
RESEARCH ARTICLE

EOTE-FSC: An efficient offloaded task

execution for fog enabled smart cities

Faheem Nawaz Tareen1☯, Ahmad Naseem AlviID
1☯, Badr AlsamaniID

2☯*,

Mohammed Alkhathami2☯, Deafallah Alsadie3☯, Norah Alosaimi2☯

1 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad,

Pakistan, 2 Information Systems Department, College of Computer and Information Sciences, Imam

Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia, 3 Information Systems Department,

Umm Al-Qura University, Mecca, Saudi Arabia

☯ All these authors are contributed equally to this work.

* bsalsamani@imamu.edu.sa

Abstract

Smart cities provide ease in lifestyle to their community members with the help of Information

and Communication Technology (ICT). It provides better water, waste and energy manage-

ment, enhances the security and safety of its citizens and offers better health facilities. Most of

these applications are based on IoT-based sensor networks, that are deployed in different

areas of applications according to their demand. Due to limited processing capabilities, sensor

nodes cannot process multiple tasks simultaneously and need to offload some of their tasks to

remotely placed cloud servers, which may cause delays. To reduce the delay, computing

nodes are placed in different vicinitys acting as fog-computing nodes are used, to execute the

offloaded tasks. It has been observed that the offloaded tasks are not uniformly received by

fog computing nodes and some fog nodes may receive more tasks as some may receive less

number of tasks. This may cause an increase in overall task execution time. Furthermore,

these tasks comprise different priority levels and must be executed before their deadline. In

this work, an Efficient Offloaded Task Execution for Fog enabled Smart cities (EOTE − FSC) is

proposed. EOTE − FSC proposes a load balancing mechanism by modifying the greedy algo-

rithm to efficiently distribute the offloaded tasks to its attached fog nodes to reduce the overall

task execution time. This results in the successful execution of most of the tasks within their

deadline. In addition, EOTE − FSC modifies the task sequencing with a deadline algorithm for

the fog node to optimally execute the offloaded tasks in such a way that most of the high-prior-

ity tasks are entertained. The load balancing results of EOTE − FSC are compared with state-

of-the-art well-known Round Robin, Greedy, Round Robin with longest job first, and Round

Robin with shortest job first algorithms. However, fog computing results of EOTE − FSC are

compared with the First Come First Serve algorithm. The results show that the EOTE − FSC

effectively offloaded the tasks on fog nodes and the maximum load on the fog computing

nodes is reduced up to 29%, 27.3%, 23%, and 24.4% as compared to Round Robin, Greedy,

Round Robin with LJF and Round Robin with SJF algorithms respectively. However, task exe-

cution in the proposed EOTE − FSC executes a maximum number of offloaded high-priority

tasks as compared to the FCFS algorithm within the same computing capacity of fog nodes.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nawaz Tareen F, Alvi AN, Alsamani B,

Alkhathami M, Alsadie D, Alosaimi N (2024) EOTE-

FSC: An efficient offloaded task execution for fog

enabled smart cities. PLoS ONE 19(4): e0298363.

https://doi.org/10.1371/journal.pone.0298363

Editor: Raman Singh, University of the West of

Scotland, UNITED KINGDOM

Received: November 6, 2023

Accepted: January 24, 2024

Published: April 5, 2024

Copyright: © 2024 Tareen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data regarding the

paper including the simulation parameters and

system model details is available in the paper itself.

Funding: This work was supported and funded by

the Deanship of Scientific Research at Imam

Mohammad Ibn Saud Islamic University (IMSIU)

(grant number IMSIU- RG23024).

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-7771-9115
https://orcid.org/0000-0002-7170-8159
https://doi.org/10.1371/journal.pone.0298363
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298363&domain=pdf&date_stamp=2024-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298363&domain=pdf&date_stamp=2024-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298363&domain=pdf&date_stamp=2024-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298363&domain=pdf&date_stamp=2024-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298363&domain=pdf&date_stamp=2024-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298363&domain=pdf&date_stamp=2024-04-05
https://doi.org/10.1371/journal.pone.0298363
http://creativecommons.org/licenses/by/4.0/

Introduction

Smart cities are currently in high demand, not only in emerging regions but also in well-estab-

lished urban areas. Their appeal lies in the enhanced quality of life they offer to their residents.

These cities heavily rely on Information and Communication Technologies (ICT) to manage

crucial aspects of urban infrastructure, such as water, waste, and energy, as well as to bolster

health, safety, and security [1–5].

Data collection within smart cities is carried out through a network of sensors situated in

infrastructure, buildings, and assets. This data is subsequently analyzed to automate services,

optimize performance, reduce operational costs, and make the best use of limited resources. It

serves a multitude of purposes, from managing power plants, water supply, and transportation,

to enhancing public services like education and healthcare, and even law enforcement and

emergency response.

Key technologies that underpin smart cities include artificial intelligence, communication

networks, cloud computing, mesh networks, and the Internet of Things (IoT) [6, 7]. These

technologies facilitate data exchange among various connected devices, where data collected

by IoT sensors deployed across various smart city applications is stored in a centralized data-

base, typically located in cloud servers. Cloud servers offer advantages such as substantial stor-

age capacity and computational capabilities, which result in more cost-effective data

management. However, at the same time, due to its remote placement, propagation delay

increases resulting in an increased latency. This limitation can be overcome by placing

machines in close vicinity of IoT nodes in different locations of smart city applications such as

“fog computing” [8, 9]. Fog computing nodes are accessible within a single network hop and

serve as intermediaries between remote cloud servers and end-users, thus reducing latency.

Fog nodes are mostly accessible to users on a single hop and act as a bridge between cloud serv-

ers and end-users as shown in Fig 1.

