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Abstract

Dynamic functional connectivity investigates how the interactions among brain regions

vary over the course of an fMRI experiment. Such transitions between different individual

connectivity states can be modulated by changes in underlying physiological mechanisms

that drive functional network dynamics, e.g., changes in attention or cognitive effort. In this

paper, we develop a multi-subject Bayesian framework where the estimation of dynamic

functional networks is informed by time-varying exogenous physiological covariates that

are simultaneously recorded in each subject during the fMRI experiment. More specifi-

cally, we consider a dynamic Gaussian graphical model approach where a non-homoge-

neous hidden Markov model is employed to classify the fMRI time series into latent

neurological states. We assume the state-transition probabilities to vary over time and

across subjects as a function of the underlying covariates, allowing for the estimation of

recurrent connectivity patterns and the sharing of networks among the subjects. We fur-

ther assume sparsity in the network structures via shrinkage priors, and achieve edge

selection in the estimated graph structures by introducing a multi-comparison procedure

for shrinkage-based inferences with Bayesian false discovery rate control. We evaluate

the performances of our method vs alternative approaches on synthetic data. We apply

our modeling framework on a resting-state experiment where fMRI data have been col-

lected concurrently with pupillometry measurements, as a proxy of cognitive processing,

and assess the heterogeneity of the effects of changes in pupil dilation on the subjects’

propensity to change connectivity states. The heterogeneity of state occupancy across

subjects provides an understanding of the relationship between increased pupil dilation

and transitions toward different cognitive states.
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1 Introduction

Functional connectivity (FC) has emerged as one of the most active research areas in func-

tional magnetic resonance imaging (fMRI). The purpose of FC studies is to characterize the

undirected statistical dependencies between brain regions and thus gain a greater understand-

ing of brain functioning [1, 2]. Simple approaches to studying FC rely on readily available mea-

sures of temporal correlation, such as the partial correlations between two brain regions after

conditioning upon all other regions [3, 4]. Such metrics assume that interactions between

brain regions are constant in space and time throughout the fMRI session [5]. Rather, neuro-

scientists have become increasingly aware that functional connectivity is dynamic and fluctuat-

ing, i.e. non-stationary, and that studying the dynamics of FC is crucial for improving our

understanding of human brain function [2, 6, 7]. The term “chronnectome” has been intro-

duced to describe the growing focus on identifying time-varying, but reoccurring, patterns of

coupling among brain regions [8].

Recent studies have highlighted how subjects are more likely to experience particular con-

nectivity states when some underlying physiological conditions are present. For example, [9]

have investigated the association between heart rate variations and FC. Similarly, in a sleep

fMRI study, [10] have shown that transitions between connectivity states slow as subjects fall

into deeper sleep stages. As a further example, [11] have described how connectivity dynamics

are associated with attentiveness in a pencil-tapping task. These studies, among others, have

motivated the need for models that provide a better understanding of how the transitions

between different functional connectivity states are modulated by internal or external condi-

tions measured during the course of an experiment. In the experimental study we consider in

this manuscript, we have available fMRI data collected together with pupillometry measure-

ments. Pupil dilation has become increasingly popular in cognitive psychology to measure

cognitive processing and resource allocation. It is believed that the changes in pupil diameter

reflect brain state fluctuations driven by neuromodulatory systems [12]. For example, the

pupil dilates more under conditions of higher attention [13]. Thus, pupil dilation measure-

ments can be seen as an index of effort exertion, task demand, or difficulty in an fMRI experi-

ment [14]. Thus, it is of interest to understand how pupil dilation is associated with an

increased probability of particular connectivity states experienced by a subject during an

experiment [15].

Many of the commonly used approaches for studying dynamic connectivity rely on multi-

step inferences. For example, in [8] the fMRI time courses are first segmented by a sequence of

sliding windows, and then precision matrices are estimated in each window. Finally, k-means

clustering methods are used to identify re-occurring patterns of FC states. Post-hoc analyses

may be employed to assess the association of the estimated dynamic connectivity states with

other available measurements, like pupil dilation measurements [16]. More recent develop-

ments replace the k-means clustering process with deep neural network based clusters or latent

factor models to estimate FC states. [17–19]. However, the arbitrary choice of the window

length and the offset may lead to spurious dynamic profiles and poor estimates of correlations

for each brain state [20, 21]. Alternative approaches were proposed by [22–24], who developed

change point detection methods to recursively partition the fMRI time series into stable con-

tiguous segments where networks of partial correlations are estimated by employing the

graphical lasso of [25]. A more recent variation use a vine copula model to estimate the rela-

tionships between ROI [26]. These methods do not require pre-specifying the segment lengths

and can detect the temporal persistence of the functional networks. However, they do not

account for the possibility of states being revisited and hence do not conform to the idea that
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the chronnectome exhibits recurrent patterns of dynamic coupling between brain regions of

interest (ROIs).

Other model-based approaches to dynamic connectivity consider the set of ROIs as the

nodes (or vertices) of an underlying graph and employ homogeneous hidden Markov models

(HMMs) to detect state transitions and infer a discrete set of latent connectivity states over

time. [27] develop a Bayesian HMM to model dynamic FC as the transition between state-spe-

cific graphs, each graph being related to others via an underlying super-graph. [28] directly

model the evolving correlation matrix using an HMM. [29] use product HMMs to describe the

evolution of the sliding-windows correlations and capture temporal dependencies across rest-

ing-state networks. [30] used a Bayesian HMM to estimate the dynamic structure of graph the-

oretical measures of whole-brain FC. Also, HMMs have been employed in time-varying vector

autoregressive (VAR) modeling frameworks for whole-brain resting state connectivity, where

the VAR coefficients and the innovation covariance matrix are allowed to change with the

latent states [6, 31, 32]. However, these implementations of hidden Markov models typically

assume that the probabilistic model underlying the state transitions is constant throughout an

experiment. Crucially, such a homogeneity assumption does not allow to assess the modula-

tory effect of time-varying physiological factors on the transitions, e.g. how changes in vigi-

lance measured via pupil dilation can impact state transitions [7].

In this paper, we develop a multi-subject Bayesian framework where the estimation of

dynamic functional networks is informed by time-varying exogenous physiological covariates

that are simultaneously recorded in each subject during the fMRI experiment. More specifi-

cally, we introduce a multi-subject non-homogeneous HMM modeling framework where the

transition probabilities between states are shared between subjects and vary over time as a

fucntion of the covariates. Our setting allows for the estimation of unique connectivity state

transitions for each subject. It also permits group-based inferences, via recurring connectivity

patterns and sharing of networks among the subjects. With respect to the multi-step inference

strategies described above, in our approach both the dynamic connectivity states and their

association with the physiological measurements are estimated in a single modeling frame-

work, accounting for all uncertainties. [33] have recently proposed a two-step multi-subject

fused-lasso approach for detecting change points in functional connectivity. Differently from

their proposal, our method does not assume that the experimental design and the timing of the

change points between connectivity states are shared among all subjects, and can therefore be

applied to more general experimental designs. Indeed, our approach allows for differing state

transition behavior across multiple subjects by modeling the state transition parameters hierar-

chically. This differs from the recently developed dynamic mixture model by [34] where the

network edges are estimated from the task information, as opposed to the transitions like in

our proposed approach. Our modeling approach further assumes sparsity in the network

structures, by assuming a shrinkage prior on the connectivity networks. Additionally, we pro-

pose a strategy for edge selection that combines the posterior shrinkage-informed thresholding

approach of [35] with the Bayesian False Discovery Rate controlling method of [36].

