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Abstract

Background

Genomic islands (GIs) are mobile genetic elements that integrate site-specifically into bacte-

rial chromosomes, bearing genes that affect phenotypes such as pathogenicity and metabo-

lism. GIs typically occur sporadically among related bacterial strains, enabling comparative

genomic approaches to GI identification. For a candidate GI in a query genome, the number

of reference genomes with a precise deletion of the GI serves as a support value for the GI.

Our comparative software for GI identification was slowed by our original use of large refer-

ence genome databases (DBs). Here we explore smaller species-focused DBs.

Results

With increasing DB size, recovery of our reliable prophage GI calls reached a plateau, while

recovery of less reliable GI calls (FPs) increased rapidly as DB sizes exceeded ~500

genomes; i.e., overlarge DBs can increase FP rates. Paradoxically, relative to prophages,

FPs were both more frequently supported only by genomes outside the species and more

frequently supported only by genomes inside the species; this may be due to their generally

lower support values. Setting a DB size limit for our SMAll Ranked Tailored (SMART) DB

design speeded runtime ~65-fold. Strictly intra-species DBs would tend to lower yields of

prophages for small species (with few genomes available); simulations with large species

showed that this could be partially overcome by reaching outside the species to closely

related taxa, without an FP burden. Employing such taxonomic outreach in DB design gen-

erated redundancy in the DB set; as few as 2984 DBs were needed to cover all 47894 pro-

karyotic species.

Conclusions

Runtime decreased dramatically with SMART DB design, with only minor losses of pro-

phages. We also describe potential utility in other comparative genomics projects.
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Introduction

The comparative approach is one of the oldest and most powerful methods in biology,

expressed thus by Aristotle: “first we must grasp the differences, then try to discover the

causes” (History of Animals I.6). For any given trait under study, there is an appropriate degree

of relatedness among the compared organisms, that will reveal the similarities and differences

required to best define the trait. Comparative genomics, being typically computational, is

often formulated as a comparison of a query genome to one or more reference genomes, i.e., a

reference genome database (DB). We have used comparative genomics [1, 2] for mapping

genomic islands (GIs); these are mobile genetic elements that play critical roles in evolution,

integrating at specific sites in bacterial and archaeal chromosomes and bearing genes affecting

traits such as pathogenicity and metabolism. We find that the taxonomic level of species is

often appropriate for comparative GI mapping; for any GI in a query genome, another genome

from the species can often be found that lacks the GI, providing the Aristotelian difference

required to identify and precisely map the GI. However, some species have few genomes avail-

able, and in these cases reaching to higher taxa may be required to apply comparative geno-

mics. The systematically reconstituted bacterial and archaeal taxonomic system of the Genome

Taxonomy DataBase (GTDB) project [3] aids such work.

Our comparative genomic software, TIGER [1], identifies and precisely maps GIs through

a ping-pong application of BLASTN [4]: segments of the query genome likely to contain one

end of a candidate GI are used to search a reference genomic DB, and hits are used to collect

reference sequences that are then searched back to the query genome to find the other end of

the GI. Reference genomes that map a GI call presumably have an intact (uninterrupted by

any GI) integration site for the GI; the number of such reference genomes serves as a support

metric for the GI. This approach misses ancient GIs that may have lost key features (their inte-

grase gene or their flanking attachment sites), but the numerous GIs that it does find are more

likely to be actively mobile. Despite the success of TIGER in precise mapping of numerous GIs

in bacterial and archaeal genomes, false positives can also arise, perhaps from other chromo-

somal rearrangement events that occurred in a small number of reference genomes. Execution

of TIGER was often slow and we suspected this was due to our original choice to use a small

number of very large reference DBs (Methods). Here we explore alternatives involving small

species-focused DBs, and the consequences for GI yields.

Different DB design problems arise for large (many genomes available) and small species.