Fog computing is an architectural concept characterized by the placement of one or more

data centres at the periphery of user networks, rather than routing data over the internet back-

bone [10–13]. This setup, existing within the same IoT network, allows various sensor devices

to transmit their data swiftly for expedited processing. Fog computing employs intelligent

sensing to reduce the burden on cloud capacity by filtering out irrelevant data. Various data

synchronization techniques, such as Push schemes, Pull schemes and Push-Pull schemes, are

employed to collect data from lower-end fog nodes to higher-end fog nodes for manageable

processing. These schemes adhere to communication protocols tailored to the fog computing

environment.

Fog nodes store and process data at the edge of devices, whereas cloud computing relies on

centralized data centres accessed through the internet. This proximity allows fog nodes to

swiftly process tasks, making them the preferred choice for applications that require minimal

delays. Due to low latency, fog computing is widely acceptable for time-constraint applications

in urban management [14, 15].

Wireless sensor-based IoT nodes in smart cities have limited computing and processing

capabilities and executing complex tasks takes more time, which is sometimes not required in

time-constrained applications. To execute these tasks in a specific time frame, these tasks are

required to be offloaded to high processing and computing machines in the close vicinity of

these IoT nodes, such as fog computing nodes.

These offloaded tasks are different and it is quite possible that some of the fog nodes receive

less number of tasks and some may experience a large number of offloaded tasks. This creates

an imbalance load on fog nodes resulting in overall increased execution time. To reduce this

execution time, offloaded tasks are required to be uniformly distributed among all fog nodes.

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 2 / 18

https://doi.org/10.1371/journal.pone.0298363

This can be achieved by placing a load-balancing node between the IoT nodes and fog comput-

ing nodes.

There are different types of load balancing schemes used in allocating the tasks among com-

puting nodes. Some of the most commonly used allocation schemes are Random allocation,

Round Robin, Round Robin with LJF, and Greedy algorithm.

In a random algorithm, the load balancer allocates the tasks randomly. It is easy to deploy,

however, its latency issues are very high. The latency issues have been somehow addressed in

Round Robin by allocating the tasks in a round-robin fashion. However, it does not consider

the size and complexity level of the tasks. Due to this, the tasks are not uniformly distributed.

Round Robin with LJF proposed in [16] overcome this issue somehow. However, there are

quite several task patterns that are not uniformly allocated. A greedy algorithm allocates the

tasks to machines by considering the load on the machines and assigns the tasks to such

machine that has the least processing capacity.

Though all the above-mentioned schemes, reduce the task execution time, however, there is

still room to improve the execution time of these tasks. In this work, an Efficient Offloaded

Tasks Execution scheme for Fog enabled Smart Cities (EOTE − FSC) is proposed. The salient

features of EOTE − FSC are mentioned below.

1. Introduce a hierarchical system model with a load balancer for fog-enabled smart city

applications.

2. A load balancing algorithm for load balancers to uniformly distribute the offloaded tasks

among fog computing nodes to reduce the execution time.

Fig 1. Smart city connectivity with fog.

https://doi.org/10.1371/journal.pone.0298363.g001

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 3 / 18

https://doi.org/10.1371/journal.pone.0298363.g001
https://doi.org/10.1371/journal.pone.0298363

3. An algorithm for a fog computing node to efficiently execute the offloaded tasks in such a

way that the majority of the offloaded tasks are executed to meet their deadline.

The rest of the paper is organized as: At first, the research work related to task offloading

particularly in fog computing is discussed. This is followed by the proposed scheme with its

different algorithms. The system model along with the comparative results are analyzed after-

wards. Finally, conclusions are provided at the end.

Related research

Fog computing is under hot research because it offers reduced delay with immediate process-

ing capabilities for many of the delay-sensitive offloaded tasks.

In [17], the authors highlighted the limited computing resources for the most critical and

sensitive tasks in vehicular networks. The authors propose a solution for vehicular fog comput-

ing with the help of mobile devices. The roadside Unit (RSU) performs task scheduling among

all the vehicles by applying greedy scheduling algorithm. This algorithm was proposed to opti-

mize the latency in the offloaded task. Lastly, the author describes some future work regarding

task optimization and load balancing.

In [18], the author presented a meta-heuristic model inspired by nature and solved the

latency issues by using fog computing. The proposed model is compared with different sched-

uling algorithms, including round-robin, throttled algorithm for scheduler and bee fly algo-

rithm. The proposed algorithm only takes 106.5 milliseconds to process. Compared to all

other algorithms, it takes less time but does not consider power consumption. They only con-

sider the latency processing time.

In [19], authors proposed a task-offloading scheme for an edge computing network of vehi-

cles by optimizing the selection of fog nodes. The load balancing technique is proposed for off-

loaded task executions that include two theory-based game schemes for selecting fog nodes

and offloaded task decisions with software-defined networking. Authors claim that their pro-

posed scheme reduces the total processing delay. The system design proposed in [20] is based

on cloud and fog computing. The authors applied the shortest job first algorithm in assigning

tasks on different machines for load balancing. The author compares their result with the

round-robin algorithm. The main disadvantages of this paper are Low performance and the

Processes having a more waiting time.

In [21], the authors describe the offloading task, specifically decision problems in several

users and the structured task circumstances. In edge computing, if the user has a large number

of tasks, then it can offload their task for lower energy consumption. There are many offload

points but limited resources. In this paper, the author designed the offloading model that has a

large number of users and many offloading points. Every user has a well-structured task and

has a limited offloading point. Then they apply the backtracking in the offloading decision for

the exact solution. Two methods are designed to overcome the time latency: the greedy strat-

egy and the genetic algorithm. Finally, for the simulation, they compare the entire algorithm’s

result. The result of the comparison suggests that the greedy algorithm is the best. It reduces

the total cost to 55%.