We apply our modeling framework to a resting-state experiment where fMRI data have

been collected concurrently with pupillometry measurements, leading us to assess the hetero-

geneity of the effects of changes in pupil dilation on the subjects’ propensity to change connec-

tivity states. Changes in pupil diameter have been linked to attention and cognitive efforts

modulated by the activity of norepinephrine-containing neurons in the locus coeruleus (LC).

For example, [37] have shown that LC activation predicts changes in pupil diameter that either

occur naturally or are caused by external events during near fixation, as in many experimental

tasks. Therefore, pupil dilation has been used as a proxy for a metric of a person’s willingness

to exert more effort and involve a greater mental effort to complete a task. Recent methods for
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studying such association use a multi-step approach, first identifying switches in subjects’ state

sequences and then calculating the difference between the normalized pupil size before and

after the estimated switch [38]. In our application, we demonstrate how the model can recover

expected change points in dynamic FC states, as those states align quite well with the experi-

mental events regulated by the behavioral task.

The rest of the paper is organized as follows. In section 2 we describe our proposed method

and edge selection procedure. We also give a brief synopsis of our Markov Chain Monte Carlo

(MCMC) approach to posterior inference. In section 3 we showcase our model performance

on simulated data and provide comparisons to the sliding window and homogenous HMM

approaches. Lastly, in Section 4, we apply our model to the LC handgrip data with accompa-

nying results and analysis. Section 5 concludes the paper with a discussion.

2 Methods

In this section, we describe our proposed predictor-informed multi-subject model for dynamic

connectivity. This is a single-step fully Bayesian approach that explicitly models the heteroge-

neity in the dynamics of connectivity patterns across all subjects and—simultaneously—esti-

mates the predictor effects on those dynamics. We achieve this by constructing a non-

homogeneous Hidden Markov Model (HMM) where the transition probabilities are functions

of time-varying covariates.

2.1 An HMM model for dynamic functional connectivity

Let Yi
t ¼ ðY

i
t1; . . . ;Yi

tRÞ
T

denote the vector of fMRI BOLD responses measured at time t in R

regions of interest (ROIs), t = 1, . . ., T on subject i = 1, . . ., N. We adopt a Gaussian graphical

model framework, and assume multivariate normality of the bold signals, that is

Yi
t � NRðm

i
t;O

� 1;i
t Þ, where mi

t is a mean regression term and O
i
t indicates a time-varying preci-

sion matrix, i.e. the inverse covariance matrix at each time point. In graphical models, the

zeros of the precision matrix correspond to conditional independence; that is, if an off-diago-

nal element ωjkt = 0, j, k = 1, . . ., R, j 6¼ k, then the signals Yi
tj and Yi

tkðj 6¼ kÞ are conditionally

independent. The mean term mi
t can be specified as a general linear model [39] to capture acti-

vation patterns over time, as done for example in [27]. Here, however, since we are interested

in capturing connectivity patterns through the modeling of the time-varying precision matrix,

we assume without loss of generality that the BOLD signal has been mean-centered by remov-

ing any estimated trend and activation component. This “detrending” is not uncommon for

studying FC, especially for task-based fMRI data, where the data are first mean-centered, to

remove any systematic task-induced variance, and the analysis is then conducted on the time

series of the residuals [40].

We propose to model the dynamics of FC using an HMM framework with S latent states

characterizing FC and the brain transitions during the fMRI experiment. Our formulation cap-

tures the heterogeneity of individual-specific patterns of connectivity over time, since each

subject’s fMRI data may be characterized by specific change points and evolution of the brain’s

functional organization. However, we assume that the connectivity patterns may also be re-

occurring and they can possibly be shared among the subjects, thus allowing for group-based

inferences. Let (s1, . . ., sT) be a T-dimensional vector of categorical indicators st, such that st = s
if state s is active at time t, s = 1, . . ., S. Then, we assume the data follow a Gaussian graphical

model at time t of the type

Yi
t js

i
t ¼ s;Os � NRð0;O

� 1;i
s Þ; s ¼ 1; . . . ; S; ð1Þ
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with subject-level precision matrices which, at each time, are characterized by the values of

one among S precision matrices, identifying which state is active at that time. Model (1) there-

fore implies connectivity networks that vary by subjects and by state.

2.2 Modeling connectivity transitions as a function of observed

physiological factors

Many neuroscience experiments involve the simultaneous collection of fMRI data together

with physiological, kinematics and behavioral data [41]. For example, our motivating applica-

tion considers a handgrip task where pupillometry dilation data (i.e., measurements of pupil

dilation sizes) are concurrently recorded. Pupillary dilation is regarded as a surrogate measure

for activity in the locus coeruleus circuit, which plays a central role in many cognitive pro-

cesses involving attention and effort, and it is considered the main source of the neurotrans-

mitter noradrenaline, a chemical released in response to pain or stress. Neuronal loss in the

locus coeruleus is known to occur in neurodegenerative disorders such as Alzheimer’s disease

and related dementias as well as Parkinson’s disease dementia. It is therefore important to

understand how brain dynamics may be differentially modulated as a function of pupil dila-

tion in different subjects.

Here, we propose to model the dynamics of FC by developing a non-homogeneous HMM

framework where estimation is informed by subject-level time-varying exogenous physiologi-

cal covariates, e.g. physiological factors like the pupillary data in our motivating application.

More in detail, we assume that switches between states are regulated by transition probabilities

that vary over time and across subjects as a function of B time-varying subject-level covariates

as

Qi
rst ¼ Pðstþ1 ¼ s jst ¼ rÞ ¼

expðxi
rs þ xiT

t ρi
sÞ

PS
l¼1

expðxi
rl þ xiT

t ρi
lÞ
; r; s ¼ 1; . . . ; S; ð2Þ

where xi
t denotes a B × 1 vector of covariate values for subject i at time t, and ρi

s ¼

ðri
s1; . . . ; ri

sBÞ is the corresponding B×1 vector encoding the effect of each covariate on the

probability of transitioning to state s for subject i. The parameter x
i
rs defines a baseline transi-

tion probability from state r to state s for subject i, that is the transition probability without any

covariate effect. To ensure identifiability, we define a state as reference. Without loss of gener-

ality, we set s = 1 as the reference state, and also set the coefficients ri
1b, b = 1, . . ., B, and x

i
1 �

,

i = 1, . . .N equal to zero. Thus, the state transition coefficients are interpreted with respect to

the reference state, and we can re-express (2) in terms of the log-relative odds of the transition

from state r to state s compared to the transition from state r to the reference state 1,

log
Qi

rst

Qi
r1t

� �

¼ x
i
rs þ xiT

t ρi
s; r; s ¼ 1; . . . ; S: ð3Þ

In this formulation, the transition coefficients expðri
sbÞ, b = 1, . . .B, are more naturally inter-

preted as the relative change in odds of transitioning to state s compared to transitioning to

state 1, after a one unit change in xi
tb, holding all other covariates as constant. Similarly, the

coefficient expðxi
rsÞ is interpreted as the expected odds of transitioning from state r to s com-

pared to transitioning from state r to 1, when the time-varying covariates, xi
t , are 0 or at a base-

line/average value.