For large species, should we draw DB genomes only from within the species and is there an

optimal number of genomes? For small species, should we draw additional genomes from out-

side the species, and if so, to what phylogenetic/taxonomic extent? An algorithm was devel-

oped for constructing a DB set that covers all species of any GTDB release. Because it allows

spread to higher taxa for smaller species, it produces redundancy in the DB set; as few as 2984

DBs were needed to cover all 47894 species of GTDB release 202. These new species-tailored

DBs are far smaller than those we used previously, allowing our comparative software to run

much faster. Aside from mobile element detection, these DBs can serve other comparative

genomic goals, such as within-species survey of any genomic region of interest. We present

software for revision of the DB set upon GTDB update.

Results

Smaller DBs for large species

With our original large reference DBs (Table 1), TIGER performance in identifying GIs was

slow, motivating an exploration of alternative DB composition. For the 195,890 properly
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treated genomes (Methods), we estimate based on the benchmarking studies presented below

that a total of 18.0 CPU years was spent on the BLASTN and subsequent TIGER steps. On the

other hand the large DBs provided much information on how often distantly related genomes

support a GI. Because different GI types may respond differently to DB composition, we sorted

each GI call based on gene content into various types, such as Phage, Integrative Conjugative

Element (ICE), or Non-Phage/Non-ICE (NonPI) [1]. The ICE type was further split into ICE1

(more ICE-like) and ICE2 (less ICE-like). Similarly, the Phage type was split into Phage1 and

Phage2, as well a third category PhageFil (filamentous). Here we introduce a new type “Reject”

for any GI call with size or other characteristics (specified in Methods) that our spot checks

have never found to produce convincing GIs; we consider these to be nearly all false positives.

Although Reject calls could easily be immediately discarded, study of their properties may help

uncover additional false positives. They also serve as negative controls for understanding some

of the results presented below. In contrast, we consider the Phage1 GIs (prophages) to be

nearly all true positives based on previous benchmarking against gold standards [1] and exper-

imental results on inducibility [5]. Support values (number of genomes found with precise

deletion of the GI) are substantially different for these two types, averaging 5212 for the pro-

phages, but only 700 for the Rejects. The largest category of GIs, NonPI, has an intermediate

average support value of 1999.

We began by examining a species with numerous genomes available, Escherichia flexneri
(herein we employ species names from GTDB release 202; this is the species containing the

classical E. coli K-12 strains). We collected 9089 genome assemblies explicitly included in E.

flexneri by GTDB and 843 additional genomes placed in the species by our assignment soft-

ware (Methods). TIGER was applied to all these query genomes using our original large DB

containing 27868 genomes from the Enterobacteriaceae family (Table 1). TIGER output pro-

vides for each GI call a list of all the reference genomes that supported the GI. For each GI we

could use its list of supporting genomes to measure the power of various smaller (subset) DBs

to recover the GI. To test effects of reference DB size, an ordered list of the GTDB genomes

Table 1. Original large DBs. DBs were assembled based on taxonomy as assigned at NCBI, aiming for roughly even distribution of all genomes collected. After assign-

ment to GTDB r202 species, small numbers of genomes were found to be improperly treated by placement in a different large DB than the bulk of the species’ genomes;

these improperly placed genomes were excluded from further analysis and are not counted in the Species or Genomes columns. The two DBs limited to genus (Salmonella

and Campylobacter) were not treated further because taxonomic outreach could not be studied, leaving 11 DBs studied herein, with totals at bottom. For these 11 DBs, the

genomes treated and species composition are reported in S1 and S2 Files in S1 Data, respectively.

