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Abstract

Electrochemical measurements, which exhibit high accuracy and sensitivity under low con-

tamination, controlled electrolyte concentration, and pH conditions, have been used in

determining various compounds. The electrochemical quantification capability decreases

with an increase in the complexity of the measurement object. Therefore, solvent pretreat-

ment and electrolyte addition are crucial in performing electrochemical measurements of

specific compounds directly from beverages owing to the poor measurement quality caused

by unspecified noise signals from foreign substances and unstable electrolyte concentra-

tions. To prevent such signal disturbances from affecting quantitative analysis, spectral data

of voltage-current values from electrochemical measurements must be used for principal

component analysis (PCA). Moreover, this method enables highly accurate quantification

even though numerical data alone are challenging to analyze. This study utilized boron-

doped diamond (BDD) single-chip electrochemical detection to quantify caffeine content in

commercial beverages without dilution. By applying PCA, we integrated electrochemical sig-

nals with known caffeine contents and subsequently utilized principal component regression

to predict the caffeine content in unknown beverages. Consequently, we addressed existing

research problems, such as the high quantification cost and the long measurement time

required to obtain results after quantification. The average prediction accuracy was 93.8%

compared to the actual content values. Electrochemical measurements are helpful in medi-

cal care and indirectly support our lives.

Introduction

Caffeine is a naturally occurring methylated xanthine alkaloid (1,3,7-trimethylxan, 137X) that

increases basal metabolism and is used as a central nervous system stimulant, myocardial stim-

ulant, and smooth muscle relaxant [1]. In the United States, approximately 85% of the
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population consumes caffeine daily [2]. Brewed coffee is a common source of caffeine, with

100 mg per 177 ml and 65 mg per 177 ml of instant coffee. Caffeine can also be found in cold,

allergic, and headache remedies, diuretics, and stimulants [1]. Coffee consumption is associ-

ated with bone loss, decreased bone density, and fractures [3]. Pregnant women also have an

increased risk of poor fetal growth and spontaneous abortion [4]. Excessive caffeine consump-

tion has also been linked to headaches, nausea, and anxiety. In addition, the lethal dose of caf-

feine is estimated to be� 10 g [5]. Therefore, quantification of caffeine content is crucial for

living a healthy life. Various methods have been used to estimate caffeine intake. These meth-

ods include high-performance liquid chromatography (HPLC), ultra-violet (UV) spectros-

copy, thin-Layer chromatography-mass spectrometry (TLC-MS), and gas chromatography

[6–10]. These methods have high accuracy despite being expensive and time consuming.

Electrochemistry has often been utilized as a sensor to measure the redox potential of sub-

stances using easily controlled voltages and currents [11]. Electrochemically sensitive caffeine

measurements have been successful [12]. However, electrochemical measurements require

control of the solvent pH, electrolytic mass, and other factors to ensure stable and accurate

measurements [13]. Furthermore, when measuring only specific materials from a solution

containing many foreign substances, the solution must be pretreated by columns and filtering

before being used for measurement. Moreover, the redox voltages of the compounds that react

at the electrode interface often overlap, making peak separation challenging. Boron-doped dia-

mond (BDD) electrodes have excellent characteristics, such as a wide-potential window, low

background current, and long-term response stability [14, 15]. A wide-potential window con-

tributes to various measurable redox voltages. Furthermore, changes have been observed in

the current value at which the caffeine redox reactions occur.

Machine learning enables the analysis of a large amount of data, which is a complex process

for humans [16], and allows computers to discover hidden patterns and rules by providing

abundant data as input. Moreover, it can provide more accurate results with higher precision

[17]. Machine learning algorithms can be classified into five types: analysis, regression, cluster-

ing, dimensionality reduction, and anomaly detection [18]. Thousands of multivariate vari-

ables (solute redox reactions) are observed using electrochemical analysis. Therefore,

pretreatment is crucial. However, by acquiring feature values from multiple variables using

machine learning and performing dimension reduction [19] and regression analyses [20],

unknown solutions can be quantified from an insignificant amount of training data. Because

machine learning enables rapid analysis that considers multivariate reactions, using it in elec-

trochemistry will be extremely effective.