We assume independent Gaussian priors for the transition parameters ρ and ξ. We further

allow for sharing of information in estimating the state transition structure across subjects, by

employing a hierarchical modeling formulation for the state transition parameters. More
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specifically, we assume that the individual coefficients x
i
rs and ri

sb, b = 1, . . ., B, vary around

population-level means, Zrs and ηsb, as follows:

sitþ1
jsit ¼ r � MultiðQi

r;�;tÞ t ¼ 1; . . . ;T;

x
i
rs � NðZrs; sxÞ;

ri
sb � NðZsb; srÞ;

Zrs � Nðz0
rs; szÞ;

Zsb � Nð0; sZÞ;

ð4Þ

where Qi
r;�;t ¼ ðQ

i
r;1;t; . . . ;Qi

r;S;tÞ
T
, and r, s = 1, . . ., S, b = 1, . . ., B. By allowing each subject to

have their own transition parameters the model allows for unique subject-level transition

behavior while also capturing population-level estimates through the group level parameters.

The interpretation of the group level parameters, η and Z, is similar to their single subject

counterparts. The prior means z0
rs are usually set to 0 except for z0

rr, r 6¼ 1, which is set to be pos-

itive to encourage state persistence over time (self-transitions) and thus more stable estimated

state sequences. Keeping in mind that these state transition parameters operate on the log

odds of transition relative to state 1, and that interpretation of the parameters require expo-

nentiation, a small shift in value for the state transition parameters can result in rather large

changes in state transition behavior. To this end, we recommend setting the variance parame-

ters of the priors for ξ, ρ, Zrs and ηsb to some small positive value on the order of 0.1.

2.3 Modeling sparsity through a graphical horseshoe prior

Functional networks are thought to exhibit the so-called small world behavior, indicating a

high degree of clustering and high efficiency in the estimated networks [42, 43]. This leads to

an expectation of sparsity within functional networks and the associated precision matrices. In

a Bayesian framework, sparsity can be enforced by postulating either selection- or shrinkage-

inducing priors. Selection involves inferring which off-diagonal elements of the precision

matrix should be set to exact zeros. [27] achieve such a selection by using a G-Wishart prior to

sample positive definite matrices according to estimated adjacency matrices that correspond

to the FC networks. This selection approach is intuitive and leads to straightforward inferences

via the posterior probabilities of inclusion of the elements of the precision matrix. However, it

is computationally challenging and does not scale well to relatively large dimensions of the net-

works. Here, instead, we take a shrinkage-based approach and model the off-diagonal entries

of the state-specific precision matrices Os, s = 1, . . ., in (1) by employing a graphical horseshoe

prior [44]. Thus, we set

pðOsjt;LÞ /
Y

j<k

Nðojksjl
2

jk t
2Þ
Y

j<k

Cþðljkj0; 1ÞIðOs 2 SRÞ; s ¼ 1; . . . ; S ð5Þ

where I(Os 2 SR) is an indicator function to ensure that samples of Os belong to the space of

positive definite R × R matrices and C+(�;μ, σ) denotes a half-Cauchy distribution with location

parameter μ and scale σ. In (5), we further assume a non-informative flat prior for the diagonal

elements, i.e. ωjjt/ 1. The shrinkage of the off-diagonal elements is obtained through the com-

bined effect of the variance components l
2

jk and τ2 in the normal priors for ωjkt, j = 1, . . ., k − 1,

k = 1, . . ., R. The parameter τ is a global shrinkage parameter, that controls how sparse the pre-

cision matrix is in its entirety. The parameter λjk:j<k defines instead a local shrinkage parame-
ter, since it allows to shrink each individual off-diagonal entry ωjk towards zero, whereas it
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maintains the magnitude of non-zero entries and thus reduces biases. Following [44], we

assume a half-Cauchy prior on τ, τ* C+(�;0, τ0), with τ0 indicating an a priori belief about the

global sparsity of the estimated graph. In order to specify τ0, one can simulate graphs under

the informal selection rule of [35], where an edge j,k is selected if E 1

1þljkt

� �
< 0:5. We demon-

strate such a process in S1 Fig in the S1 File. We find that a τ0 = 1 gives an expected edge den-

sity of approximately 50% while having the largest spread. Fig 1 provides a graphical

representation of the proposed predictor-informed Bayesian dynamic FC model (PIBDFC).

2.4 Posterior inference

The posterior distribution for the parameters in the proposed model is not available in closed

form. Hence, we revert to Markov Chain Monte Carlo (MCMC) techniques for posterior

inferences. In particular, we follow [45] and employ Polya Gamma auxiliary variables [46] to

sample the state transition parameters. Based on the sampled Qi
�;�;t , we can construct a

sequence of transition matrices based on Eq (3). After normalizing each row Qi
s;�;t so that it

Fig 1. Graphical representation of the proposed PIBDFC. The data Yi
t are emissions from a distribution that is

parameterized by a precision matrixOsit
, which encodes the FC and is determined by the state active at time t:

sit 2 f1; . . . ; S, t = 1, . . ., T, i = 1, . . ., N. The probabilities of transitions from sit to sitþ1
are given by the ðsit; s

i
tþ1
Þ entry of

the S × S matrix Qi
�;�;t . This entry is modeled according to Eq 3.

https://doi.org/10.1371/journal.pone.0298651.g001
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sums to 1, we use a stochastic forward-backward algorithm to sample the state sequence

[47]. Then, conditioned upon the estimated state sequence, it is possible to sample the preci-

sion matrix parameters using the blocked Gibbs algorithm presented in [44]. Other parame-

ters in the hierarchical model for the states’ transitions (4) are sampled via simple Gibbs

steps. By iterating through the steps above, we obtain samples from the posterior. We pro-

vide a brief summary below:

1. Sample Qi
...
; x

i
��
; ri
�
: We can rewrite the likelihood for x

i
rs according to [48] to be in the form

of Eq 6.

Lðxi
rsÞ /

Y

t:sit� 1
¼r

expðxi
rs � cirstÞ

Iðsit¼sÞ

1þ expðxirs � cirstÞ
ð6Þ

where cirst ¼ log
P

m6¼sexpðx
i
rm þ xitr

i
m � xitr

i
sÞ. Using the Polya-Gamma augmented logistic

regression technique of [46], we get the posterior of x
i
rs to be conditionally Gaussian.

x
i
rsj� � N

Zrs=sx þ nrsi � Nri þ 2
P

t:sit� 1
¼ro

i
rstc

i
rst

P
t:sit� 1

¼ro
i
rst þ 1=sx

; ð
X

t:sit� 1
¼r

oi
rst þ 1=sxÞ

� 1

0

@

1

A

where nrsi is the count of transitions from state r to state s during the timecourse of subject i
and Nri is the number of times subject i visited state r. oi

rst is a Polya-Gamma random vari-

able distributed PGð1; xi
rs � cirstÞ. We use a similar strategy to update ri

rb, the logistic compo-

nent for subject i for state r and covariate b, achieving the posterior:

ri
rbj� � N

Zrb=sr þ
PTi

t¼1
xi
tbðIðstþ1 ¼ rÞ � 1=2þ oi

rbtc
i
st rb
Þ

PTi
t¼1
ðxi

tbÞ
2
oi

rbt þ 1=sr
; ð
XTi

t¼1

ðxi
tbÞ

2
oi

rbt þ 1=srÞ
� 1

 !

where cirst ¼ log
P

m6¼sexpðx
i
rm þ xitr

i
m � xitr

i
sÞ.

