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Abstract

Quantitative trait loci (QTL) denote regions of DNA whose variation is associated with varia-

tions in quantitative traits. QTL discovery is a powerful approach to understand how changes

in molecular and clinical phenotypes may be related to DNA sequence changes. However,

QTL discovery analysis encompasses multiple analytical steps and the processing of multiple

input files, which can be laborious, error prone, and hard to reproduce if performed manually.

To facilitate and automate large-scale QTL analysis, we developed the yQTL Pipeline, where

the ‘y’ indicates the dependent quantitative variable being modeled. Prior to the association

test, the pipeline supports the calculation or the direct input of pre-defined genome-wide prin-

cipal components and genetic relationship matrix when applicable. User-specified covariates

can also be provided. Depending on whether familial relatedness exists among the subjects,

genome-wide association tests will be performed using either a linear mixed-effect model or

a linear model. The options to run an ANOVA model or testing the interaction with a covariate

are also available. Using the workflow management tool Nextflow, the pipeline parallelizes

the analysis steps to optimize run-time and ensure results reproducibility. In addition, a user-

friendly R Shiny App is developed to facilitate result visualization. It can generate Manhattan

and Miami plots of phenotype traits, genotype-phenotype boxplots, and trait-QTL connection

networks. We applied the yQTL Pipeline to analyze metabolomics profiles of blood serum

from the New England Centenarians Study (NECS) participants. A total of 9.1M SNPs and

1,052 metabolites across 194 participants were analyzed. Using a p-value cutoff 5e-8, we

found 14,983 mQTLs associated with 312 metabolites. The built-in parallelization of our pipe-

line reduced the run time from ~90 min to ~26 min. Visualization using the R Shiny App

revealed multiple mQTLs shared across multiple metabolites. The yQTL Pipeline is available

with documentation on GitHub at https://github.com/montilab/yQTLpipeline.
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1. Introduction

Genetic association studies aim to test the correlation between disease risks or other pheno-

types and genetic variation, with single-nucleotide polymorphisms (SNPs) the most widely

used markers of such variation [1, 2]. Quantitative trait loci (QTL) refer to those genetic varia-

tions that influence the level of a quantitative trait, for example, expression of a given gene [3].

Several analytical approaches for QTL discovery have been developed to date, examples

including Hail [4], MatrixeQTL [5] and QTLtools [6]. However, these tools do not fully

account for familial relatedness, which is an essential component in many genetic association

studies. GENESIS [7] is a package in R that performs genetic association tests while taking into

account of familial relatedness, and has been extensively used in GWAS studies [8]. Neverthe-

less, it can only accommodate one genotype input file and one phenotype at a time, thus its

application to QTL discovery becomes inconvenient when faced with a large number of phe-

notypes and multiple input genotype files.

In addition to the association test, the complete QTL discovery workflow encompasses sev-

eral preprocessing and post-analysis steps, including conversion of the input genotype file to

the correct format, extraction of SNP missingness and frequency information, calculation of

genetic principal components (PCs) and genetic relationship matrix (GRM), and merging and

visualization of the QTL results. These steps require the execution of multiple commands

implemented in different software packages, and can be error prone, time consuming, and dif-

ficult to reproduce. We previously developed a Nextflow-based pipeline that incorporates all

these steps in a single, reproducible workflow [9]. However, this pipeline is limited to the anal-

ysis of one phenotype trait at a time. QTL analysis is often performed over multiple phenotypic

traits and processes multiple genotype input files, and visualization of the results can be chal-

lenging since the relationship of a large number of genomic loci with multiple traits cannot be

easily summarized.

To address these challenges, we developed the yQTL Pipeline to incorporate all the analysis

steps into a single pipeline. It uses the workflow management tool Nextflow [10] to automate

the entire workflow and enables the parallel execution of multiple processes whenever

possible.