In this study, electrochemical measurements of commercially available caffeine-containing

beverages were performed using BDD, and the obtained results were analyzed using machine

learning for highly accurate caffeine quantification. The beverages used as measurement solu-

tions were not pretreated and contained significant amounts of foreign substances. Therefore,

we realized a method to quantify the amount of caffeine using machine learning without

human preprocessing.

Methods

Synthesis of boron-doped diamond electrode

The BDD electrode was fabricated under the conditions reported previously [21]. Heavily

boron-doped polycrystalline diamond films were prepared on Si (100) substrates using hot-fil-

ament chemical vapor deposition. The substrate surfaces were treated by scare life polishing or

lift-off techniques using C+ ion plating, as appropriate. The surface roughness is less than 0.1

nm in Ra. Before the film growth, the substrates were chemically cleaned at 250˚C using a
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mixed acid solution of H2SO4 and HNO3. Before film growth, the samples were preseeded

with diamond nanopowders to facilitate the nucleation of diamond on a foreign substrate.

Hydrogen, methane, and trimethylboron gases were fed into the chamber at a total pressure of

1.3 kPa. The methane/hydrogen gas ratio was maintained at 3% during growth. Next, the tung-

sten filament wires were resistively heated by a DC power supply at a filament temperature of

2200˚C. The film thickness and boron concentration, as measured by secondary ion mass

spectrometry, were 5 m and >1020 cm-3, respectively. The BDD electrode used was formed on

a Si substrate with a film thickness of 2μm. The doped boron concentration is 5E20cm-3. The

surface terminated groups are hydrogen terminated.

Characterization of BDD

The BDD-deposited Si wafer surface was analyzed by atomic force microscopy (AFM; MFP-

3D Origin+, Oxford Instruments, Abingdon-on-Thames, UK) and scanning electron micros-

copy (SEM; JSM-9100F, JEOL Ltd., Tokyo, Japan). Various measurements were performed

using an electrochemical analyzer (ALS610C; BAS Inc., Tokyo, Japan) to confirm the electrode

properties. The measurements were performed using a three-electrode system with BDD as

the working electrode. An Ag/AgCl electrode was used as the reference electrode, and a Pt coil

electrode was used as the counter electrode (BAS Inc., Tokyo, Japan). The electric double-layer

capacitance in a 1 g/L NaCl solution was measured using cyclic voltammetry. The voltage was

swept from 0 V to 0.1 V, and the scan speed was measured every 10 mV from 10 to 100 mV.

Furthermore, cyclic voltammetry was performed to evaluate the stability of the electrode. The

voltage was swept from -2.4 V to 2.5 V and cycled 50 times.

Electrochemical measurement of caffeine in solution

Experiments were conducted to measure caffeine levels in commercial coffee without pretreat-

ment. The pH levels of five different commercial coffee beverages were obtained. To verify the

electrochemical response to caffeine, square wave voltammetry (SWV) measurements were

performed using a 1 g/L NaCl solution containing 60 mg/100 g of anhydrous caffeine. The

measurements were obtained from -2.4 V to 2.5 V in 0.016 V steps, with a 2 V voltage applied

for 100 s to clean the electrode. A 3 ml solution was taken from the coffee can and directly

injected into the measuring cell to perform the caffeine measurement by SWV. Measurements

were taken in the laboratory, under conditions that kept the temperature at about 23˚C on

average. Absorbance measurements were performed from 220 to 800 nm to check for contam-

ination at the electrode interface using UV-2600i (Shimadzu Co. Ltd., Kyoto, Japan).

Principal component analysis and machine learning algorism for caffeine

quantification

As illustrated in Fig 1A, the electrochemically measured solution data were stored in the train-

ing data file, and the data for one of the solutions (one solution was measured three times) was

stored as an unknown solution in the test data file. The solution data stored in the training

data file was used to create a regression dataset of unknown solutions. The manufacturer-pub-

lished value was provided as the correct solution data for each solution. The solution data

stored in the test data file underwent principal component regression according to the data

frame created by the data stored in the training data file. For this, principal component analy-

sis, normalization, and grid research were performed on the solution data. Principal compo-

nent analysis (PCA) was performed using Fig 1B and 1C. In this study, we developed an

algorithm that combines an analytical evaluation value (the value extracted from the whole

part where the feature value is strongly expressed), as shown in Fig 1B, which is the coordinate
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with good results of PCA for the solution data, and a logical evaluation value (value using the

