin

GR 0.77 Good BBB+

(0.76)

HIA-

(0.52)

None BAX02568.1

BAX02569.1

224

1172

Trypsin

RL 0.63 Good BBB+

(0.70)

HIA+

(0.83)

None BAX02568.1 9, 1359 Pepsin (pH 1.3)

https://doi.org/10.1371/journal.pone.0298674.t001

Fig 1. Inhibitory effect of RL and NWYR on α-glucosidase.

https://doi.org/10.1371/journal.pone.0298674.g001
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3.5 KEGG and GO enrichment results of NWYR-T2DM

Metscape database was used to perform KEGG and GO pathway enrichment analysis of the

32 common targets (P< 0.01). GO enrichment analysis produced a total of 388 records, with

biological process (314), cell composition (39), and molecular function (35) accounting for

80.93%, 10.05%, and 9.02%, respectively. The top 10 results from the GO enrichment were

used to generate a statistical histogram of enrichment (Fig 3A). Target proteins in the biolog-

ical process category were mainly involved in reactions with lipopolysaccharides, response to

bacteria, insulin, and oxygen; positive regulation of cell activation, death, growth, and motil-

ity; regulation of body fluid levels; cation transmembrane transport; and reactive oxygen spe-

cies metabolic processes. The proteins of molecular functions were mainly related to

hydrolase activity, endopeptidase activity, acting on carbon-nitrogen (but not peptide)

bonds, G protein-coupled peptide receptor activity, peptide binding, and immune receptor

activity. In the cellular components category, target proteins were predominantly found in

the membrane raft, exosomes, and extracellular matrix. KEGG analysis revealed 19 signaling

pathways, including the diabetic cardiomyopathy pathway and IL-17 signaling pathway that

are involved in diabetic complications, neuroactive ligand-receptor interactions, bladder

cancer, and transcriptional misregulation in cancer. A bubble chart was created using the

pathways (Fig 3B).

Table 2. Linear equations and IC50 values of compounds and control.

Compound Linear equation IC50 value

Peptide RL y = 87.821x + 22.333 0.264 ± 0.005 mg/mL

Peptide NWYR y = 82.964x + 30.529 0.200 ± 0.040 mg/mL

Control Acarbose y = 90.119x + 17.11 0.346 ± 0.043 mg/mL

https://doi.org/10.1371/journal.pone.0298674.t002

Fig 2. A: Classification of proteins that may theoretically interact with NWYR; B: The intersection of NWYR and

T2DM targets; C: PPI network of common targets of NWYR and T2DM ((the yellow targets are key nodes according

to topological analysis)).

https://doi.org/10.1371/journal.pone.0298674.g002
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3.6 Molecular docking results

To demonstrate their possible interaction mechanism, the central targets were docked with the

screened active peptides. Based on the key targets selected in Section 3.4, the corresponding

proteins were located in the PDB database and their 3D structure formulas were downloaded:

ACE (7a2x), F2 (1e8b), MMP2 (7xjo), MMP9 (6esm), and DPP4 (4n8d). Molecular docking of

these proteins with NWYR revealed that the binding energies of DPP4-NWYR,

MMP2-NWYR, ACE-NWYR, F2-NWYR, and MMP9-NWYR were -8.8, -8.7, -8.5, -7.3, and

-6.4 kcal/mol, respectively. The smaller the binding energy, the stronger and more stable the

binding. Therefore, the top three were chosen for structure-activity analysis (Table 4).

4. Discussion

4.1 Silicon screening analysis

Trypsin cleaves proteins at the carboxy site of Lys and Arg, while pepsin targets C-terminal

end Glu, Leu, or Phe. These enzymes have also been used to produce various structures of bio-

active peptides [39, 40]. The bioactivity and function of peptides are closely correlated with

their chain length and amino acid sequence. Bioactive peptides are better than individual

amino acids (AAs) in clinical application because short peptide chains present lower osmotic

pressure and higher intestinal absorption rates than those of the corresponding free Aas [41].