In [22] proposed a Fog-Cloud system that uses a Stochastic Gradient Descent (SGD) algo-

rithm and provided a mathematical model. The authors claimed that their proposed scheme

allows smart devices to use less energy, work faster, and cost less when getting help from far-

away servers. In [23], authors addressed scalability issues with the increased number of devices

and proposed a distributed load-sharing MEC network with cloud cooperation. The authors

optimized offloading probability and transmission power by applying queuing theory and

SGD algorithm. The authors claimed that their proposed scheme is effective for scalability and

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 4 / 18

https://doi.org/10.1371/journal.pone.0298363

energy consumption and handles computation offloading challenges for smart devices. In

[24], the authors proposed a scheme to handle heavy tasks by proposing a Mobile Cloud Com-

puting (MCC). The authors claimed that sharing the workload with the cloud to make things

faster and save energy.

There are multiple frameworks proposed for the deployment in different offloading scenar-

ios [25–27]. In [25], authors proposed a machine learning-based Context-Sensitive Computa-

tional Offloading System (CSOS). CSOS trained on context database and tested on previously

selected four algorithms. Authors claimed that CSOS provides high accuracy in offloading

decisions. In [26], authors proposed a framework for Mobile Code Offloading for IoT devices

called MobiCOP-IoT, which allows to deployment of multiple surrogates on clouds as well as

on edge nodes. Authors claimed that MobiCOP-IoT enhances computing capabilities by tak-

ing advantage of mobile edge computing by testing it in different scenarios. In [27], authors

designed an Evidence-based Mobile Computational Offloading (EMCO) toolkit as a novel

solution for computational offloading. The toolkit was tested by deploying it in Amazon EC2

Ireland and claimed that their designed toolkit improves the app execution with reduced

energy. In addition, the authors claimed that EMCO offers scalability without compromising

its performance.

A comparative summary of all the discussed research articles is shown in Table 1.

Proposed scheme

In the proposed EOTE − FSC, sensor nodes are deployed in different locations for different

smart city applications. These sensor nodes are connected with one of the sparsely located fog

nodes. IoT sensor nodes have diverse nature of tasks with different execution times. Due to

low processing capacity, IoT nodes are unable to execute these tasks within the required time

frame. In such cases, complex tasks are offloaded to fog nodes that are placed in close vicinity

of these nodes. Due to the diverse nature of these tasks, it is quite possible that some fog nodes

are heavily loaded and some are lightly loaded or have no tasks to execute. This results in an

unbalanced load on fog nodes resulting in an overall increase in their task execution time. To

minimize the overall execution of time, these tasks are required to be uniformly distributed

Table 1. Comparison table of related work.

Ref. No. The goal of the technique Key Idea Results
[17] latency optimization in vehicular network Mobile devices and Greedy scheduling algorithm reduced delay

[18] Reducing processing time meta-heuristic model without considering power

consumption

processing time reduced from round-robin and

bee fly algorithms

[19] load balancing based task offloading Two theory-based game schemes are proposed Reduced task-processing time

[20] load balancing for fog and cloud Shortest Job First algorithm for load balancing reduces execution time as compared to round-

robin

[21] Offloading task execution greedy and genetic algorithms are proposed reduces the total cost to 55%

[22] Offloaded tasks for fog-cloud system Stochastic Gradient Descent algorithm with

mathematical modelling

Energy minimized with less cost

[23] Addresses scalability issues with increased

number of devices

Queuing theory with Stochastic Gradient Descent

algorithm

Offers scalability with reduced energy

consumption

[24] Addresses heavy offloaded tasks Mobile cloud computing for offloaded tasks on cloud Fast processing with energy-saving

[25] Trained context database Machine learning-based context-sensitive

computation

High accuracy in offloading decisions

[26] Framework for offloading mobile codes in IoT Deployment of multiple surrogates on cloud Enhance computing capabilities

[27] A toolkit for evidence-based mobile

computational offloading

Deployed the toolkit in Amazon EC2 Improves app execution with reduced energy

https://doi.org/10.1371/journal.pone.0298363.t001

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0298363.t001
https://doi.org/10.1371/journal.pone.0298363

among fog nodes. The main purpose of the EOTE − FSC scheme is to reduce the overall task

execution time of all offloaded tasks by proposing the concept of a load balancer along with

the following two algorithms.

1. One algorithm is proposed for load balancing machines to efficiently distribute the off-

loaded tasks to its directly connected fog node.

2. The Second algorithm is for the fog node to execute tasks according to their priorities and

their deadline.

IoT devices continuously send their data to the fog node. Fog nodes are deployed in differ-

ent locations of smart cities with limited processing capability. Fog nodes are placed in differ-

ent locations in the smart city. Fog nodes do not receive a uniform number of offloaded tasks

from sensor nodes, resulting in an off-balance situation.

Task execution time (TET) of an offloaded task is calculated as the time when a node has an

executable task till the time when the task is executed. If PB,N is the propagation delay between

the task offloading node and the load balancer, and TWT is the waiting time of a node at the

load balancer, PB,F is the propagation delay between the load balancer and fog computing

node, TQD is the queuing delay at fog node and TET is the executing time. Then task execution

time of node N (TET
N) is calculated as:

TET
N ¼ PB;N þ TWT þ PB;F þ TQD þ TET ð1Þ

If there are K offloading tasks initiated by IoT nodes in a specific time frame Ti, then the

accumulated delay (TET
Acc) of all the offloaded tasks by fog nodes in J number of time frames is

calculated as:

TET
Acc ¼

Xk

i¼1

TET
NJ ð2Þ

The purpose of a load balancer is to balance the offloaded tasks to minimize the execution

time.

Load balancer

EOTE − FSC introduced a load balancer, that acts as a bridge between fog nodes and IoT sen-

sors. All the offloaded tasks from sensor nodes are forwarded to their directly connected load

balancer that is backwardly connected with multiple fog nodes as illustrated in Fig 3. Each load

balancer has real-time load information of all of its connected fog nodes. This helps in allocat-

ing the new offloaded tasks on one of its attached fog nodes by applying a load-balancing algo-

rithm as described in the following section.