Large DB Species Genomes Rank Limit Genera with Large Species

Salmonella 5 58701 Genus

EnterobacteriaceaeOther 210 27850 Family Escherichia, Klebsiella, Enterobacter, Cronobacter
EnterobacteralesOther 343 2469 Order

GammaproteobacteriaOther 3255 24631 Class Vibrio, Pseudomonas, Acinetobacter
Campylobacter 89 30629 Genus

EpsilonproteobacteriaOther 221 1927 Class

ProteobacteriaOther 5611 18799 Phylum Burkholderia
Actinobacteria 3798 17613 Phylum Mycobacterium
Listeriaceae 25 21995 Family Listeria
Streptococcaceae 290 27907 Family Streptococcus
FirmicutesOther 4848 32779 Phylum Bacillus, Enterococcus, Clostridioides, Staphylococcus, Lactiplantibacillus
BacteriaOther 7963 17258 Division

Archaea 1435 2662 Division

Total, excluding Salm./Camp. 27999 195890

https://doi.org/10.1371/journal.pone.0298641.t001
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was prepared either by random shuffling or by a ranking algorithm partly involving genome

assembly quality and mainly based on genome diversity (Methods). Then nested sets of various

sizes from the top of the list were collected and evaluated for GI recovery.

Fig 1 explores the use of subsets from the 9089 GTDB E. flexneri genomes to recover each

GI, reporting the average GI count per query genome for each GI type, as database size is var-

ied. Recovery of prophages (a large group of particularly reliable calls, marked Phage1) pla-

teaus, with few added as DB size rises above 200. In contrast the Reject category of unreliable

calls rises continuously, especially with DB size above 200. The similar behavior of random

and ranked composition methods shows that rises at high DB size are not due to the concen-

tration of lower quality genomes in the largest ranked DB.

Like the Rejects, the NonPI category shows a rise in recovery above DB size 200, suggesting

that this category contains some false positives. However, NonPIs are intermediate between

Phage1s and Rejects by multiple metrics, suggesting that they also include legitimate GIs. To

examine these hypotheses, we manually inspected 70 large NonPI families (based on integra-

tion site usage) from seven diverse large species. Inspection suggested that most were valid,

with predicted genes for metabolism cassettes, restriction enzymes, and toxin/anti-toxin addic-

tion cassettes, among others. However, 10 of the GI families examined (14.3%) were apparent

false positives, distinguished by such gene content features as numerous transposase genes,

numerous housekeeping genes, or only a portion of a single gene (the integrase gene itself).

To examine these trends in other large species, we identified all 29 species with sufficient

yields of the key GI types: prophage, Reject and NonPI (Methods and S1 Table in S1 Data);

Fig 1. E. flexneri GI calls recovered with various DB sizes. The GI identification program TIGER was run on 9932 E. flexneri query genomes using the large reference

DB Enterobacteriaceae that contained a set (“All”) of 9089 reference E. flexneri genomes. GI calls were typed, and those calls that either had no support from All or

were in tandem arrays were discarded. DBs of various sizes that were subsets of All, were designed using the random or ranked protocols (Methods). Average count of

GIs recovered per query genome (supported by at least one genome in the test DB) were taken for each GI type. Here, the PhageFil lines are obscured by the ICE1 lines.

https://doi.org/10.1371/journal.pone.0298641.g001
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these were pathogen species from the phyla Proteobacteria, Firmicutes and Actinobacteria

(Fig 2). For each species, sets of smaller DBs were prepared and islands analyzed as for E. flex-
neri (S1A-S1H Fig in S1 Data). Similar trends to those for E. flexneri were observed for the

other large species, although for species with fewer than 500 genomes, the large-DB rise in

Reject and NonPI GIs is muted. Same-genus species pairs sometimes differ in absolute yields

and curve shapes of the key GI types, especially for the NonPI category (e.g., E. coli vs. E. flex-
neri), perhaps due to high strain specificity and species penetration of individual GIs.

For the large species combined, limiting DB composition to genomes within the species

had a small cost, resulting in the loss of 1.4% (1384 total) of all their prophages (S2 Table in S1

Data, line 30). However these lost prophage GIs generally had low support values, usually of 5

or less. It would thus be difficult to use simple principles to design small DBs that could sup-

port these lost prophages. Moreover, limiting composition to within-species had a positive

effect, eliminating a far higher fraction (20%) of the Reject GIs. NonPI GI loss is intermediate;

thus losses from within-species DB composition may simply correlate with average support

values. This shows that limiting DB composition to members of the same species is valuable, at

least when genome numbers are sufficiently high.