2. Methods: yQTL Pipeline design

To ensure modularity, to minimize storage requirements and execution time, and to maximize

user control of the analysis steps to be executed, the yQTL Pipeline workflow consists of three

separate components (shown in Fig 1): Prepare.nf, Analysis.nf, and Report.nf.
Prepare.nf performs any data pre-processing when needed, including the conversion of

VCF genotype files to GDS format, and obtaining genetic PCs and GRM. Information about

the genetic variants, including the allele information, allele frequency and missingness, are also

extracted from the genotype data. Next, Analysis.nf can be invoked to perform the association

test based on the input files either directly provided by the user or from the output of Prepare.
nf. Finally, Report.nf merges the QTL results and generates the plots.

Independent of the analysis workflow, we also make available a stand-alone Nextflow script,

PreQC.nf, to perform QC on the input genotype data.

This modular design was in part adopted to take full advantage of Nextflow’s features. Each

Nextflow process first creates a copy of all input files into a “work” directory, which ensures

reproducibility, but significantly increases the total execution time as well as the storage

requirements, which can become a bottleneck when analyzing large datasets. This is particu-

larly the case in QTL analysis, which takes large genotype input files, executes multiple steps,

and generates large-sized result files. Splitting the workflow into three components
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Fig 1. The yQTL Pipeline workflow. The pipeline is split into three Nextflow steps: Prepare.nf, Analysis.nf, and Report.nf. Two alternative

workflows are available for the cases when familial relatedness is present or not. Grey: inputs. Blue: analysis steps and intermediate outputs.

Green: final outputs.

https://doi.org/10.1371/journal.pone.0298501.g001
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significantly reduces the storage and execution footprints, since the input files can be submit-

ted as “values” corresponding to their file paths, rather than actual “files” to be copied.

Throughout the entire pipeline, processes are executed in parallel whenever possible. Paral-

lelization is an essential feature when analyzing a large number of quantitative traits, and/or

when the genotype data is provided as multiple files. In large studies, it can translate into hun-

dreds or thousands of independent batch jobs being submitted, which can be executed in par-

allel and thus highly decrease the run time.

For the configuration and execution of the yQTL Pipeline, all that is needed is for the user

to specify a configuration file listing the input files and parameters, and to submit three com-

mand lines to invoke the entire pipeline. The yQTL Pipeline is released under a General Public

License 3.0 license. It is publicly available at https://github.com/montilab/yQTLpipeline,

including comprehensive documentations of the configuration setup. It supports Linux and

OS X operating systems.

2.1. Input, configuration, and preparation

The required inputs for the yQTL Pipeline include genotype and phenotype data. Optionally,

covariates, genetic PCs and GRM can also be included. A more detailed description of each of

the input parameters is provided in the GitHub documentation.

2.1.1. Genotype data. The pipeline supports either VCF or GDS input format for geno-

type data. If VCF files are provided, these will be converted to GDS format by running Pre-
pare.nf. In addition, the user can specify whether to use the imputed dosage entry or the

genotype count entry.

2.1.2. Phenotype and covariates data. Phenotype and covariates data should be entered

as a data frame in either RDS (R Data Serialization), CSV (comma separated text file) or TXT

(tab separated text file) format, with rows denoting samples and columns denoting the pheno-

types to identify QTLs from (i.e., the ‘y’ in the model). There should be a column named “sam-

ple.id” to be matched with sample ids in the genetic data files. In addition, the user needs to

input a text file that contains all the phenotype trait names to analyze, corresponding to the

column names in the phenotype file. The user can specify both numerical and categorical

covariates to include.

Genetic PCs, as well as GRM when familial relatedness is presented in the data, can be esti-

mated using different types of computational tools. The yQTL pipeline applies PC-AiR [11]

and PC-Relate [12] to perform the tasks and is achieved by running Prepare.nf. Alternatively,

if pre-calculated genetic PCs and GRM are available, they can be provided as RDS-formatted

input files.

2.1.3. An option to analyze a subset of samples and/or SNPs. By default, the pipeline

will perform the analysis using all the samples and all SNPs available in the intersection of all

input data files. Alternatively, the analysis can be restricted to a subset of samples and/or a sub-

set of SNPs as specified in user-provided input text files listing the sample and SNP IDs.