Besides, short chain peptides are more stable and easier to be absorbed in vivo [42]. Therefore,

dipeptides, tripeptides, and tetrapeptides were selected for further screening of α-glucosidase

inhibitory peptides. In silico drug design, the properties of ADMET and the drug-likeness of

the molecules need to be predicted [43], and comparing the properties of different food com-

ponents and drugs has become an increasingly popular research topic [44]. ADMET character-

ization can help in silico evaluation of potential peptide bioactivities. However, research on

bioactive peptide ADMET properties in food are rarely reported [45]. This study primarily

predicted the BBB and HIA properties, as HIA helps predict small intestine absorption and

physiological barriers limit most compounds.

4.2 Effect of α-glucosidase on NWYR

α-Glucosidase, which is exist in the epithelium of the small intestine, is a membrane-bound

glycoenzyme that facilitates glucose absorption by catalyzing the hydrolysis of oligosaccharides

and disaccharides into absorbable monosaccharides. Suppressing α-glucosidase activity can

Table 3. Key targets of NWYR-T2DM.

Key tagets (Gene name) Betweenness Closeness Degree

ACE 103.764 0.025 12

MMP2 69.158 0.023 13

F2 105.769 0.023 9

MMP9 136.757 0.028 16

DPP4 55.771 0.0218 8

https://doi.org/10.1371/journal.pone.0298674.t003

Table 4. Docking results and binding free energy (kcal/mol) of peptides by virtual screening.

Small molecules(peptide) and receptor proteins Binding energy (kcal/ mol) Number of hydrogen bonds Binding amino acids and sites

DPP4-NWYR -8.8 8 Asp-729, Gln-731, Leu-765

MMP2-NWYR -8.7 9 Asp-33, Arg-53, Ile-54, Tyr-55, Arg-19

ACE-NWYR -8.5 7 Glu-98, Thr-130, Gly-128

https://doi.org/10.1371/journal.pone.0298674.t004
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attenuate digestion of carbohydrate, decrease the hydrolysis of oligosaccharides and polysac-

charides into monosaccharides, thereby reducing blood glucose levels and alleviating diabetes

[46, 47]. The results of α-glucosidase inhibition showed that both NWYR and RL had inhibi-

tory effects on α-glucosidase activity, and there was no significant difference between them

and acarbose, but the inhibitory effect of NWYR was stronger. The NWYR peptide sequences

contain basic amino acids (arginine) and hydrophobic amino acids (tryptophan, tyrosine),

which are consistent with the hypoglycemic peptides previously found in collagen. Based on

this observation, we predict that NWYR will have a therapeutic effect on T2DM. Therefore,

NWYR was selected for molecular docking and network pharmacology to investigate its mech-

anism of action on T2DM.

4.3 KEGG and GO enrichment analysis

GO enrichment analysis demonstrate that NWYR can regulate various biological processes

and molecular functions in different cellular components to achieve its anti-diabetic effect.

Fig 3. GO and KEGG enrichment analysis of NWYR-T2DM A: GO enrichment analysis of NWYR-T2DM.

(Yellow: Biological Process; Purple: Cellular Component; Blue: Molecular Function.) B: KEGG pathway analysis of

NWYR-T2DM.

https://doi.org/10.1371/journal.pone.0298674.g003
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KEGG enrichment analysis showed that NWYR could play a hypoglycemic role through sev-

eral signaling pathways, including the diabetic cardiomyopathy pathway and IL-17 signaling

pathway that are involved in diabetic complications, neuroactive ligand-receptor interactions,

bladder cancer, and transcriptional misregulation in cancer. Epidemiological studies have

shown that diabetes is associated with an increased risk of cancer, and diabetic cardiomyopa-

thy is one of the leading causes of death in patients with diabetes, especially type 2 diabetes.