2. Sample sit: We sample the sequence of states by adapting the stochastic forward-backward

algorithm presented by [47].

3. Sample the matrices O
i
s, s = 1, . . ., S: The conditional posterior for Os is as follows:

PðOsjY; s
�

�
; l��s; tsÞ /

Y

fi;t:sit¼sg

NRðY
i
t j0;O

� 1

s Þ
YR

j¼2

Yj

i¼1

Nðoijsj0; lijstsÞ

For MCMC inference purposes, [44] adopt auxiliary variables νλ and ξτ, in order to modify

the Gibbs sampling procedure presented by [49]. This procedure is performed for a col-

umn-wise update in a fashion similar to [50]. For each state, we update Os by following the

Graphical Horseshoe algorithm letting S ¼ ns∗Ŝs where ns and Ŝs are the sizes and sample

covariance matrices of observations assigned to state s.
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4. Sample Zrs; Zb: These conditional posteriors follow the typical normal-normal update:

Zrsj� � N
1

sz
þ

n
sx

� �� 1 z0
rs

sz
þ

P
ix

i
rs

sx

� �

;
1

sz
þ

n
sx

� �� 1
 !

;

Zbj� � N
1

sZ
þ

n
sr

 !� 1

Z0b
sZ
þ

P
ir

i
b

sr

 !

;
1

sZ
þ

n
sr

 !� 1 !

:

2.5 Graph selection

Our model achieves sparsity of the estimated functional network thanks to the shrinkage of the

off-diagonal elements ofO provided by the graphical horseshoe prior. However, shrinkage pri-

ors do not lead to exact zeros. Hence, non-relevant connectivities need to be identified through

post-MCMC inference. For example, [44] suggest using 50% posterior credible intervals of the

inverse-covariance elements, and then thresholding the off-diagonal element to zero if the

interval contains 0, reporting the posterior mean otherwise. However, the resulting selection

does not provide a multiplicity control for false discoveries.

We follow a decision-theoretic approach and formulate the graph selection problem as a

testing problem based on the posterior evidence of shrinkage for each off-diagonal element of

the precision matrix Os. Since we consider the posterior estimates of Os for each state s = 1, . . .,

S, separately, in the following we drop the superscript s for notational simplicity, unless needed

for clarity. For any given state s = 1, . . ., S, the j, k off-diagonal element ωjk (j< k;k = 2, . . ., R)

provides a measure of the connectivity level, with ωjk = 0 indicating that the connectivity is

truly zero, and |ωjk| 6¼ 0 otherwise. Let δjk indicate the decision (action) in the testing problem,

that is δjk = 1 corresponds to rejecting the null hypothesis of no connectivity and δjk = 0 failure

to reject (acceptance). Let D = ∑j<k δjk indicate the total number of positive (significant) deci-

sions taken. Following [51], for real numbers c1, c2 > 0, we can then determine the optimal set

of decisions δ ¼ fd12; d13; . . . ; dR� 1 Rg by minimizing the following loss function:

LOs
ðOs; δ;YÞ ¼ �

X

j<k

djk jojkj þ c1

X

j<k

ð1 � djkÞ jojkj þ c2D:

The loss function compounds a reward for correct decisions (true positives), provided by the

first addend, −∑j<k δjk|ωjk|, where each correct decision is proportional to |ωjk|’s, and a penalty

for false negative discoveries, represented by the second addend, ∑(1 − δjk)|ωjk|. The last term

encourages parsimony, by increasing the penalty as the number of significant elements

increases. The optimal decision is obtained by minimizing the posterior expected loss,

EðLOs
jY; tÞ ¼ �

X

j<k

djk EðjojkjjY; tÞ þ c1

X
ð1 � djkÞ EðjojkjjY; tÞ þ c2D;

where E(ωjk|Y, τ) is the posterior mean of the off-diagonal elements of the inverse matrix O.

The minimizer corresponds to a threshold of the posterior means to identify the non-zero ele-

ments of the precision matrix,

d
∗
jk ¼ IfEðjojkjjYÞ � c2=ð1þ c1Þg:

[44] show that the posterior mean is unbiased and it can be represented as a linear function of

a shrinkage factor defined by the expected value of the random variable kjk ¼
1

1þl2
jkt

2, which has
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a compound confluent hypergeometric distribution [52]. More in detail, EðojkjY; tÞ ¼
ð1 � EðkjkjY; tÞÞô 0jk with ô0jk representing the least square estimate of ωjk, j< k. See Theorem

4.1 in [44], and related discussions in [53]. The result extends trivially to the folded normal dis-

tribution characterizing |ωjk|. Note that κjk 2 (0, 1), and that larger values of E(κjk) indicate

stronger shrinkage of the posterior estimates toward zero.

Graph selection can be conducted by thresholding an estimate k̂ jk of the shrinkage factor

κjk, i.e.

d̂∗i ¼ Ifk̂ jk � Zg;

for some threshold η 2 (0, 1). For example, in the simple regression case, [35] have previously

recommended an informal decision rule thresholding ωjk to 0 if 1 � k̂ jk < 0:5 where k̂ jk is the

posterior median of κjk. However, such a rule does not take into account the multiplicity prob-

lem induced by the selection of the off-diagonal elements of the precision matrix. The poste-

rior medians k̂ jk provide a measure of the evidence in favor of the null hypothesis, H0 : ωjk = 0.

Hence, a threshold η could be set by controlling a measure of the Bayesian False discovery rate

[54] at a certain level q*, that is to satisfy the equation

BFDRðZÞ ¼
P

jkk̂ jk Iðk̂ jk � ZÞ
P

jkIðk̂ jk � ZÞ
< q∗:

For a related but different solution to the problem of graph selection, see also [55], who con-

sider inference on the partial correlation matrix derived from O.

3 Simulation study

In this Section, we present three sets of simulated datasets that aim at measuring the perfor-

mance of our model with respect to the detection of non-zero connectivities and the estima-

tion of the latent connectivity states over time. More specifically, in the first two simulation

studies, we compare the proposed predictor-informed Bayesian dynamic functional connectiv-

ity (PIBDFC) model with two alternative models: a widely-used tapered sliding window

(Tapered SW) approach, first outlined by [56], and the Bayesian Dynamic Functional Connec-

tivity (BDFC) model developed by [27]. The Tapered SW represents a standard approach in

the FC literature, whereas BDFC uses a homogeneous HMM to model latent connectivity state

dynamics. The BDFC provides a model-based estimation of exact zeros in the functional net-

works at the cost of computational scalability and speed, as opposed to our computationally

faster soft-shrinkage-based approach. Furthermore, the BDFC does not incorporate any pre-

dictor information in the latent state dynamics.