Expanding DBs to higher taxa for small species

Most species have insufficient genomes to fill DBs of size 200. Indeed, GTDB lists only a single

genome for 30777 of 47894 species. An option for small species is to fill their DBs by reaching

beyond the species to higher taxa. This raises questions of whether such outreach would be

effective, whether there is a reasonable taxonomic limit for such reach, and whether false

Fig 2. Large species studied herein. The bacterial species representative tree from GTDB release 202 was pared to the 29 large species of interest using our wrapper

(pare_tree_gtdb) for PareTree (http://emmahodcroft.com/PareTree.html) and visualized in FigTree (http://tree.bio.ed.ac.uk/software/figtree). GTDB has subsumed

the standard class for Burkholderia (Betaproteobacteria) into the Gammaproteobacteria.

https://doi.org/10.1371/journal.pone.0298641.g002
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positive rates might become unacceptable. The above result, that the Rejects had a much larger

fraction than did the prophages of GIs with support only from outside the species, might indi-

cate that false positives would be favored by reaching to higher taxa. To investigate these ques-

tions, we used the data-rich large species to simulate small species, by omitting all support

from genomes within the same species. Surprisingly this showed that Reject GIs more fre-

quently had support only from inside the species (S2 Table in S1 Data, line 30), over two-fold

more often than for prophages. The seemingly opposing results, that Rejects were more fre-

quently supported only from outside the species and were more frequently supported only

from inside the species, may both be due to the low average support values of Reject GIs.

These trends generally (but not always) hold for individual large species.

For each large species, GI yields were substantial after excluding support from the same spe-

cies itself and, as noted for all large species combined, losses for the desirable Phage1 GIs were

low while losses for the undesirable Reject GIs were high. These trends showed promise for

use of out-species reference genomes for small species. We tested further taxonomic reach by

omitting support from higher taxa: omitting all support from within the genus, or from within

the family, or from within the order. Fig 3 shows the combined result for the entire GI set.

Yields drop to 2–3% for family and order omissions, but Phage1 fractional yields are higher

than for Rejects at each omission step.

Fig 3 was based on taxonomic ranks, but we were also able to examine GI support decay

with the finer criterion of phylogenetic distance, using the bacterial and archaeal species trees

provided by GTDB; these trees are robust, based on ~100 proteins for each species

Fig 3. Utility of higher taxa for GI detection. For each GI in the full set, the list of supporting genomes from the large

DB was filtered by removing all genomes from the same species, or from the same genus, family or order. This

simulates small species that may have no other genomes available from the same species, or the same genus, etc. For

the three large DBs that are limited to a single family, all GIs are lost when omitting same-family genomes, so the GIs

from these DBs were excluded from the denominator for the family-omission and order-omission treatments. GIs

from the single-order DB EnterobacteralesOther were similarly excluded from the denominator of the order-omission

treatment.

https://doi.org/10.1371/journal.pone.0298641.g003
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representative. Fig 4 shows actual/possible support values plotted against phylogenetic distance

(panel C), comparing with the shared taxonomic rank and Mash distance. Mash distance

(panel A) is a useful metric within a species or its close relatives, whereas the phylogenetic spe-

cies distance (panel B) is zero and therefore uninformative for same-species genomes but

becomes a useful metric when comparing genomes from different species or higher taxa. In

panel C, the y-axis (species distance) value of zero corresponds to using only references

genomes from the same species as the query genome, allowing us to assess the effect of a

Fig 4. Actual/possible support. Main panel C: For each GI (separately treating the three main types: Phage1, NonPI and Reject), there was list of possible supporting

genomes, i.e. all the genomes in the large DB used to evaluate it. The tree distance (substitutions per site) was taken from the GI’s source genome to all possible

supporting genomes based on the multi-protein species trees of GTDB release 202; intra-species genome pairs always receive a distance score of zero. The possible

support distance counts were placed into 50 bins from 0 to 3.7. TIGER also reports a list of actual supporting genomes for each GI, whose distances to the GI source

genome were likewise taken. To aggregate data for all islands, the actual and possible support counts were summed (by type) in each bin. Finally actual support totals

were divided by possible support totals for each bin. Note the logarithmic y-axis. Panel B: For each genome pair in every large DB, the shared taxonomic rank was

taken, and species distances tallied (middle panel, with counts for each rank’s trace normalized to the maximum count in the trace). Panel A: For each genome pair,