Load balancing algorithm

For efficient execution of the offloaded task in the fog node, we introduced a load balancer for

fog nodes in smart city applications. An efficient load balancing mechanism by modifying the

state-of-the-art Greedy algorithm. This algorithm works the same as the greedy algorithm.

However, it schedules all the tasks in descending order before assigning them to the fog nodes.

Suppose there are n tasks, that are required to be assigned to m number of fog computing

nodes uniformly. The proposed scheme assigns tasks to each fog computing node in such a

way that the next task will be assigned to the machine that holds the lowest load.

The greedy algorithm not only simply assigns tasks to each fog node but also considers the

load on each fog node. Suppose, there are m identical machines; let us say that n tasks have

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 6 / 18

https://doi.org/10.1371/journal.pone.0298363

processing time ti. Suppose we have three fog nodes. The first task goes to the first fog node,

2nd task goes to the second fog node, and 3rd task goes to the third fog node. When the 4th task

arrives, the greedy algorithm keeps track of all the tasks. It checks the load on each fog node

and will assign the 4th task to the fog node that has a lesser load. Assign the next task to the

machine with the lowest load so far. This procedure will continue until all the tasks are com-

pleted. The maximum load on every machine is reduced. Rearrange all the tasks in the

descending order [“j4”, 10], [“j2”, 8] [“j1”, 6], [“j7”, 6], [“j3”, 4], [“j5”, 2], [“j6”, 1].

After completing all these tasks using the modified greedy technique, the maximum load

will be 13 seconds as fog node 1 has a load of 13, fog node 2 has a load of 12, and fog node 3

has a load of 12. However, it was 14 through a greedy algorithm.

The time complexity of our proposed load balancing algorithm is calculated as O(n) and

can solve large-scale problems. The proposed algorithm for the load balancing node is shown

in Algorithm 1.

Algorithm 1: Proposed Load Balancing Algorithm
Input: Tasks = n, tasks processing times t1, t2, t3, . . ., tn, number of

machines m1, m2, m3, . . ., mn
Output: Assignment of tasks to machines
1 Initialize sets: tasks(Mi) = ; (assigned tasks to Mi) and Load(Mi) = ;
(total load of machine Mi)

2 Sort the tasks in descending order according to their processing
times

3 for i = 1 to n do
4 Assign the task i to the machine Mk with the smallest load
5 tasks(Mk) = tasks(Mk) [{i} // Assign the task to machine Mk
6 Load(Mk) = Load(Mk) + ti // Update the load of machine Mk
7 end
8 Sort the machines by their load in ascending order
9 for i = 1 to n do
10 Sort the tasks assigned to each machine in non-increasing order

of their processing times
11 end
12 return tasks

Task execution with deadline

Fog nodes after receiving all the offloaded tasks are required to execute them. These received

tasks are different in their sizes with varying sensitivity requirements as some of these tasks

have high priority as compared to others and need to be executed on a priority basis. Sensitive

tasks have to meet strict deadlines as compared to normal tasks and if a task cannot be exe-

cuted before its deadline then it is useless. Each fog node has a certain task processing time

and sometimes it is not possible to execute all tasks within their stipulated time. This requires

optimal decision-making to perform those tasks within the task processing capacity of the fog

node.

EOTE − FSC offers an efficient algorithm for fog nodes to execute the tasks by considering

their deadlines. EOTE − FSC meets the following two main requirements of offloaded tasks.

• Tasks have different deadlines

• Tasks require different execution time

Suppose there are 9 tasks (J1 to J9) and they are divided into three different priority levels,

with 100, 60 and 30 as most sensitive, medium sensitivity and low sensitivity levels respectively.

These tasks have different deadlines and require different execution times represented in time

slots as shown in Table 2.

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 7 / 18

https://doi.org/10.1371/journal.pone.0298363

The proposed algorithm creates a Gantt chart to meet most of the deadlines of the scheme

in the following steps.

1. Sort the offloaded tasks in decreasing order according to their priority.

2. Make the Gantt chart; the length of the Gantt chart will be as long as the maximum deadline

of the highest priority task.

3. Take the tasks one by one as they are assigned. Create a Gantt chart for the work and place

it as far away from 0 as feasible to ensure it is done before the deadline.

4. Fill in the time slots that are required to execute the offloaded task.

Fig 2 shows the task processing preference to achieve the deadlines of most of the tasks

received by the fog computing node. As J8 task requires 2 slot sizes, and its deadline is 7. So

this algorithm will check before the deadline 7 whether two consecutive slots are available or

not. If available, it executes the task; otherwise, it will discard it. This procedure will be contin-

ued for all the tasks.

The time complexity of the task sequencing algorithm is calculated as O(n2). Due to its time

complexity, the fog node applies this algorithm after a short interval of time to determine

whether it can execute the offloaded tasks within time; otherwise, it discards it. A complete

procedure of the task execution with deadlines is shown in Algorithm 2.

Algorithm 2: Enhanced task Sequencing with Deadlines
1 Input: n = Number of Tasks
2 TD = Task deadline
3 TP = Task Priority
4 TS = Task slots
5 Ti = current task
6 Dmax = 0
7 for i = 1 to n do

Table 2. Tasks with varying sizes.

Tasks Priority Deadline Slots
J1 100 5 1
J4 100 6 2
J8 100 7 2
J3 60 2 1
J5 60 2 2
J9 60 1 1
J2 30 4 1
J6 30 5 2
J7 30 1 1

https://doi.org/10.1371/journal.pone.0298363.t002

Fig 2. Assigning different sizes of task.

https://doi.org/10.1371/journal.pone.0298363.g002

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0298363.t002
https://doi.org/10.1371/journal.pone.0298363.g002
https://doi.org/10.1371/journal.pone.0298363

8 Sort the tasks in decreasing order according to task priority
9 find the task that has maximum deadline (TDmax)
10 Dmax = TDmax
11 end
12 ET = 0
13 k = Dmax
14 for i = 1 to Dmax do
15 empty all slots
16 end
17 for i = 1 to n do
18 fill the last slot with TDi
19 ET = ET + 1
20 k = k − TSi
21 if k = 0 then
22 Stop the process
23 end
24 end
25 Value of ET provides the total number of tasks selected for
execution

System model and results

In this section, the performance of the proposed EOTE − FSC scheme will be analyzed in dif-

ferent prospects with state-of-the-art schemes. Before analyzing its performance, the system

model along with simulation parameters is discussed.