Both competing approaches were developed for single-subject inference. We compare to

our multi-subject model by concatenating the multi-subject data along the time axis for input

into the respective algorithms. All models are run on a Linux computer with an Intel Xeon

Gold processor (2x 3.10 GHz) and 4 GB of RAM. For both the PIBDFC and BDFC, we simu-

lated 5,000 posterior samples after 5,000 burn-in draws. When fitting PIBDFC, we set the

hyperparameters τ0 = 1, σξ = σρ = σz = ση = 0.1, following the motivations of Section 2.

We assess the performance of our model on states’ reconstruction by computing a set of

metrics for each latent state separately. Let rjk, j< k;k = 2, . . ., R, denote the binary indicator of

a non-zero connection between regions j and k. Following the discussion in Section 2, let δjk
indicate the decision after the model fit. Then we define the edge true positive rate (TPR) as

∑rjkδjk/∑rjk. Similarly, the edge true negative rate (TNR) is defined as ∑(1 − rjk)(1 − δjk)/∑(1 −
rjk). The Edge F1 score (F1) is the product of the TNR and TPR, and serves as a measure of the
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overall performance in graph estimation, balancing between the TPR and TNR. Analogously,

we define a metric to assess the performance of the model in the estimation of the states’

sequences. Let sit indicate the true latent state active at time t for subject i and let ŝit indicate its

model estimate. Then, the state sequence accuracy for state s is defined as
P
fIðsit ¼ sÞIðŝit ¼ sÞg=

P
Iðsit ¼ sÞ.

3.1 Simulation Study 1

In our first study, we investigate the performance of our model in an ideal setting where the

data generation process matches the model closely. We set T = 300 time points, R = 16 ROIs,

N = 30 subjects, and S = 3 connectivity states. In this setting, we simulate data Yi
t �

N16ð0;O
� 1

sit
Þ with Osit

encoding the individual conditional independence structure at time t,
identified by the value of the state indicator variables sit 2 f1; 2; 3g and the prespecified graphs

in the first row of Fig 2. In order to study the effect of the predictor information on the estima-

tion of the transition probabilities and the FC dynamics, we introduce a single binary time-

varying predictor variable, xt, which transitions from 0 to 1 when t ¼ T
2
. For each value of the

exogenous variable, we set the transition probabilities for the latent state trajectories as follows

Qt ¼

0:98 0:02 0

0:1 0:9 0

0 0:5 0:5

when xt ¼ 0; Qt ¼

0 0:5 0:5

0 0:7 0:3

0 0:02 0:98

2

6
6
6
4

3

7
7
7
5
when xt ¼ 1:

3

7
7
7
5

2

6
6
6
4

Therefore, for each subject, the state sequence enforces transitions between states 1 and 2 for

the first half of the time series, whereas it enforces transitions between states 2 and 3 for the

second half. We then simulate different state sequences for each subject using Eq (3), and repli-

cated the process over 30 independent simulated data sets. In order to assess the performance

of the methods for different levels of signal strength, we repeated the simulation experiment

using different precision matrices Os, s = 1, 2, 3 of the same structure of the top row of Fig 2

but allowing for different values of the non-zero entries. This is done by using the sprandsym
function from the Mathematics toolbox of Matlab. This function takes in an adjacency matrix

representation of a graph, As 2 RR�R
where Aijs = I(ωijs 6¼ 0), and outputs a positive definite

matrix with the same placement of 0’s but random non-zero entries. This output matrix is

then normalized to a partial correlation matrix. Thus, we obtained a total of six sets of preci-

sion matrices to learn the structure of. We show the aggregated results in Fig 3. The horizontal

axis reports the average strength of the non-zero partial correlations for each of the six sets of

precision matrices, indicating a level of signal strength. The PIBDFC consistently performs

better in connectivity estimation with regard to true positive rate and F1 score, across all levels

of partial correlations. The BDFC appears as the most conservative, as highlighted by the large

true negative rates, but low true positive rates. Based on the results above, the PIBDFC displays

the best balance of finding true non-zero partial correlations while controlling for false

positives.

In the following, we illustrate the inferential analyses enabled by the proposed PIBDFC

approach by showcasing a single replicate. In Fig 2 (bottom row) we show how the PIBDFC is

able to recover the true conditional independence structure underlying the data generation

process by estimating the partial correlations between regions and enforcing the true 0’s

through the BDFR approach devised in Section 2. The model is also able to recover the most

likely state transition sequence for each subject, as determined by the maximum a posteriori
state estimate at each time point. See Fig 4. It is also important to assess the ability of the
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method to identify true change points in the connectivity structure. Fig 5 reports the estimated

connectivity change points for a representative subject. PIBDFC is able to estimate the state

sequence well while tying together the increased rate of appearance of state 3 when the stimu-

lus changes from 0 to 1 halfway through the simulated experiment. All models were compared

in terms of computation time as reported in Table 1. PIBDFC is also able to draw as many pos-

terior draws in a third of the computation time.

3.2 Simulation Study 2

In this second simulation study, we measure the performance of our approach with synthetic

data that are similar to real fMRI data. More specifically, we use the Matlab simulation

toolbox SimTB of [57] and follow the simulation approach of [27]. The SimTB

Fig 2. Example estimation of state related partial correlation matrices on simulated data. Top: The true partial correlation matrices for each state

responsible for generating the simulation data in the Simulation Study 1. Bottom: The estimated partial correlation matrix from the proposed PIBDFC from

a single repetition of the simulation. Each estimated partial correlation is the posterior mean of their respective distributions. Cells are set to 0 in post-hoc

MCMC by controlling the BFDR at the 0.2 level. See Sections 2 and 3 for details.

https://doi.org/10.1371/journal.pone.0298651.g002
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toolbox implements a canonical hemodynamic response function [58], defined as a linear

combination of two gamma functions, to simulate fMRI time series. This function is then con-

volved with a box stimulus function where Gaussian noise with variance = 0.01 is added. FC is

then obtained by predefining cliques, i.e. clusters of regions, that have signal (here, 0.5) added

to or subtracted from all regions in the clique simultaneously at random time points within a

connectivity state. This induces correlation while having non-Gaussian errors. We then simu-

late the state sequence over T = 150 time points with xt being 0 for the first 75 time points and

1 for the last 75 among all subjects. Similar to Simulation Study 1, we use the exact same Qt

among all subjects. We repeat this process for N = 30 subjects over 30 simulation replicates.

In Table 2 we show the results to the application on the SimTB data. PIBDFC does a good

job at detecting the connectivities between the simulated regions, despite a misspecified likeli-

hood. The performance in both graph and state estimation appears to decline slightly in com-

parison to the Simulation 1 setting, which is expected. The Tapered SW approach suffers from

low specificity. Compared to the standard HMM of BDFC, the proposed PIBDFC performs

slightly better at detecting changes in state transitions, thus improving graph estimation per-

formance as a result. This is likely due to the distortion introduced in the partial correlation by

the convolution with the hemodynamic response function. In this setting, the covariate infor-

mation becomes more relevant in helping the model identify changes in the state transition

behavior. The computational time is also quite favorable compared to the approach of [27],

despite allowing for individual differences in state dynamics among the 30 subjects.