Mash distances at or below the reliability threshold (0.2) were taken and binned by species distance; by tree distance 0.2, Mash distance has plateaued at its maximum,

after which percentages of measurable genome pairs decrease until cutting off reporting after tree distance 0.5.

https://doi.org/10.1371/journal.pone.0298641.g004
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possible DB-building rule where only same-species genomes are allowed. Thus mimicking

same-species-only DBs, we observe that actual/possible support is lowest for the Reject type

and highest for Phage1. There is a large drop in actual/possible support as we move from using

same-species genomes to using genomes from other species in the same genus. At approxi-

mately the genus level of distance (phylogenetic distance ~0.4), the Reject/Phage1 trend

reverses and Reject GIs receive more actual/possible support than Phage1. This result differs

from the Fig 3 result on fractional yields, and reveals a cost to using more distant reference

genomes, although this may be acceptable when very few closely related genomes are available.

SMART DB software

Based on the above considerations we settled on the following design scheme for SMAll

Ranked Tailored (SMART) DBs: 1) DB size is capped at a maximum number of genomes; here

we tested maxima of 200, 300 and 500, based on the performance in this range observed in Fig

1 and S1. 2) This cap is reached phylogenetically, meaning that after exhausting the same-spe-

cies ranked genome list, genomes from additional species are brought in according to species

distance taken from the GTDB tree. 3) Phylogenetic filling is limited to the taxonomic rank of

order, which corresponds to what remains after omitting same-family genomes (the category

“Family” in Fig 3). We have developed the SMARTDB software pipeline (Fig 5) that automates

design and preparation of DBs for all species, or as many species as desired, including the step

of collecting any needed genome assemblies. Benchmarking studies for three genomes from

each large species (S2 Fig in S1 Data) showed useful speedup from capping DB size; the

within-species DBs capped at 200 genomes had an average speedup of 2.4-fold relative to those

capped at 500 genomes, and 65-fold relative to the original large DBs.

Our original set of GTDB-assigned genomes covered only 28500 of the 47894 species. We

ran our software to collect additional genomes, increasing our collection to 348,547 that

included all genomes known for GTDB release 202 species with fewer than 500 genomes, and

at least 500 genomes each for the larger species. Designing the SMART DB set for all GTDB

species, we observed redundancy; the design feature of phylogenetic reach produced many

mixed-species DBs, and moreover many cases where the same mixed-species DB serves multi-

ple species. As few as 2984 unique DBs were needed to cover all 47894 prokaryotic species

(Table 2, line 3). Because of the cap on DB size, only 55.7% of available genomes were needed

to build all DBs.

The GTDB project is ongoing and produces occasional updates that tend to change taxo-

nomic assignments and increase species numbers. After the work herein was initiated, GTDB

updated to releases 207 and 214, increasing the species count. The SMART DB pipeline oper-

ates in an update mode, and we used this to design SMART DB sets for the new releases

(Table 2), with similar conclusions as for the earlier release. In addition to the de novo and

update Design modes, our pipeline operates in a Quick Update mode, where the user can

begin with our precalculated DB design file to avoid GTDB file download and the design calcu-

lation phase.

Discussion

The problem of identifying GIs through the comparative approach is important in its own

right, but also stands in for similar problems about other classes of mobile genetic elements

and, more broadly, about the “accessory” (non-core) fraction of the pan-genome for a pro-

karyotic species. In principle, a single genome per species could suffice for GI finding; the

GTDB system already designates a single representative genome for each species. At another

extreme, a large reference DB containing all available genomes for a species, and perhaps
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Table 2. SMART DB sets for two GTDB releases. Submaximal DBs were those containing fewer genomes than the maximum. Taxonomic filling was stopped at the

rank of order.