System model

In this work, we consider three smart city applications: smart health care, IoT-based home

security, and industrial automation. Sensor nodes deployed for each application are supposed

to have three different sensitivity levels with different deadline requirements, such as most sen-

sitive, medium and low sensitivities. The deadline for similar sensitivity-level tasks is not fixed

and varies according to their application requirements. In addition, the size and complexity

level of these tasks vary and require different execution times.

These IoT nodes of smart city applications are sparsely placed and are supposed to offload

some of their tasks for timely execution. These tasks are required to be executed from the fog

nodes that are placed in different vicinity of smart cities. Load balancing nodes are also located

in different locations in such a way that each task offloading node is in direct connection with

the load balancing nodes and a load balancer is backwardly connected with multiple fog com-

puting nodes which are connected with the cloud at their back-end as shown in Fig 3. It is sup-

posed that load balancing nodes and fog computing nodes have enough caching capacity to

cache the offloaded tasks and none of the offloaded tasks is wasted due to overflow. The load

balancing node assigns offloaded tasks to fog computing nodes by applying the proposed load

balancing algorithm. A load-balancing node is supposed to have online knowledge about off-

loaded tasks present in the queuing lists of all of their directly connected fog nodes. All fog

nodes are backwardly connected with the cloud.

In this work, M fog computing nodes are sparsely deployed in different areas of smart city

in such a way that Mi fog node is associated with N number of smart city application networks.

Sensor nodes are deployed in each network and offload their tasks to fog computing nodes. In

Nj smart city application network, sensor nodes offload their tasks that are categorized as t1,t2
and t3 with low to high priority. If there are V fog nodes deployed to cover the specific area of

the smart city, then the total number (T) of offloaded tasks received by all fog computing

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 9 / 18

https://doi.org/10.1371/journal.pone.0298363

nodes is calculated as:

T ¼
XV

i¼1

XY

j¼1

MiðtjÞ ð3Þ

A load balancer is placed between sensor nodes and fog node and signals to noise ratio

between the load balancer and sensor nodes (γn,b) in a wireless channel is considered, the data

rate (DR1) between the load balancer and all its connected nodes is calculated as

DR1 ¼ log2ð1þ gn;bÞ ð4Þ

Downloading data rate between the load balancer and its associated each of fog node (DR2)

is calculated as:

DR2 ¼ log2ð1þ gb;f Þ ð5Þ

here γb,f is signal to noise ratio between the load balancer and fog node.

Let us have m indistinguishable fog node and n tasks. For each offloaded task j, the time

required to process on one fog node is tj. Let Jj be the set of tasks assigned to the fog node. At

any time instant, the overall execution time of fog node a is Fa. The goal of the load balancing

Fig 3. System model.

https://doi.org/10.1371/journal.pone.0298363.g003

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 10 / 18

https://doi.org/10.1371/journal.pone.0298363.g003
https://doi.org/10.1371/journal.pone.0298363

node is to minimize the execution time of all offloaded tasks on fog nodes, so that maximum

execution time on any of the fog nodes in a network should be minimized.

Simulation parameters

To evaluate the performance of our proposed EOTE − FSC scheme, a simulation environment

following the system model is created in MATLAB simulator. Three different priority levels of

tasks are taken from each of the three smart city applications with different sizes and varying

time-binding requirements. The offloaded tasks are directly sent to the load balancing node

that is directly connected with 2 to 7 fog nodes. To evaluate the performance of the fog node to

meet different task deadlines, the offloaded tasks are uniformly divided into three categories. If

there are 6 tasks assigned to fog nodes, then two tasks of high priority, two of medium priority

and two for least priority tasks. A detailed list of simulation parameters is shown in Table 3.

Comparative results of proposed scheme

In this section, the performance of load balancing and task execution with deadlines of EOTE
− FSC are evaluated in different prospects and with state-of-the-art algorithms. The perfor-

mance of the proposed load balancing algorithm is compared with Round Robin, Greedy, and

Round Robin with LJF algorithms in terms of the task execution time of the fog node. How-

ever, the performance of the task execution algorithm of our proposed EOTE − FSC for the fog

node is compared with the First Come First Serve (FCFS) algorithm. The energy consumption

in IoT is a crucial parameter. Transmitting offloaded tasks to the load balancer and receiving

executed tasks consumes more energy, compared to executing tasks by an IoT node. However,

executing tasks by IoT nodes is time-consuming as they have limited computing power com-

pared to the fog node. In this study, our focus is to execute tasks within their deadlines and

only consider the delays. We have not taken into account the energy constraints of IoT nodes.

Comparative performance analysis of load-balancing algorithm. The offloaded tasks

received by the load balancer are required to be distributed among its attached fog nodes. The

performance of the load-balancing algorithm is compared with above mentioned three other

schemes. The results are analysed for varying number of arrived tasks with a fixed number (3)

of fog nodes, and for varying number of fog nodes for a fixed number (24) of offloaded tasks

with varying computing time.

Results shown in Fig 4 verify that the task execution time increases, when the number of

offloaded tasks increases from 4 to 40 in different instances of times. These offloaded tasks are

Table 3. Simulation parameters.