2.1.4. Control Nextflow processes. Nextflow supports the dispatch of multiple processes

in parallel, a feature that can significantly reduce execution time. The user can control the

maximum number of processes to run concurrently in the configuration file. When running

the pipeline on a high-performance shared computer cluster, the user can also specify distinct

resource allocation requirements for each of the pipeline steps in the SGE (Sun Grid Engine)

configuration file. This is an important feature, as different steps may require drastically differ-

ent computational resources, and the tailored resource allocation ensures the efficient use of

computational (memory and CPU) resources.
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2.1.5. Plotting parameters. Following the completion of QTL analysis, the yQTL Pipeline
will generate the Manhattan plots, Miami plots, and QQ (quantile-quantile) plots for each of

the phenotypes, as well as a histogram showing the distribution of the phenotype values. The

user can specify the minor allele count (MAC) threshold for the SNPs to be included, as well as

the resolution and size of the plots. This MAC threshold only affects the plotting and will not

filter any of the output QTL results. In addition, genotype-phenotype box plots will be gener-

ated for the top SNP in each genotype file input, provided they have passed the user-defined

genome-wide significance threshold, which defaults to 5e-8.

2.2. QTL analysis workflows

The yQTL Pipeline supports two alternative analysis modalities implemented in separate work-

flows, with the choice to be specified in the parameter “params.pipeline_engine”. Available

options are “genesis” and “matrixeqtl”. The details of each are discussed next.

2.2.1. Workflow 1: Data with familial relatedness. When there is known familial related-

ness, the user can select workflow 1 (Fig 1, left side), by setting params.pipeline_engine = “gen-

esis” or “g”, which is based on GENESIS, and uses a two-step procedure. First, it estimates a

“null model” representing the fixed effect of all covariates provided. It then performs associa-

tion testing for each SNP using a linear mixed-effect model.

GENESIS takes a single phenotype, a single genotype file, covariates and a GRM as input.

Thus, the pipeline first splits the one multi-phenotype input file into as many single phenotype

files, then submits multiple jobs in parallel corresponding to each of the phenotypes and each

of the input genotype data files. For instance, if the user wishes to analyze 100 phenotypes and

the genotype data is provided as 22 GDS files, corresponding to as many chromosomes, then

2,200 processes will be automatically submitted and run in parallel. The same covariates, PCs

and GRM are used across all those processes.

2.2.2. Workflow 2: Data without familial relatedness. When the genotype data represent

profiles from unrelated samples, the user can opt for workflow 2 (Fig 1, right side), achieved by

setting params.pipeline_engine = “matrixeqtl” or “m”, to take advantage of MatrixeQTL’s

greater efficiency [5]. There are three model options for the user to choose from: “linear”,

which uses an additive linear model to test for the association of each phenotype with each

genetic variant; “category”, which model the genotype as categorical variable and runs an

ANOVA test; and “interaction”, which tests the interaction between the genetic variants and a

covariate of choice.

Although there is no set upper limit on how many phenotypes MatrixeQTL can handle at

once, as the number of phenotypes and the size of the genotype data increase, the required

memories increase substantially and may exceed the machine’s available resources. To circum-

vent this problem, the phenotype file will be split into multiple “chunks”, with each chunk con-

taining a subset of phenotypes. The user can control the number of phenotypes included in

each chunk to balance the memory requirement and total analysis time. The pipeline will then

apply MatrixeQTL to each phenotype chunk with each genotype input file in parallel. For

example, if there are 100 phenotypes, 22 genotype data input files, and a user-specified chunk

size of 30 (i.e., 30 phenotypes in each chunk), there would be 4 chunks in total with one chunk

containing the last 10 phenotypes, and 88 parallel processes would be submitted. The same

covariates are used with all those processes.

2.3. Outputs

The intermediate results and the final outputs of the pipeline are saved to separate folders. Log

files of all analysis steps are also saved.
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1. “1_data” and “1_phenotype_data” (or “1_phenotype_data_chunk”) folders contain all data

used, including the GDS version of the genotype data if the original inputs were VCF files,

and covariate and phenotype data, respectively.

2. “2_SNP_info” folder contains the SNP information, such as allele, missingness and

frequency.

3. “3_individual_results” folder contains the QTL results of each phenotype with each genetic

data file.

4. “4_ individual_results_SNPinfo” folder is the combination of the two intermediate results

above.