Studies have shown that the mechanism of IL-17 promoting diabetes is related to the inflam-

matory destruction of islet cells. In vitro, IL-17 induces SOD2 transcription and synergies with

IL-1β and IFN-γ to promote the expression of NOS2A and COX-2 and the production of oxy-

gen free radicals, enhancing the inflammatory response in islet cells. In addition, IL-17 can

also inhibit the transcription of anti-apoptotic gene BCL-2 mRNA and accelerate the apoptosis

of islet cells, which is closely related to the onset of diabetes. Blocking IL-17 signaling pathway

is expected to become a new target for the treatment of diabetes. Fang et al. found that the

treatment of type 2 diabetes is regulated through pathways in cancer signaling [48]. This sug-

gests that NWYR could be used to treat T2DM and related complications via multiple path-

ways and targets.

4.4 Molecular docking analysis

Molecular docking is applied to predict the binding modes of proteins and ligands in three-

dimensional structures and is widely used in structural molecular biology. Numerous studies

have applied molecular docking methods to investigate the interactions between receptors and

various ligands [33]. AutoDock Vina is a commonly used molecular docking program [49].

The results of molecular docking showed that the binding energy of all combinations was less

than 0 kcal/mol, and proteins could spontaneously bond with small molecules. According to

the structure-activity relationship analysis, DPP4 was found to interact with NWYR through

eight hydrogen bonds, with bond distances ranging between 2.3 Å to 3.3 Å. The major binding

site residues involved in the hydrogen bond interactions were determined to be Asp-729, Gln-

731, and Leu-765 (Fig 4A). The docking results of MMP2 and NWYR showed nine hydrogen

bond interactions with bond distances between 1.7 Å and 3.3 Å. These interactions emerged

between hydrogen bonds and the amino acid residues Asp-33, Arg-53, Ile-54, Arg-19, and

Tyr-55 (Fig 4B). Moreover, ACE and NWYR connected at Glu-98, Gly-128, and Thr-130

through hydrogen bonds, forming a total of seven hydrogen bonds with an average bond dis-

tance of 2.3 Å (Fig 4C). By molecular docking calculations, the average binding free energy val-

ues of the above proteins were -8.51 kcal/mol, -7.83 kcal/mol, and -8.1 kcal/mol, separately.

We concluded that the interaction between DPP4 and NWYR is the most stable. NWYR is the

optimal core target for the treatment of T2DM. Its grid size (XYZ point) is 100.0, 126.0, and

116.0, with the grid center designated as (x, y, and z) 24.022, 40.437, and 68.159. The docking

results show that bioactive peptide (NWYR) mainly binds to target proteins through hydrogen

bonding and binds to various amino acid residues, thereby affecting the role of the target in

each pathway and achieving the purpose of improving T2DM.

5. Conclusions

In summary, the bioinformatics platform can identify biological peptides in silico hydrolysates,

and porcine collagen proteins are suitable materials for the production of α-glucosidase inhibi-

tory peptides. Our study (1) identified a novel natural peptide (NWYR) with good water solu-

bility, high biological activity, and good ADMET properties that produces few or no side

effects. (2) Through network pharmacological screening, a total of 32 common targets of

NWYR and type 2 diabetes were identified, and 5 core targets were selected according to the
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threshold. (3) Enrichment analysis showed that NWYR regulates a variety of biological pro-

cesses and molecular functions of different cellular components, and can play a hypoglycemic

role through involvement in diabetic cardiomyopathy and IL-17 signaling pathways. (4)

Molecular docking showed that NWYR mainly binds to target proteins through hydrogen

bonding and binds to a variety of amino acid residues, thereby affecting the role of the target

in the pathway and achieving the purpose of improving hyperglycemia. In conclusion, this

study revealed the potential target and mechanism of action of active peptide (NWYR) in

improving T2DM. Porcine collagen can be used as a suitable raw material for the preparation

of hypoglycemic peptide, providing a theoretical basis for the development of NWYR as a

potential hypoglycemic drug. However, in subsequent studies, it is necessary to further verify

the hypoglycemic ability of porcine collagen active peptide (NWYR), and explore the hypogly-

cemic mechanism of NWYR from multiple perspectives such as key target genes, protein

expression levels and differences in metabolites in combination with cell models and animal

models, which will provide more in-depth theoretical support for its improvement in the treat-

ment of diabetes.
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