3.3 Simulation Study 3

In this simulation setting, we compare the performances of our model and the Connectivity

Change Point Detection (CCPD) model of [33] on edge- and change-point detection. Contrary

to our model, the CCPD model employs a two-stage approach for estimating dynamic FC. In

Fig 3. Edge detection performance by PIBDFC, BDFC, and Tapered SW. True Positive Rate, True Negative Rate, F1

Score, and state accuracy metrics for the PIBDFC, BDFC, and Tapered SW approaches over different settings of the

correlation structure. Along each horizontal axis is the average strength of the non-zero partial correlations for each

state, corresponding to different levels of signal strength.

https://doi.org/10.1371/journal.pone.0298651.g003
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the first stage, the model learns the number and locations of the change points from all avail-

able subjects’ data. In the second stage, a graphical lasso approach is applied independently to

the time scans between two change points. Since the CCPD model assumes that every change

point occurs at the same time for each subject, in order to fairly compare the two methods we

simulate data under the CCPD assumption of common change points. More specifically, we

set T = 300 and generate Yi
t � Nð0;Ost

Þ where st varies across the following sequence of states:

{1, 2, 3, 1} switching at t = 75, 150, 225, for a total of 3 change-points overall. We use the same

true partial correlation matrices to generate the data as in Simulation study 1. For the PIBDFC,

a time point t for subject i was judged to be a change point if Pðsit 6¼ sit� 1
jYi

1:TÞ > 0:95. PIBDFC

does not assume common change points and, as a result, does not infer common change

points across individuals; therefore, we report the average number of change points across all

subjects.

In Table 3, we show the results of the comparison between PIBDFC and CCPD under a

shared change point model. CCPD is indeed able to accurately detect the number of change

points and the resulting graph structure in each partition well. By thresholding the posterior

probability of a change point, our model tends to overestimate the number of change points

on average, as it sometimes estimates very sudden changes of state for a brief collection of time

points in some subjects. In contrast, in simulation studies 1 and 2, the change points are gener-

ated from a process that truly follows a hidden Markov model, leading to more accurate

Fig 4. Example estimation of state transitions on simulated data. Top: The true state transition path for each subject (vertical axis) across each time point

(horizontal axis). The color in each cell identifies which precision matrix in Fig 2 generated the simulated the data for each subject-time point pairs. Bottom:
The maximum a posteriori estimated state trajectories from PIBDFC.

https://doi.org/10.1371/journal.pone.0298651.g004
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Fig 5. Example estimation of state changepoints on simulated data. Estimation of the connectivity change points in a representative subject. The

horizontal axis indicates the time points while the vertical axis reports the posterior probability Pðs1
t 6¼ s1

t� 1
jYi

1:TÞ. The posterior probabilities of a change

point are in red, whereas the black spikes represent the true change points for the subject. We also display a horizontal dotted line at 0.95 to reflect the

informal rule of declaring a change-point if Pðs1
t 6¼ s1

t� 1
jYi

1:TÞ > 0:95.

https://doi.org/10.1371/journal.pone.0298651.g005

Table 1. Simulation Study 1: Results over 30 repetitions. We report sensitivity and specificity metrics for the esti-

mated graphs of the corresponding states, together with the overall accuracy of the estimated state sequences. Standard

deviations across the 30 simulations are showed in brackets. The proposed method maintains the best balance between

sensitivity and specificity as well as latent state estimation accuracy.

Metric Method State 1 State 2 State 3

TPR PIBDFC 0.9814 (0.015) 1.0000 (0) 0.9806 (0.010)

Tapered SW 0.9779 (0.018) 0.9676 (0.077) 0.9776 (0.015)

BDFC 0.9221 (0.064) 0.9435 (0.082) 0.8326 (0.093)

TNR PIBDFC 0.9672 (0.007) 0.9585 (0.007) 0.9351 (0.013)

Tapered SW 0.7623 (0.074) 0.700 (0.107) 0.7034 (0.104)

BDFC 0.9737 (0.039) 0.9835 (0.031) 0.9822 (0.034)

F1 Score PIBDFC 0.9493 (0.019) 0.9585 (0.007) 0.9170 (0.020)

Tapered SW 0.7459 (0.072) 0.6839 (0.141) 0.6888 (0.105)

BDFC 0.9020 (0.090) 0.9330 (0.101) 0.8242 (0.108)

State Acc PIBDFC 0.9967 (0.001) 0.9880 (0.002) 0.9959 (0.001)

Tapered SW 0.9340 (0.084) 0.7496 (0.323) 0.9538 (0.113)

BDFC 0.9993 (0.001) 0.9871 (0.005) 0.9980 (0.001)

Time (min) PIBDFC 197.57 (24.788)

Tapered SW 0.6573 (0.085)

BDFC 1015.5 (58.922)

https://doi.org/10.1371/journal.pone.0298651.t001
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estimates. By leveraging on the assumption of common change points, the two-stage CCPD

model can achieve increased accuracy, while our model allows for the incorporation of indi-

vidual transitions and covariates in the transition probabilities.

4 Case study

We apply the proposed PIBDFC model to the motivating dataset. In our application, we dem-

onstrate how the model can recover expected change points in dynamic FC states, as those

states align quite well with the experimental events regulated by the behavioral task. We are

also able to estimate the effect of pupil dilation on the subjects’ propensity to change states.

4.1 Experimental design and data collection

In this experiment, subjects performed a handgrip task adapted from [59]. Thirty-one partici-

pants (18 females, mean age 25 years ± 4 years) enrolled in this study at the University of

Table 2. Simulation Study 2: Results over 30 repetitions. We report sensitivity and specificity metrics for the esti-

mated graphs of the corresponding states, together with the overall accuracy of the estimated state sequences. Standard

deviations across the 30 simulations are shown in brackets. The proposed method maintains the best balance between

sensitivity and specificity as well as latent state estimation accuracy.

Metric Method State 1 State 2 State 3

TPR PIBDFC 1 (0) 0.8290 (0.032) 0.7652 (0.039)

Tapered SW 1 (0) 1 (0) 1 (0)

BDFC 0.9769 (0.070) 0.9014 (0.156) 0.7203 (0.189)

TNR PIBDFC 0.9278 (0.004) 0.8604 (0.041) 0.9250 (0.040)

Tapered SW 0.3286 (0.109) 0.4583 (0.165) 0.2500 (0.157)

BDFC 0.8294 (0.150) 0.8552 (0.148) 0.9531 (0.088)

F1 Score PIBDFC 0.9278 (0.004) 0.7134 (0.045) 0.7083 (0.055)

Tapered SW 0.3286 (0.109) 0.4583 (0.165) 0.2500 (0.157)

BDFC 0.8063 (0.138) 0.7717 (0.192) 0.6822 (0.176)

State Acc PIBDFC 0.8526 (0.029) 0.7507 (0.022) 0.7727 (0.022)

Tapered SW 0.7199 (0.175) 0.4133 (0.100) 0.6342 (0.108)

BDFC 0.6110 (0.43) 0.7181 (0.11) 0.5541 (0.37)

Time (min) PIBDFC 161.23 (29.493)

Tapered SW 1.9241 (0.31)

BDFC 500.57 (18.11)

https://doi.org/10.1371/journal.pone.0298651.t002

Table 3. Simulation Study 3: Results over 30 repetitions. We show the entry-wise true positive and true negative

rates for the estimated graphs for the corresponding states. We also show the estimated number of change points.

PIBDFC performs comparably to CCPD in the setting where change points are common among subjects despite no

explicit assumption of this being the case.