5. “5_Results_Summary” folder contains the final output, which includes the merged version

of all the QTL results of each of the phenotype including SNP information, a summary

table of the number of QTLs identified, as well as the QQ plots, Manhattan plots and

Miami plots of each of the phenotype traits. Genotype-phenotype box plots will also be gen-

erated if the top SNP in each genotype file input has passed the genome-wide significance

threshold provided by the user. Since QTL results are often large data frames, the results are

output in RDS format. In addition, the user can setup the configuration file to output QTL

results in comma separated text files (CSV format) besides RDS files.

2.4. Downstream visualization

We developed an R Shiny App to facilitate post-analysis visualization. In the R Shiny App

interface, the user can upload the RDS file generated by the pipeline, or an RDS file in a similar

format, i.e., a data frame reporting the phenotype trait names, QTL names, their chromosomal

coordinates, and their p-values. The R Shiny App consists of multiple tabs for various visuali-

zations, including the preview of the uploaded QTL result data frame, the Manhattan and

Miami plots, the trait-QTL network, and the genotype-phenotype box plot. Fig 2 shows a

screenshot of the interface with these different tabs.

The Manhattan plot and Miami plot are two of the most commonly used visualization

methods for GWAS analysis since they enable the intuitive identification of significant genetic

associations. After uploading the QTL results file, the Manhattan plot and Miami plot of a spe-

cific phenotype trait can be generated by selecting a phenotype trait name from the drop-

down menu in the R Shiny App interface. In addition, the user can specify a list of SNP IDs in

a text input area, separated by comma, to highlight in the plots.

Manhattan and Miami plots can only visualize the results for a single phenotype trait, thus

making the comparison across phenotypes difficult. To compare QTL results between multiple

phenotype traits, the R Shiny App can also visualize a trait-QTL network. The nodes in the net-

work represent phenotype traits, QTL names (e.g., SNP IDs), and chromosome names. The

edges represent significant associations between traits and their QTLs, and top QTLs’ co-local-

ization within the same chromosome. The user can specify a p-value threshold, and the trait-

QTL network will be generated including only QTLs reaching the threshold. For each pheno-

type trait, given the large number of adjacent genetic loci in high linkage disequilibrium (LD)

with each other, only the most significant genetic locus on each chromosome will be included

in the network plot. The resulting network thus displays which phenotype traits have QTLs

identified at the selected p-value threshold, which chromosomes those QTLs are in, and

whether phenotype traits are sharing (some of) the same QTLs.

In addition, the Shiny App includes the functionality to generate genotype-phenotype

box plots. These box plots are particularly useful to assess whether the effect of the alternative
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allele is non-additive. Users can upload a genotype file in GDS format and a phenotype file in

either CSV or RDS format. Upon selecting a SNP of interest, the app will display a box plot

showing the phenotype values for the three genotypes, including homozygous for the reference

allele, heterozygous, and homozygous for the alternative allele. The app interface of this func-

tionality is shown in Fig 2.

3. Results and discussions: A metabolomics use case of the yQTL

Pipeline

We illustrate the application of the yQTL Pipeline to paired metabolomics and genotype data-

sets from the New England Centenarians Study (NECS). These datasets profiled 194 NECS

participants described in [13]. Age, gender, and years of education were used as covariates.

1,052 metabolites with less than 20% missing values were selected and their expression values

were natural log transformed. 9.1M SNPs in the genotype data were used. Since the partici-

pants are not genetically related, the pipeline was setup to run with workflow 2, in which the

linear model implemented in MatrixeQTL was applied and samples were considered as inde-

pendent. The p-value cutoff was set to 1e-3. Since the dataset had previously estimated genetic

PCs and the genotype data was already in GDS format, only Analysis.nf and Report.nf were

executed.

Although all 9.1M SNPs were analyzed, to avoid artifacts caused by extremely rare SNPs,

only the results from the 3.2M SNPs that have MAC� 3 were considered in the following

post-GWAS analysis. At the relaxed p-value threshold of 1e-3, all 1,052 metabolites had

mQTLs identified. At the genome wide significance threshold (p-value < 5e-8), the list

reduced to 312 metabolites. The latter threshold yielded 14,983 mQTLs, including 11,931

unique SNPs, with 3,052 of them being mQTLs shared by at least two metabolites.