GTDB release Species DB size maximum Unique DBs Submaximal DBs DB size < 5 Unique genomes

202 47894 200 4345 1234 598 144858

202 47894 300 3633 1247 598 151618

202 47894 500 2984 1267 598 160724

207 65703 200 5563 1489 735 188952

207 65703 300 4627 1513 735 196780

207 65703 500 3721 1538 735 206636

214 85205 200 7042 1680 798 244378

214 85205 300 5789 1710 798 254878

214 85205 500 4619 1736 798 267042

https://doi.org/10.1371/journal.pone.0298641.t002

Fig 5. SMART DB software pipeline. As described in Methods, the Design mode (blue) operates on an initial GTDB release or

update, collects needed genomes, and designs and builds the DB set. The Quick Update mode starts with a precalculated DB

design file (and an optional list of desired species) and builds DBs. Scripts employed at each step (and a potential manual genome

collection phase) are in parentheses.

https://doi.org/10.1371/journal.pone.0298641.g005
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beyond the species, could be used. Here, to our knowledge for the first time, we systematically

evaluate these simple DB design strategies and intermediate alternatives in terms of recovery,

false discovery rate, and efficiency. We show that use of a single reference genome generally

suffers from low recovery, while overlarge DBs can yield excess false positives and slow run-

times. When numerous genomes are available for a species, DB sizes of ~200 diverse genomes

provide an excellent balance between recovery of true positives, avoidance of false positives,

and fast runtimes. An algorithm, supported by software, is presented for preparing a high-per-

formance reference genome DB for any prokaryotic species.

Our category “Reject”, nearly all false positives, is readily defined and can quickly be filtered

out. However, retaining them was useful for this study, revealing characteristics that should

help identify and remove additional false positives among other groups, especially the NonPIs.

We observed that Reject GIs were more frequently supported only by genomes outside the spe-

cies (20.5%) than were the reliable Phage1 GIs (1.4%). Paradoxically, Reject PIs were also more

frequently supported only by genomes inside the species (49.0%) than were Phage1 GIs

(20.5%). Rearrangement of a reference genome chromosome by mechanisms other than inte-

grase action can lead to false positive GI calls, and such rare rearrangements may occur either

within the species or in reasonably close relatives outside the species. This rare false positive

explanation is borne out by statistics; average support values of Rejects are simply much lower

(7.45-fold) than those of the prophages.

In some ways the work herein is particular to GIs and to our software for their detection.

For example, TIGER demands BLASTN hits of> = 500 bp at both flanks of each GI; more tax-

onomically distant reference genomes tend to fall below BLASTN detection limits. Nonethe-

less, with the simple design principles of the SMART DB sets, we envision additional uses in

other comparative genomics applications. Our TIGER software is also capable of mapping the

set of transposable elements (TEs) within a genome [1]. Faster performance now enables sur-

vey of TEs among prokaryotes. There are 2.4-fold more transposases than integrases among

our genomes; applying the formulae of S2 Fig in S1 Data to each of the properly treated

genomes, we estimate that transposable element search completion would take 26.5 CPU years

with the old large DBs, but only 0.78 CPU years with the 200-genome SMART DB set. Further

speedup may be possible using alternatives to BLASTN or improved hardware architecture

[6]. The DBs may also help survey such highly variable gene sets as the capsule and lipopoly-

saccharide clusters of Proteobacteria [7]. Precise mapping of the boundaries of such gene clus-

ters may help reveal mechanisms of their variability, even when recombination enzymes such

as integrases do not appear to explain their evolution. More broadly the DBs should serve the

endeavor to define the two main genomic fractions of a species pan-genome [8, 9], the con-

served core and the sporadically-occurring accessory genome that includes GIs. The SMART

DBs can be said to well define the core genome of the species. We found that ~200 genomes

from a species are generally sufficient to provide the integration site of each GI in its uninter-

rupted form. Certainly there are species-defining genomic islands that might be missed by our

species-limited DBs, such as the SPI1 and SPI2 of Salmonella enterica, but these are not found

by TIGER anyway; they are so ancient that they have lost their mobility function, including the

integration module, and moreover have lost the sharp borders sought by TIGER [10].