Metric Method State 1 State 2 State 3

TPR PIBDFC 0.9650 (0.02) 1.0000 (0) 0.9867 (0.01)

CCPD 0.9333 (0.02) 1.0000 (0) 0.9800 (0.02)

TNR PIBDFC 0.9674 (0.01) 0.9719 (0.01) 0.9615 (0.02)

CCPD 0.9733 (0.09) 0.9978 (0.01) 0.7719 (0.06)

F1 Score PIBDFC 0.9336 (0.02) 0.9719 (0.01) 0.9486 (0.02)

CCPD 0.9078 (0.08) 0.9978 (0.01) 0.7564 (0.06)

ChgPts (3) PIBDFC 3.8 (0.97)

CCPD 3.1 (0.38)

https://doi.org/10.1371/journal.pone.0298651.t003
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California, Riverside Center for Advanced Neuroimaging, but one was excluded due to a his-

tory of attention deficit hyperactive disorder resulting in a total of N = 30 subjects. All subjects

provided written informed consent to participate, and received monetary compensation for

their participation. The study protocol was approved by the University of California, Riverside

Institutional Review Board (IRB). Magnetic resonance imaging (MRI) data were collected on a

Siemens 3T Prisma MRI scanner (Prisma, Siemens Healthineers, Malvern, PA) with a 64 chan-

nel receive-only head coil. fMRI data were collected using a 2D echo planar imaging sequence

(echo time (TE) = 32 ms, repetition time (TR) = 2000 ms, flip angle = 77˚, and voxel

size = 2 × 2 × 3mm3, slices = 52) while pupillometry data were collected concurrently with a

TrackPixx system (VPixx, Montreal, Canada).

All subjects underwent a 12.8-minute experiment in which they alternated between six rest-

ing state blocks and five squeeze blocks. In the squeeze blocks, they brought their dominant

hand to their chest while holding a squeeze-ball [59]. The five squeeze blocks lasted 18 seconds

while the interspersed six resting state blocks had durations of five-, two-, two-, five-, one-,

and one-minute, respectively.

All subjects underwent two sessions: one where they executed the squeeze at maximum

grip strength (active session), and one where they still brought their arm up to their chest but

were instructed simply to touch the ball and not to squeeze it (sham session). The fMRI data

underwent a standard preprocessing pipeline using the brain software library (FSL). The pipe-

line consisted of slice time correction, motion correction, susceptibility distortion correction,

and spatial smoothing using a kernel Gaussian smoothing factor set at a full-width half maxi-

mum of 0.8475 [60, 61]. Finally, all data were transformed from the individual subject space to

the Montreal Neurological Institute (MNI) standard space using standard procedure in FSL

[60, 61].

Pupillometry data were collected during the scans, using a sampling rate of 2kHz, prepro-

cessed using the ET-remove artifacts toolbox (github.com/EmotionCognitionLab/ET-remove-

artifacts), and downsampled to match the temporal resolution of the fMRI data [59]. To mea-

sure pupil dilations relative to baseline, the dataset was normalized by dividing by subject-spe-

cific means of the first five-minute resting state block (prior to any squeeze or hand-raising),

leading to percent signal changes. Three subjects’ data were discarded due to technical difficul-

ties during the acquisition of pupil dilation measurements, resulting in N = 27 for all subse-

quent analyses.

Since we used a pseudo-resting state paradigm, our interest was focused on five networks of

interest that have all been associated with resting state and have been related to attention in

some manner. Default mode network (DMN; a resting state network) and dorsal attention net-

work (DAN; an attention network) were selected because squeezing ought to invoke a transi-

tion from the resting state into a task-positive state [62]. The fronto-parietal control network

(FPCN) was chosen because it is linked to DAN and regulates perceptual attention. Salience

network (SN) was selected because it determines which stimuli in our environment are most

deserving of attention [59, 63]. Talariach coordinates for regions of interest (ROIs) within

DMN, FPCN, and DAN were taken from [64] and converted to MNI coordinates while SN

MNI coordinates were taken directly from [64–67]. Two ROIs from FPCN (dorsal anterior

cingulate cortex and left dorsolateral prefrontal cortex) were excluded due to their close loca-

tion to other ROIs. The locus coeruleus (LC) was localized using the probabilistic atlas

described in [68]. Blood oxygen level-dependent (BOLD) signal from each voxel within an

ROI were extracted and averaged to represent the overall signal for an ROI. We eventually

considered 31 total ROIs: 9 from DMN, 7 from FPCN, 6 from DAN, 7 from SN, and 2 from

LC. The MNI anatomical coordinates for the four attention networks and LC were used to
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center a 5 mm3 isotopic sphere [69, 70]. See the S1 File for a list of the ROIs and corresponding

MNI stereotaxic space coordinates and networks.

4.2 Model fitting

The 31 ROIs described above formed the vectors of BOLD responses Yi
t ¼ ðY

i
t1; . . . ;Yi

t31
Þmea-

sured on subject i = 1, . . ., 27 at time t, for t = 1, . . ., 1050. We also included concurrently

recorded pupillometry data as a proxy for quantifying the effect of LC engagement on the

dynamics of FC [71].

We fit our model with different number of total states, i.e., S = 3, 4, 5, 6. However, when

assuming more than 3 states, the fit simply degenerated to 3 states in the posterior inference,

with no observations assigned to additional states. This result indicates no posterior support

for models with S> 3 Thus, here we present the model specification for 3 states with the fol-

lowing settings for the hyperparmeters in (2). We set the group level baseline relative transition

prior means z0
rr ¼ 2 for r = 2, 3 while all other elements of z0

��
are set to 0. We also set the prior

spread of the baseline transitions and pupillary effects σz, ση = 0.05. This combination of set-

tings is used to encourage self-transitions, as they correspond to preferring smoother state

sequences a priori among all subjects. We set the prior variability of the subject-level transition

parameters around the group-level transition parameters, by choosing σξ, σρ = 0.1, therefore

capturing individual differences between subjects on the log-odds of transitioning between

states. Lastly, τ0, the hyperparameter informing prior knowledge of connectivity network spar-

sity, is set to 1, as this value corresponds to a prior distribution with a high spread over edge

densities (see S1 Fig in the S1 File).

4.3 Results and discussion

Fig 6 plots the estimated connectivity networks for each of the three states. Nodes represent

ROIs and edges identify the estimated non-zero partial correlations between pairs of nodes.

Fig 6. Real Data Analysis: The estimated connectivity networks for the ROIs. Nodes represent ROIs and the edges denote the partial correlations

between the connected nodes. The edge colors correspond to the directionality of the partial correlations and the width corresponds to the magnitude.

Node colors identify clusters of regions into a priori defined networks. See Section 4 and S1 Table in the S1 File.

https://doi.org/10.1371/journal.pone.0298651.g006
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The edge colors correspond to the directionality of the partial correlations and the width corre-

sponds to the magnitude. The dotted colors in the nodes identify clusters of regions within a
priori, knowledge-based, neuroscientific networks (from the top right section in counter-

clockwise order): Default Mode Network (DMN), Frontal Parietal Control Network (FPCN),

Dorsal Attention Network (DAN), Salience Network (SN), and Locus Coeruleus (LC). Fig 7

shows the maximum a posteriori (MAP) estimated state sequences from our model for all 27

subjects. The subjects’ rows are ordered by the similarity of the estimated state trajectories as

captured by a hierarchical clustering using Euclidean distance.