area of the narrow part where the redox reaction of caffeine occurs) (Fig 1C), which is the area

around the peak voltage of 1.6 V where the oxidation reaction of caffeine occurs [22]. There-

fore, the data entered in the training data file creates two data sets based on these coordinates

and areas. Principal component regression (PCR) [23] was performed on the solution data

stored in the test data file according to the two created data sets to obtain predicted values

from each. The algorithm shown in Fig 1B can obtain a value close to the caffeine content. The

predicted values (X1–X3) were obtained using only concrete information. The algorithm

shown in Fig 1C uses an area divided into 17 segments because 51 coordinates exist between

1.55 V and 1.65 V. Predictions were made using an abstract feature from the overall informa-

tion (the details from the entire area over which the caffeine oxidation reaction occurred).

Using this method, the predicted values (Y1–Y3) were obtained from the area. These predicting

algorithms had low accuracy when used individually. Therefore, combining these two algo-

rithms improves the average accuracy of the predicted values by evenly following the electro-

chemical measurement data, including measurement errors owing to each electrode.

Following is the explanation of the process until the data stored in the test data file are

quantified. The PCA obtained in Fig 1B and 1C is used to perform the same analysis for the

unknown solution. Specifically, the solution data stored in the test data file is also subjected to

the principal component analysis and normalization used when creating the data set. The data

Fig 1. Schematic diagram of the quantification algorithm for commercial beverages.

https://doi.org/10.1371/journal.pone.0298331.g001
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stored in the test file is adapted to the dataset. PCR was used to predict the unknown solutions

from the variance obtained from the PCA results [24]. Because each solution was measured

three times, three specific predictions (X1–X3) for solution A were obtained from Fig 1B, and

three abstract predictions (Y1–Y3) were obtained from Fig 1C. The predicted values were aver-

aged at each step of the hierarchy, as shown in Fig 1D. These values were considered the aver-

age values (Ave1–Ave3). The median of the stepwise evaluation values obtained becomes a

predicted value that is finally output as a quantitative value, as shown in Fig 1E.

A more concise equation for deriving the quantitative values from the output data was cal-

culated following equation. α, β, γ: median value μ: average value of median values.

a ¼ ðX1 þ Y1Þ; b ¼ ðX2 þ Y2Þ; g ¼ ðX3 þ Y3Þ

m ¼ ε� 2

The obtained results were equivalent to this equation.

Results and discussion

Characterization of BDD

SEM observations of the BDD surfaces showed numerous microscale irregularities. Moreover,

the deposition method was used to form thick polycrystalline diamonds on a Si surface, as

shown in Fig 2A. An AFM analysis of the surface suggested that the unevenness was 100–300

nm, as shown in Fig 2B and 2C. The surface morphology of the BDD was maintained after one

night of standing in 0.1 M nitric acid, as shown in S1 Fig, indicating that the BDD electrode

surface has high chemical resistance. The electrochemical stability of the BDD electrodes was

evaluated using continuous cyclic voltammograms in solvent-containing electrolytes, as

shown in Fig 2D. The current was significantly reduced when the electrode surface was

affected by the application of high voltage or by the adhesion of minute bubbles owing to

water electrolysis. The electrochemical spectra showed no decrease in BDD from 0 to 1 V.

Additionally, the gold electrode is a common electrode, which exhibited a continuous signal

drop caused by the elution of gold during high-voltage applications, as shown in S2A Fig.

GCE, composed of carbon, shows a rapid increase in the current value because the water elec-

trolysis depends on the cycle number under the same conditions as those of BDD, as shown in

S2B Fig. Therefore, the BDD electrode has a wider potential window than the commercial elec-

trodes and can acquire stable signals even after repeated measurements at high voltages. To

assess the viability of the double layer capacitance (Cdl) measurements under commercial

canned coffee conditions (1 g/L salt equivalent), voltage sweeps were conducted on a BDD

electrode, as shown in Fig 2E. A scan rate-dependent increase in current value was observed;

to calculate Cdl, a calibration curve was constructed using the capacitance current density at

the nonfaradic point (0.05 V) to determine (|ja−jc|/2), where ja and jc denote the anodic and

cathodic peak current densities, respectively, as shown in Fig 2F [25]. The value of the Cdl

parameter for BDD in NaCl solution was 0.18 μF/cm2, as determined by the slope of the cali-

bration curve. Therefore, an electric double layer was present at the interface despite being in

solutions with a low electrolytic mass. Moreover, electrochemical measurements using BDD as

the working electrode are viable for commercial coffee beverages despite the solvent not being

pretreated. Electrodes for controlling the redox reactions of substances, mainly in commercial

beverages in which significant amounts of foreign substances are present, must be highly

chemically resistant. Therefore, BDD is the most suitable electrode for measuring caffeine in

coffee without pretreatment.
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Electrochemical measurement of caffeine