Conclusion

We show that species-focused reference DBs capped at 200 genomes are sufficient to recover

most high quality GIs while precluding some low quality GIs. They greatly speed GI search

software. For species with fewer genomes available, effective DBs can be built by reaching
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outside the species. Software for building and updating DB sets are described. Other compara-

tive genomic uses for these DBs will be surveys of transposable elements and pan-genome

analysis.

Methods

Genome assemblies for GI detection

We began with a collection of 288,451 genome assemblies downloaded from GenBank [11] in

July 2019. These were placed into 13 large DBs based on NCBI taxonomy (Table 1), and the

GI-mapping program TIGER v. 1.0 [1] was applied to each genome using the DB that con-

tained it; a full report on the results will be forthcoming. We subsequently reassigned taxon-

omy using the system of the GTDB release 202, using the explicit GTDB species assignment

when available, otherwise applying our script Speciate [2]; species assignment failed for 1831

genomes. These GTDB assignments occasionally disagreed with NCBI assignments, and

showed that the large DB set had split some species, leaving 338 total genomes placed in the

wrong large DB. Furthermore, 501 entire species were placed in the wrong DB. Because we

were interested in the taxonomic reach of TIGER, we also excluded the genomes from the Sal-

monella and Campylobacter DBs, which included no reference genomes outside the genus.

The above-described genomes that were unassigned, misplaced or in single-genus DBs were

excluded from further analysis, leaving 195,890 properly treated genomes from 27999 of the

47895 GTDB r202 species.

GI set

For each genome, the orthogonal GI-mapping program Islander [12] was also run, and results

from TIGER and Islander were unified using the TIGER package script “Resolve”. Islander is

not comparative, finding GIs that are in tRNA genes by a within-genome BLASTN-based

approach. Islander may refine genome coordinates of raw TIGER calls. However, use of

Islander here was effectively irrelevant for our study, because we only included GIs with

TIGER support and were not evaluating genome coordinates. The properly treated genomes

yielded 666,602 GI calls with any TIGER support. Because support values can be depressed for

a GI in a tandem, i.e., abutting another GI at the same integration site, these were excluded

from further analysis, leaving 610525 non-tandem GIs in our final GI set. The list of genomes

supporting each GI (i.e., the genomes for which an uninterrupted GI integration site could be

found) was collected from the TIGER output uninterrupted.txt files. Typing was performed as

before [5], assigning GIs a type as either a Phage or Integrative Conjugative Element (ICE)

variety or as NonPI (non-Phage, non-ICE). A new type “Reject” was introduced, applied to GI

calls either with size< 5 kbp, without any serine or tyrosine integrase candidates, or with iden-

tity blocks between left and right integration sites of length> 300 bp; such calls were never

found convincing in numerous spot checks and as a class can be considered putative false posi-

tives. The three most abundant types were NonPI, Phage1 and Reject (263704, 126828 and

128975 GI calls, respectively). GI data are reported in S3 File in S1 Data.

Large island-rich species were selected as having more than 300 genomes, with more than

100 each of three main island types (Phage1, NonPI, and Reject), and more than 1000 total for

those three types, yielding 29 species (S1 Table in S1 Data).

SMART DB software pipeline

The pipeline automates genome collection, DB design, and updates paralleling those of GTDB.

Two modes are available: Design (blue steps in Fig 5), which designs and prepares a DB set
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covering all species in a GTDB release, or Quick Setup (green steps in Fig 5), where the user

chooses a subset of DBs (or all) to prepare from a precalculated (downloaded) DB design file.