Fig 2. A screenshot of the R Shiny App. Tabs for different functionalities can be selected, including the preview table

of the uploaded QTL result, the Manhattan and Miami plots of a selected phenotype trait, the trait-QTL network, and

the genotype-phenotype boxplot. The screenshot shows the interface for plotting a genotype-phenotype boxplot.

https://doi.org/10.1371/journal.pone.0298501.g002
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Fig 3 shows the Manhattan plot of metabolite N2-acetyl,N6-methyllysine, which is part of

the yQTL Pipeline output, but can also be generated using the companion R Shiny App. Two

genomic loci at chromosomes 2 and 10 were identified at genome-wide significance level

(p< 5e-8).

Fig 4 illustrates an example of the trait-QTL network generated by the R Shiny App using

the most significant mQTLs obtained (p< 1e-17), which reveals information that would not

be easily captured by single phenotype trait visualization methods, such as Manhattan plots.

For instance, the network visualization makes it clear that while rs4539242 (bottom of Fig 4) is

one of the top QTL associations of N2-acetyl,N6,N6-dimethyllysine, it is also the top QTL of

N6-methyllysine. Meanwhile, orotidine (right of Fig 4) has QTLs with p< 1e-17 on both chro-

mosome 14 (top QTL rs192581407) and chromosome 20 (top QTL rs541005701). On the

chromosome level, rs768854100 (middle left of Fig 4) on chromosome 10 is the top QTL of

undecanedioate, while a few other SNPs on the same chromosome are also the top QTL of

other metabolites.

While MatrixeQTL has built-in parallelization, the dataset size might preclude the execu-

tion at once of the entire analysis. For example, in our use case, it was not possible to run the

analysis at once on a machine with 32GB memory. Our pipeline supports the automatic split

of the input dataset and the parallel execution of the resulting multiple analyses. If running all

analyses sequentially, the total execution time for this use case would have exceeded 90 min-

utes. Thanks to the parallelization feature of our pipeline, the total run time was reduced to 26

minutes, achieving a ~3.5-fold speed-up. The memory of the compute nodes ranged from 4GB

to 32GB, tailored to the requirements of each of the processes. With larger datasets, and when

modeling familial relatedness, the execution time reduction would be substantially larger.

4. Conclusions

The tools described and results presented provide strong evidence for the usefulness of the

yQTL Pipeline. By streamlining the analysis process, increasing parallelization, and improving

reproducibility of results, and by incorporating multiple steps into rigorously tested and well-

Fig 3. Example Manhattan plot. Manhattan plot of N2-acetyl,N6-methyllysine mQTL analysis based on the New England Centenarians Study (NECS)

dataset. Minor allele count (MAC) cutoff� 3 was applied to avoid artifacts caused by rare SNPs. Two genome-wide signals on chromosome 2 and

chromosome 10 are clearly visible.

https://doi.org/10.1371/journal.pone.0298501.g003
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documented wrapper workflows, the pipeline will contribute to lowering the barrier to the

wide adoption of QTL analysis tools by the research community.
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2. Tam V., Patel N., Turcotte M., Bossé Y., Paré G., and Meyre D., “Benefits and limitations of genome-

wide association studies,” Nat. Rev. Genet., vol. 20, no. 8, pp. 467–484, Aug. 2019, https://doi.org/10.

1038/s41576-019-0127-1 PMID: 31068683

3. Montgomery S. B. and Dermitzakis E. T., “From expression QTLs to personalized transcriptomics,” Nat.

Rev. Genet., vol. 12, no. 4, pp. 277–282, Apr. 2011, https://doi.org/10.1038/nrg2969 PMID: 21386863

4. Hail Team. Hail 0.2.13-81ab564db2b4. https://github.com/hail-is/hail/releases/tag/0.2.13.

5. Shabalin A. A., “Matrix eQTL: ultra fast eQTL analysis via large matrix operations,” Bioinformatics, vol.

28, no. 10, pp. 1353–1358, May 2012, https://doi.org/10.1093/bioinformatics/bts163 PMID: 22492648