Parameter Value

Coverage area of load balancing node 200 m

Distance between fog nodes and load balancing nodes 50-150

Number of simultaneous offloaded tasks for each fog node 5-30

Number of fog nodes 2-7

Number of high priority tasks 2-8

Number of medium priority tasks 2-8

Number of low priority tasks 2-8

Time required for task execution (slots) 1-2

Slot duration (msec) 6

Tasks sizes (kB) 5-15

Processing of each fog node (Mb/s) 8

https://doi.org/10.1371/journal.pone.0298363.t003

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 11 / 18

https://doi.org/10.1371/journal.pone.0298363.t003
https://doi.org/10.1371/journal.pone.0298363

required to be executed by a fixed number of 3 fog nodes. The results further verify that the

proposed scheme efficiently allocates the offloaded tasks on fog nodes resulting in reduced exe-

cution time as compared to the other four schemes. The results show that the proposed scheme

executes offloaded tasks 29%, 21%, 15.5%, and 16.4% faster as compared to round-robin,

greedy, round-robin with the LJF, and round-robin with the SJF algorithms respectively.

The results shown in Fig 5 illustrate the total processing time when the number of fog

nodes is increased from 2 to 10 and the total number of tasks is 24. The results show that the

maximum task execution time of these offloaded tasks on one of the fog computing nodes

reduces with the increase in the number of fog computing nodes as the same number of tasks

are distributed on multiple fog nodes. The results further show that the execution time of our

proposed load balancing scheme efficiently allocates nodes on its attached fog computing

nodes as compared to the other four algorithms. The results show that the proposed scheme

reduces the task execution time up to 28.5%, 27.3%, 23% and 24.4% as compared to round-

robin, greedy, round-robin with LJF and round-robin with SJF respectively.

To overview the performance of our proposed scheme with the other four algorithms, the

standard deviation is calculated to evaluate the deviation of these schemes from the mean

value. The standard deviation (SD) is calculated as:

SD ¼

ffi
XN

i¼1

ðX � YÞ2=N

s

ð6Þ

here,

Fig 4. Task execution time with varying number of uploaded tasks.

https://doi.org/10.1371/journal.pone.0298363.g004

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 12 / 18

https://doi.org/10.1371/journal.pone.0298363.g004
https://doi.org/10.1371/journal.pone.0298363

X = mean time to compute the offloaded task

Y = time to execute the task by an algorithm

N = Number of instances

Results shown in Figs 6 and 7 represent standard deviation values calculated for each algo-

rithm for varying numbers of fog nodes and for varying numbers of offloaded tasks

Fig 5. Task execution time with varying fog computing nodes.

https://doi.org/10.1371/journal.pone.0298363.g005

Fig 6. Standard deviation for varying fog nodes.

https://doi.org/10.1371/journal.pone.0298363.g006

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 13 / 18

https://doi.org/10.1371/journal.pone.0298363.g005
https://doi.org/10.1371/journal.pone.0298363.g006
https://doi.org/10.1371/journal.pone.0298363

respectively. It is evident from the results that the deviation of the proposed scheme from the

mean value is minimal as compared to the other three schemes and it remains close to the

mean value.

Performance analysis of offloaded task execution algorithm. Fog nodes after receiving

all offloaded tasks are required to execute. The task execution performance of our proposed

algorithm is compared with the state-of-the-art FCFS algorithm for varying numbers of differ-

ent priority levels of offloaded tasks.

The percentage of tasks executed concerning task requests for three different priority tasks

is calculated in Fig 8. Results include three sub-plots that represent three different priority

level tasks: high-priority tasks, medium-priority tasks, and low-priority tasks. It is evident

from the results that our proposed algorithm executed 100% high-priority tasks. When we

compared our proposed algorithm with the FCFS algorithm, our proposed algorithm yielded

up to 50% better. The percentage of task execution for ‘medium priority tasks’ is the same for

up to 4 tasks. However, for 6 and 8 offloaded tasks, the FCFS scheme executes more tasks than

the proposed scheme, because proposed scheme has already executed most of the highest pri-

ority tasks within its task execution capacity. However, when we had two tasks to execute, both

schemes executed the same number of tasks in all priority tasks as all the tasks are within the

processing capacity of the fog node.

For better comparative analysis, the number of offloaded tasks executed against varying

number of offloaded tasks for three different priority tasks is calculated in Fig 9. The figure

includes three sub-figures that represent three priority-level tasks: high-priority, medium-pri-

ority, and low-priority tasks. It is evident from the results that our proposed algorithm exe-

cuted up to 8 tasks in case of ‘high priority tasks’. When we compared our proposed algorithm

with the FCFS algorithm, the FCFS algorithm executed half the number of tasks as compared

to our proposed scheme. The number of tasks executed for ‘medium priority tasks’ is identical

for both schemes, when the number of offloaded tasks is up to 4. However, when the number

of offloaded tasks increased to 6 and 8 tasks, the FCFS scheme executed more tasks than the

proposed scheme. This happens because the proposed scheme preferred to execute higher-

Fig 7. Standard deviation for a varying number of tasks.

https://doi.org/10.1371/journal.pone.0298363.g007

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 14 / 18

https://doi.org/10.1371/journal.pone.0298363.g007
https://doi.org/10.1371/journal.pone.0298363

Fig 8. Percentage of tasks executed by a fog node for a varying number of offloaded tasks.

https://doi.org/10.1371/journal.pone.0298363.g008

Fig 9. Total number of executed tasks for a varying number of offloaded tasks.

https://doi.org/10.1371/journal.pone.0298363.g009

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 15 / 18

https://doi.org/10.1371/journal.pone.0298363.g008
https://doi.org/10.1371/journal.pone.0298363.g009
https://doi.org/10.1371/journal.pone.0298363

priority tasks first and could not spare the processing capacity left to execute any low-priority

tasks.