By inspecting Fig 6, it is apparent that state 1 shows relatively sparser connectivity than the

other two states. In state 1, we can see strong bilateral connectivity among homologous regions

in the left and right hemispheres, as well as several nodes in FPCN (dark blue) showing strong

connectivity with multiple nodes in SN (light red); likewise, several nodes in DMN (dark red)

show connectivity with SN (light red) nodes. There is almost no presence of anti-correlation.

The dominance of SN connectivities together with both DMN and FPCN suggests that arousal

may be up-regulated in this state. Indeed, Fig 7 suggests that state 1 occurs predominantly dur-

ing the ‘squeeze’ periods of the behavioral task, when subjects either squeezed the squeeze ball

or held it to their chest. This observation suggests that our model was able to detect those

objectively-definable events in the time series of this experimental dataset.

In state 2, we see a quite different pattern: weaker average connectivity when compared to

state 1, but also many more of these weaker connections both within-network and between

networks. In addition to relatively ubiquitous within-network connections within FPCN (dark

blue) and DMN (dark red), state 2 is characterized by cross-network connectivity—and anti-

Fig 7. Real Data Analysis: Estimated states’ transition path for each subject. The horizontal axis indicates the TR with vertical dotted lines indicating

portions where the subject raises their arm. Subject sequences are aligned so that the first 525 time points show sequences from the sham condition and the

time points 526–1050 show sequences from the active condition. The vertical axis displays the subject indices, ordered by similarity in state trajectory

according to a hierarchical clustering (based on the Euclidean distance) of their MAP transition behavior.

https://doi.org/10.1371/journal.pone.0298651.g007
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connectivity—between DMN and FPCN. Interestingly, these parallel some of the strongest

connectivities from state 1. The relative occupancy in state 2 appears higher in the active con-

dition (Fig 7, right half) than the sham condition (Fig 7, left half), suggesting subjects tended

to occupy this relatively strong, broadly-connected state more often when periodically engag-

ing in actively squeezing the ball.

The strongest connections in state 3 deviate from those identified in states 1 and 2. There is

weaker overall connectivity than state 1, but the connections are stronger and sparser (fewer

connections) than state 2. We do again see many within-network connections, as well as rela-

tively strong connections between nodes in FPCN (dark blue) and SN (light red), and also

again between DMN (dark red) and SN (light red). However, we also see many more connec-

tions with SN from DAN (light blue) than in either of the other two states. We can therefore

characterize this state as more sparsely connected than state 2 but still with broad connectivity,

which is also consistent with the differences visually apparent in this state between active and

sham conditions (right and left halves of Fig 7): this state traded off with state 2 for relative per-

centage occupancy across the subjects.

Finally, a unique feature of our model is that it allows the investigation of how pupillary

dilation modulates state transitions. Fig 8 provides the posterior distribution of the group (eη,

left) and individual (eρ) effects of pupil dilation on state dynamics. We start by assessing the

relationship between pupil dilation and state transitions for the group. Based on our findings,

a 1% increase in pupil dilation relative to baseline is associated with a 31.4% (95%CI : 29.7%

− 32.9%) decrease in the odds of transitioning to state 2 and a 34.9% (95%CI : 33.3% − 36.4%)

decrease in the odds of transitioning to state 3, in comparison to remaining in the baseline

Fig 8. Estimated effects of pupil dilation on state transition probability. Real Data Analysis: The posterior

distribution of the group effect of pupillary dilation eη (left), and individual effects of pupillary dilation eρ. Rows

indicate the propensity for transitioning into states 2 and 3 respectively. For the individual effects, subjects are

identically ordered as in Fig 7. The horizontal dotted line is the posterior mean for the group-level effects, η2 = 0.687

and η3 = 0.651 respectively.

https://doi.org/10.1371/journal.pone.0298651.g008
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state (state 1). This result is coherent with the findings outlined above since increased pupil

dilation (a proxy for increased arousal/effort) appears associated with transitioning toward the

less densely connected connectivity structure of state 1, dominated by edges between SN and

both DMN and FPCN. We should note that the causal direction of the inferred associations

can not be investigated by this model.

Further inspection of the right column of Fig 8 shows that the posterior distributions of the

individual effects of pupil dilation er�� is decidedly below 1 for all subjects, i.e. the association

between increased pupil dilation and state 1 holds for all subjects measured. Subjects are

ordered along the horizontal axis according to their similarity in state trajectories obtained

from a hierarchical clustering, based on the Euclidean distance (similarly as in Fig 7). The hori-

zontal dashed line represents the posterior mean from the group estimate in the right panel. It

is interesting to note the differing clusters when comparing the posterior distributions of er2�

to er2� : trending downwards and upwards respectively. Quite importantly, the correspondence

between the groupings observed in Figs 7 and 8 is a result of the posterior inference, not neces-

sarily implied by the structure of our model. The differences in state trajectories between sub-

jects lie in the state occupancy when pupil dilation is not higher than the reference, despite all

subjects tending to transition to state 1 when raising their arm.

More specifically, subjects clustered in the first half of Fig 8 (right) tend to occupy state 3

during non-squeeze sections and so are even more likely to transition away from state 2 during

periods of high pupil dilation. Similarly, subjects in the second half of the Figure tend to

occupy state 2 during non-squeeze sections, and are thus very likely to transition away from

state 3. This heterogeneity is important as it provides a more thorough understanding of the

relationship between increased pupil dilation and transitions toward different cognitive states.

5 Conclusion

We have proposed a multi-subject Bayesian approach for estimating dynamic FC where the

brain network state transitions are dynamically informed by concurrently-recorded subject-

specific covariates. The proposed method allows for group-level and subject-level inferences

on the effects of time-varying covariates on the connectivity dynamics. We have applied our

model to multi-subject resting state fMRI data with pupillary physiological data and we have

shown associations between pupil dilation and strengthened connectivity between the SN

brain regions with both the FPCN and DMN. This association coinciding with subject arm-

raising/squeezing suggests SN connections with both FPCN and DMN are associated with sub-

ject arousal.

While we focused here on covariates that were concurrently recorded on each subject, our

model can also incorporate covariates that are subject-specific and not time-varying. For

example, demographic information may be added to the regression terms in (2) and (3) and

inform subject-specific transition probabilities to describe individual variability over the entire

fMRI experiment.

Our model assumes a maximum number of states S to be pre-specified a priori. In our

application, only a subset of the S available states was visited. However, in general, the number

of states could be learned by assuming a Bayesian-nonparametric specification where the num-

ber of FC states is learned directly from the data (see, for example [72, 73]). However, the

computational complexity of the inferential algorithm would increase considerably. Varia-

tional Bayes approaches could be implemented to obtain approximate inferences on the net-

work connections.

Finally, the individual connectivity patterns could be associated with clinical or behavioral

outcomes, e.g., to examine the individual heterogeneity of responses to treatments. A two-
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stage scalar-on-image approach can be devised where the posterior means of the precision

matrices are obtained from our model in the first stage and then used as predictors to investi-

gate the association with the outcome in the second stage. These directions of research will be

the object of future investigations.
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