6. Delaneau O., Ongen H., Brown A. A., Fort A., Panousis N. I., and Dermitzakis E. T., “A complete tool

set for molecular QTL discovery and analysis,” Nat. Commun., vol. 8, no. 1, p. 15452, Aug. 2017,

https://doi.org/10.1038/ncomms15452 PMID: 28516912

7. Gogarten S. M. et al., “Genetic association testing using the GENESIS R/Bioconductor package,” Bioin-

formatics, vol. 35, no. 24, pp. 5346–5348, Dec. 2019, https://doi.org/10.1093/bioinformatics/btz567

PMID: 31329242

8. Gurinovich A. et al., “Effect of longevity genetic variants on the molecular aging rate,” GeroScience,

May 2021, https://doi.org/10.1007/s11357-021-00376-4 PMID: 33948810

9. Song Z., Gurinovich A., Federico A., Monti S., and Sebastiani P., “nf-gwas-pipeline: A Nextflow

Genome-Wide Association Study Pipeline,” J. Open Source Softw., vol. 6, no. 59, p. 2957, Mar. 2021,

https://doi.org/10.21105/joss.02957 PMID: 35647481

10. Di Tommaso P., Chatzou M., Floden E. W., Barja P. P., Palumbo E., and Notredame C., “Nextflow

enables reproducible computational workflows,” Nat. Biotechnol., vol. 35, no. 4, pp. 316–319, Apr.

2017, https://doi.org/10.1038/nbt.3820 PMID: 28398311

11. Conomos M. P., Miller M. B., and Thornton T. A., “Robust Inference of Population Structure for Ancestry

Prediction and Correction of Stratification in the Presence of Relatedness,” Genet. Epidemiol., vol. 39,

no. 4, pp. 276–293, May 2015, https://doi.org/10.1002/gepi.21896 PMID: 25810074

12. Conomos M. P., Reiner A. P., Weir B. S., and Thornton T. A., “Model-free Estimation of Recent Genetic

Relatedness,” Am. J. Hum. Genet., vol. 98, no. 1, pp. 127–148, Jan. 2016, https://doi.org/10.1016/j.

ajhg.2015.11.022 PMID: 26748516

13. Sebastiani P. et al., “A metabolomic signature of the APOE2 allele,” GeroScience, vol. 45, no. 1, pp.

415–426, Feb. 2023, https://doi.org/10.1007/s11357-022-00646-9 PMID: 35997888

PLOS ONE Quantitative trait loci discovery analysis Pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0298501 June 4, 2024 10 / 10

https://doi.org/10.1101/pdb.top068163
http://www.ncbi.nlm.nih.gov/pubmed/22383645
https://doi.org/10.1038/s41576-019-0127-1
https://doi.org/10.1038/s41576-019-0127-1
http://www.ncbi.nlm.nih.gov/pubmed/31068683
https://doi.org/10.1038/nrg2969
http://www.ncbi.nlm.nih.gov/pubmed/21386863
https://github.com/hail-is/hail/releases/tag/0.2.13
https://doi.org/10.1093/bioinformatics/bts163
http://www.ncbi.nlm.nih.gov/pubmed/22492648
https://doi.org/10.1038/ncomms15452
http://www.ncbi.nlm.nih.gov/pubmed/28516912
https://doi.org/10.1093/bioinformatics/btz567
http://www.ncbi.nlm.nih.gov/pubmed/31329242
https://doi.org/10.1007/s11357-021-00376-4
http://www.ncbi.nlm.nih.gov/pubmed/33948810
https://doi.org/10.21105/joss.02957
http://www.ncbi.nlm.nih.gov/pubmed/35647481
https://doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/28398311
https://doi.org/10.1002/gepi.21896
http://www.ncbi.nlm.nih.gov/pubmed/25810074
https://doi.org/10.1016/j.ajhg.2015.11.022
https://doi.org/10.1016/j.ajhg.2015.11.022
http://www.ncbi.nlm.nih.gov/pubmed/26748516
https://doi.org/10.1007/s11357-022-00646-9
http://www.ncbi.nlm.nih.gov/pubmed/35997888
https://doi.org/10.1371/journal.pone.0298501