The results shown in Fig 10 are observed when all the offloaded tasks have the same priority

levels with varying deadlines and execution times. The results are observed for varying num-

bers of offloaded tasks to the fog node when it is processed for every 16 processing slot dura-

tion. In these results, the offloaded tasks are assumed to be executed by the fog node in an even

number of processing slots. It is evident from the results that the proposed EOTE − FSC allows

the fog node to execute a higher number of the offloaded tasks within their deadline. The

results further show that the proposed algorithm could not execute more than 10 tasks when

the number of offloaded tasks increases from 12. This is due to its processing limit as all 16

processing cycles have been allocated to tasks and no more tasks within their deadline can be

executed. On the other hand, offloaded tasks selected in FCFS keep on increasing with the

increase in offloaded tasks but they remain less from the proposed scheme.

Conclusion

In this work, an efficient offloaded tasks execution scheme for fog-enabled smart city applica-

tions EOTE − FSC is proposed. The EOTE − FSC introduced a concept of load-balancing

nodes and proposed load balancing and task execution with deadline algorithms. The load bal-

ancing results were compared with round-robin, Greedy, round-robin with LJF and round-

robin with SJF algorithms. The results show that our proposed scheme reduced the processing

time by up to 29%, 27.3%, 23%, and 24.4% against round-robin, greedy, round-robin with the

LJF, and round-robin with the SJF algorithms respectively. Task execution with the deadline

algorithm was compared with the FCFS algorithm. The proposed scheme outperformed FCFS

in terms of highest-priority tasks by compromising low-priority tasks. The majority of the

Fig 10. Task execution within deadline with same priority of offloaded.

https://doi.org/10.1371/journal.pone.0298363.g010

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 16 / 18

https://doi.org/10.1371/journal.pone.0298363.g010
https://doi.org/10.1371/journal.pone.0298363

highest priority tasks are executed and most of the medium priority tasks are also executed

before meeting their deadline.

Several smart city applications require mobile nodes, so a load-balancing mechanism by

considering the mobility of these nodes needs to be considered in future studies.

Author Contributions

Conceptualization: Faheem Nawaz Tareen, Ahmad Naseem Alvi, Badr Alsamani, Moham-

med Alkhathami, Deafallah Alsadie, Norah Alosaimi.

Software: Faheem Nawaz Tareen, Ahmad Naseem Alvi, Badr Alsamani.

Supervision: Mohammed Alkhathami, Deafallah Alsadie, Norah Alosaimi.

Writing – original draft: Faheem Nawaz Tareen, Ahmad Naseem Alvi, Badr Alsamani.

Writing – review & editing: Mohammed Alkhathami, Deafallah Alsadie, Norah Alosaimi.

References
1. Yang J, Kwon Y, Kim D. Regional Smart City Development Focus: The South Korean National Strategic

Smart City Program. IEEE Access. 2021; 9:7193–7210. https://doi.org/10.1109/ACCESS.2020.

3047139

2. Kwak YH, Lee J. Toward Sustainable Smart City: Lessons From 20 Years of Korean Programs. IEEE

Transactions on Engineering Management. 2023; 70(2):740–754. https://doi.org/10.1109/TEM.2021.

3060956

3. Alvi AN, Bouk SH, Ahmed SH, Yaqub MA, Sarkar M, Song H. BEST-MAC: Bitmap-Assisted Efficient

and Scalable TDMA-Based WSN MAC Protocol for Smart Cities. IEEE Access. 2016; 4:312–322.

https://doi.org/10.1109/ACCESS.2016.2515096

4. Javed MA, Nguyen TN, Mirza J, Ahmed J, Ali B. Reliable Communications for Cybertwin driven 6G IoVs

using Intelligent Reflecting Surfaces. IEEE Transactions on Industrial Informatics. 2022; p. 1–1. https://

doi.org/10.1109/TII.2022.3151773

5. Ahmed J, Nguyen TN, Ali B, Javed A, Mirza J. On the Physical Layer Security of Federated Learning

based IoMT Networks. IEEE Journal of Biomedical and Health Informatics. 2022; p. 1–1. https://doi.org/

10.1109/JBHI.2022.3173947

6. Mora-Sánchez OB, López-Neri E, Cedillo-Elias EJ, Aceves-Martı́nez E, Larios VM. Validation of IoT

Infrastructure for the Construction of Smart Cities Solutions on Living Lab Platform. IEEE Transactions

on Engineering Management. 2021; 68(3):899–908. https://doi.org/10.1109/TEM.2020.3002250

7. Sosunova I, Porras J. IoT-Enabled Smart Waste Management Systems for Smart Cities: A Systematic

Review. IEEE Access. 2022; 10:73326–73363. https://doi.org/10.1109/ACCESS.2022.3188308

8. Omoniwa B, Hussain R, Javed MA, Bouk SH, Malik SA. Fog/Edge Computing-Based IoT (FECIoT):

Architecture, Applications, and Research Issues. IEEE Internet of Things Journal. 2019; 6(3):4118–

4149. https://doi.org/10.1109/JIOT.2018.2875544

9. Malik UM, Javed MA, Zeadally S, Islam Su. Energy-Efficient Fog Computing for 6G-Enabled Massive

IoT: Recent Trends and Future Opportunities. IEEE Internet of Things Journal. 2022; 9(16):14572–

14594. https://doi.org/10.1109/JIOT.2021.3068056

10. Rahim M, Ali S, Alvi AN, Javed MA, Imran M, Azad MA, et al. An intelligent content caching protocol for

connected vehicles. Emerging Telecommunications Technologies. 2021; 32:1–14.

11. Rahim M, Javed MA, Alvi AN, Imran M. An efficient caching policy for content retrieval in autonomous

connected vehicles. Transportation Research Part A: Policy and Practice. 2020; 140:142–152.

12. Chishti MS, Sufyan F, Banerjee A. Decentralized On-Chain Data Access via Smart Contracts in Ether-

eum Blockchain. IEEE Transactions on Network and Service Management. 2022; 19(1):174–187.

https://doi.org/10.1109/TNSM.2021.3120912

13. Banerjee A, Sufyanf F, Nayel MS, Sagar S. Centralized framework for controlling heterogeneous appli-

ances in a smart home environment. In: 2018 International Conference on Information and Computer

Technologies (ICICT); 2018. p. 78–82.