The Design mode requires certain data from a GTDB release, and has five main conceptual

steps: collecting genome assemblies, calculating pairwise distances (both between genomes

within a species and between the species), ranking genomes within each species, designing and

preparing each DB. The software negotiates collection of needed genome assemblies from the

NCBI FTP server; since some downloads may fail in any session, collection attempts repeat

until either all needed genomes are downloaded, or the number of missing genomes stops

decreasing. The latter may occur when small numbers of genomes are suppressed or missing

on the FTP server. Because these missed genomes may yet be available through the NCBI web

site, the user is allowed to halt pipeline progress, for manual download of any desired missing

genomes; however these missing genomes are not required as the software will adapt to calcu-

late databases without them. All pairwise distances between genomes within a species are

taken using Mash [13] with default settings. Pairwise distances between archaeal or bacterial

species are taken from the GTDB species representative tree. The genomes of each species are

ranked as follows: 1) The species representative is removed from the list, to be returned later.

2) The genome is doubly sorted for quality; first by the entry for “mimag _quality” in the

GTDB metadata table (in the order high, medium, low), and then by contig count from low to

high values. 3) The 10% with the lowest quality remain in place at the bottom of the list. 4) The

top 90% are reordered according to diversity: the species representative is placed first in the

list; the second genome is the one most distant (by Mash distance) to the first; the third

genome is the one with the highest summed distance to the first and second; and so on. The

SMART DB for each species, with a given cap on DB size, is designed as follows. 1) The DB is

filled using the ranked list for the species. 2) If the cap is not reached, filling continues with the

closest species (by tree distance), and so on with other species according to distance from the

species. 3) No genomes from outside the taxonomic order are allowed, which means that some

DBs do not reach the cap. After DB design is completed for each species, we observe that many

species share the same DB composition as another, such that far fewer DBs need to be created

than the number of species. Numerous DBs were extremely small (containing less than 5

genomes), reflecting the small genome count for certain taxonomic orders. There were 633 for

the GTDB 202 release (Table 2), representing a total of 1096 species. Although these very small

DBs are created without issue, they may be significantly less apt to find GIs. The program

therefore warns the user that such DBs were created, and specifies them. BLASTN databases

are created for each unique DB design (although this step can be omitted if only the design

information is desired). This Design mode can be run de novo on the first GTDB release ana-

lyzed, or when updating to a new GTDB mode.

The Quick Setup mode of the pipeline does not require download of GTDB data, instead

using a precalculated DB design file available at our GitHub repository (below). This mode

additionally allows the user to prepare only a subset of the SMART DBs, for example when

only a limited group of bacteria are under study. This abbreviated pipeline collects needed

genomes and builds the DBs, skipping distance measurements and DB design, the slowest

steps of the pipeline.

To assist in deciding which DB to apply to a new query genome, we recommend our utility

script Speciate, which quickly determines the GTDB species of the genome. It should be noted

that very small (< 200 kbp) genomes, such as Carsonella, are not treated by GTDB, nor by our

system. Both pipeline modes prepare a Mash sketch database (for all the species whose repre-

sentative genome has been collected), in support of Speciate. Software dependencies are Mash

v2.3 [13] and BLAST v2.6.0 [4], with higher versions likely to be compatible; Speciate
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additionally requires fastANI [14] (no version assigned). The SMART DB pipeline and auxil-

iary scripts and data are available at github.com/sandialabs/SmartDBs.

Benchmarking

Three genomes were selected from each large species (the top three from each ranked list) for

TIGER runtime measurements for a total of 87 genomes tested. The genome annotation steps

of a de novo TIGER run were skipped, supplying previously determined annotation files; only

the BLASTN and GI merging steps were performed. For each genome, four intra-species

SMART DBs were tested, capping at 200, 300, or 500 genomes, or not capping (using all

genomes available for the species). A fifth DB was also tested, the original large DB. This set

totaled 435 tests. From the LINUX tool “time”, the “user” and “sys” times were summed, and

the cache was routinely cleared after each run to prevent cache-based artifacts.
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