To confirm the potential at which the caffeine oxidation reaction occurred in the measurement

system with the BDD electrode as the working electrode, an NaCl solution and a solution of 60

mg/100 g of caffeine suspended in NaCl were measured, as shown in Fig 3A. The addition of

caffeine increased the peak current value at 1.6 V owing to caffeine oxidation. A peak attribut-

able to the oxidation of caffeine is also observed at 0.4–0.8 V. In this potential range, many sub-

stances, such as OH groups in organic compounds, show oxidative responses. Therefore, it is

difficult to differentiate the oxidation response from foreign signals in actual commercial cof-

fee beverages. Only the 1.6 V peak is used for actual quantification. The pH and salt equiva-

lents of the caffeine-suspended NaCl solutions and commercial beverages were summarized to

evaluate the effect of pH on the measurement of commercial beverages (S1 Table). Therefore,

the neutrality of both solvents did not shift the measured potential owing to the changes in

pH. Commercial coffee beverages were electrochemically measured without pretreatment to

confirm the response potential of caffeine, as shown in Fig 3B and 3C. The electrochemical

spectra obtained showed a distinct peak at 1.6 V attributable to caffeine. In addition, a wide

electrochemical peak from 0 to 1 V was observed for all the samples. The oxidation of organic

compounds, such as those with hydroxyl groups, will occur in this voltage range [26, 27], indi-

cating high amounts of foreign substances in commercial coffee beverages. When four com-

mercial coffee beverages (Asahi, Asahi, KIRIN, and Suntory) were subjected to HPLC, 79

compounds were detected in all samples and matched to all database matches. Caffeine was

found in the largest quantity despite many other organic compounds being present (S2 Table).

Fig 2. Property analysis of BDD. A) Surface observation of BDD captured by SEM. B and C) Surface roughness of BDD analyzed by AFM. D) Electrochemical

stability of BDD measured using CV. E) Cdl measurement of BDD. F) Linier plotting from CV measurement for Cdl estimation.

https://doi.org/10.1371/journal.pone.0298331.g002
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The results for the caffeine peak were compared with those obtained under conditions in

which only caffeine was suspended in NaCl solution, indicating that the rate of increase in the

background current was influenced by the large peak at 0 V. Therefore, quantifying caffeine in

commercial beverages without pretreatment using a general method of quantification using

calibration curves prepared using standards is challenging. The absorbance at 272 nm, which

is characteristic of caffeine, was measured to confirm caffeine adsorption at the electrode inter-

face before and after measurement, as shown in Fig 3D. No peaks indicating caffeine adsorp-

tion were identified under either condition for BDD compared with the caffeine suspension

solution and pure BDD. Therefore, caffeine was not adsorbed at the electrode interface in the

direct measurement of commercial beverages, and the BDD electrode showed a certain degree

of stability in repeated measurements using a single electrode. The increase in current values

obtained from the direct measurement of commercial beverages was compared with the

assumed content provided by the manufacturer. Furthermore, visually determining the differ-

ence in content between the types of beverages was challenging, indicating that the multiple

voltage peaks resulting from high amounts of adulterants had a significant impact on the signal

analysis. To quantify the caffeine content from signals obtained without pretreatment, data,

and analytical techniques must be combined.

Machine learning for quantification of caffeine in beverages

Three prediction patterns were considered in this quantification algorithm: one based on con-

crete information, one based on abstract information, and one combining both. The accuracy

Fig 3. Electrochemical caffeine measurement. A) Results of SWV measurements of NaCl solutions and caffeine suspension solutions. B, C)

Results of SWV measurements of commercial caffeine beverages. D) Absorbance measurements of BDD and caffeine solutions and ultrapure

water.

https://doi.org/10.1371/journal.pone.0298331.g003
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of each was examined. For concrete information, the coordinates with the highest contribution

ratio and largest variance in the PCA were used. To obtain the abstract information, the areas

before and after the completion of caffeine oxidation were divided into 17 parts. In this study,

PCA was used because the amount of training data was insignificant in relation to the number

of dimensions of the feature values. Hyperparameters were used for dimensionality reduction

[28, 29].