14. Zabihi Z, Eftekhari Moghadam AM, Rezvani MH. Reinforcement Learning Methods for Computation

Offloading: A Systematic Review. ACM Comput Surv. 2023; 56(1). https://doi.org/10.1145/3603703

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 17 / 18

https://doi.org/10.1109/ACCESS.2020.3047139
https://doi.org/10.1109/ACCESS.2020.3047139
https://doi.org/10.1109/TEM.2021.3060956
https://doi.org/10.1109/TEM.2021.3060956
https://doi.org/10.1109/ACCESS.2016.2515096
https://doi.org/10.1109/TII.2022.3151773
https://doi.org/10.1109/TII.2022.3151773
https://doi.org/10.1109/JBHI.2022.3173947
https://doi.org/10.1109/JBHI.2022.3173947
https://doi.org/10.1109/TEM.2020.3002250
https://doi.org/10.1109/ACCESS.2022.3188308
https://doi.org/10.1109/JIOT.2018.2875544
https://doi.org/10.1109/JIOT.2021.3068056
https://doi.org/10.1109/TNSM.2021.3120912
https://doi.org/10.1145/3603703
https://doi.org/10.1371/journal.pone.0298363

15. Taheri-abed SEftekhari Moghadam AM. R M.H. Machine learning-based computation offloading in

edge and fog: a systematic review. Cluster Computing. 2023; 26(1):3113–3144. https://doi.org/10.

1007/s10586-023-04100-z

16. Tareen FN, Alvi AN, Malik AA, Javed MA, Khan MB, Saudagar AKJ, et al. Efficient Load Balancing for

Blockchain-Based Healthcare System in Smart Cities. Applied Sciences. 2023; 13(4). https://doi.org/

10.3390/app13042411

17. Tang C, Wei X, Zhu C, Wang Y, Jia W. Mobile Vehicles as Fog Nodes for Latency Optimization in

Smart Cities. IEEE Transactions on Vehicular Technology. 2020; 69(9):9364–9375. https://doi.org/10.

1109/TVT.2020.2970763

18. Kishor A C C. Task Offloading in Fog Computing for Using Smart Ant Colony Optimization. Wireless

Personal Communications. 2022; 127(9):1683–1704. https://doi.org/10.1007/s11277-021-08714-7

19. Zhang J, Guo H, Liu J, Zhang Y. Task Offloading in Vehicular Edge Computing Networks: A Load-Bal-

ancing Solution. IEEE Transactions on Vehicular Technology. 2020; 69(2):2092–2104. https://doi.org/

10.1109/TVT.2019.2959410

20. Nazar T, Javaid N, Waheed M, Fatima A, Bano H, Ahmed N. Modified Shortest Job First for Load Bal-

ancing in Cloud-Fog Computing. In: Advances on Broadband and Wireless Computing, Communication

and Applications. Cham: Springer International Publishing; 2019. p. 63–76.

21. Kuang L, Gong T, OuYang S, Gao H, Deng S. Offloading decision methods for multiple users with struc-

tured tasks in edge computing for smart cities. Future Generation Computer Systems. 2020; 105:717–

729. https://doi.org/10.1016/j.future.2019.12.039

22. Sufyan F, Banerjee A. Computation Offloading for Smart Devices in Fog-Cloud Queuing System. IETE

Journal of Research. 2023; 69(3):1509–1521. https://doi.org/10.1080/03772063.2020.1870876

23. Sufyan F, Banerjee A. Computation Offloading for Distributed Mobile Edge Computing Network: A Multi-

objective Approach. IEEE Access. 2020; 8:149915–149930. https://doi.org/10.1109/ACCESS.2020.

3016046

24. Sufyan F, Banerjee A. Comparative Analysis of Network Libraries for Offloading Efficiency in Mobile

Cloud Environment. International Journal of Advanced Computer Science and Applications. 2019; 10

(2). https://doi.org/10.14569/IJACSA.2019.0100272

25. Junior W, Oliveira E, Santos A, Dias K. A context-sensitive offloading system using machine-learning

classification algorithms for mobile cloud environment. Future Generation Computer Systems. 2019;

90:503–520. https://doi.org/10.1016/j.future.2018.08.026

26. Benedetto JI, González LA, Sanabria P, Neyem A, Navón J. Towards a practical framework for code

offloading in the Internet of Things. Future Generation Computer Systems. 2019; 92:424–437. https://

doi.org/10.1016/j.future.2018.09.056

27. Flores H, Hui P, Nurmi P, Lagerspetz E, Tarkoma S, Manner J, et al. Evidence-Aware Mobile Computa-

tional Offloading. IEEE Transactions on Mobile Computing. 2018; 17(8):1834–1850. https://doi.org/10.

1109/TMC.2017.2777491

PLOS ONE EOTE-FSC: An efficient offloaded task execution for fog enabled smart cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0298363 April 5, 2024 18 / 18

https://doi.org/10.1007/s10586-023-04100-z
https://doi.org/10.1007/s10586-023-04100-z
https://doi.org/10.3390/app13042411
https://doi.org/10.3390/app13042411
https://doi.org/10.1109/TVT.2020.2970763
https://doi.org/10.1109/TVT.2020.2970763
https://doi.org/10.1007/s11277-021-08714-7
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1016/j.future.2019.12.039
https://doi.org/10.1080/03772063.2020.1870876
https://doi.org/10.1109/ACCESS.2020.3016046
https://doi.org/10.1109/ACCESS.2020.3016046
https://doi.org/10.14569/IJACSA.2019.0100272
https://doi.org/10.1016/j.future.2018.08.026
https://doi.org/10.1016/j.future.2018.09.056
https://doi.org/10.1016/j.future.2018.09.056
https://doi.org/10.1109/TMC.2017.2777491
https://doi.org/10.1109/TMC.2017.2777491
https://doi.org/10.1371/journal.pone.0298363