Ten samples from five companies were assayed, including a sample of decaffeinated coffee

with 60 mg of caffeine added (Fig 4). Table 1 presents the quantification results of the study.

Each sample was measured three times and subjected to quantification by machine learning

(S3 Fig).

Table 1 lists the algorithms that output predictions from the analysis and logical and graded

evaluations. The bold values indicate the algorithm with the highest prediction accuracy

among the three algorithms. It can be seen that the analysis and logical values were predicted

to be close to the manufacturer’s published values. However, because the algorithms calculate

the predicted values either by looking only at the details or the whole, one algorithm is not

superior to the other.

In addition, as listed in Table 2, the Suntory and UCC samples had recovery rates of 119%

and 86.1%, respectively, which are lower than those of the other samples. These samples are

Suntory sample A and UCC sample A, as listed in Table 1. In this study, the measurement was

performed three times until it was stabilized (when the three measurement graphs roughly

overlap) by visual observation. Therefore, if the graphs were visually stable twice, the third one

is closest to it. In other words, it was considered that by recognizing something stable twice as

correct, the third time would be closer to it, and the error in the quantitative would become

larger if the first two times were incorrect. It is assumed that three measurements were stabi-

lized near Suntory sample A-3 and UCC sample A-2 in Table 2. Based on these graded evalua-

tions, the manufacturer’s published values for Suntory sample A-3 and UCC sample A-2 were

40 mg (per 100 g) and 60 mg (per 100 g), respectively, while the graded evaluations were 41.86

mg (per 100 g) and 56.25 mg (per 100 g). They had the same quantitative accuracy compared

to other samples. Therefore, we considered that it would be possible to further improve the

Fig 4. Results of SWV measurements of 10 coffee samples from five companies.

https://doi.org/10.1371/journal.pone.0298331.g004

PLOS ONE A method to analyze caffeine levels in commercial beverages without any preparation required

PLOS ONE | https://doi.org/10.1371/journal.pone.0298331 March 26, 2024 8 / 14

https://doi.org/10.1371/journal.pone.0298331.g004
https://doi.org/10.1371/journal.pone.0298331


quantitative accuracy if there was a method to check whether the data used for prediction were

stable.

Table 3 lists the errors between the quantified values according to Table 2 and the published

values. The bold text in Table 3 (Suntory sample B, KIRIN sample A, and Suntory sample C)

demonstrates that even if the quantitative values of one of the algorithms deviate significantly

between the algorithm that looks at the details and the one that looks at the whole, the other is

accurately quantified. This suggests that the quantitative accuracy was unstable when only one

algorithm was used.

The prediction accuracy and confidence intervals of the graded evaluations were also evalu-

ated (Table 4). This study enhanced the process using machine learning without human pre-

processing. Consequently, 80% were quantified with an accuracy of 100% before and after the

amount of caffeine published by the manufacturer, 95% were quantified with an accuracy of

85%, and 90% were quantified with an accuracy of 90%. The average rate was 93.88%, and the

median was 95.95%.

Table 1. Caffeine quantification results for each algorithm.

Caffeine content (mg/100 g)

Unknown solution Manufacturer published value Analysis evaluation Logical evaluation Graded evaluation

Suntory sample A-1 40 47.46 47.70 47.58

Suntory sample A-2 47.30 49.79 48.55

Suntory sample A-3 38.97 44.75 41.86

Suntory sample B-1 40 38.56 46.07 42.32

Suntory sample B-2 38.48 45.05 41.91

Suntory sample B-3 38.61 45.89 42.25

Coca-Cola sample A-1 60 62.48 62.94 62.71

Coca-Cola sample A-2 56.87 54.74 55.80

Coca-Cola sample A-3 62.72 66.57 64.65

UCC sample A-1 (Decaffeinated coffee) + anhydrous caffeine 60 50.44 52.85 51.65

UCC sample A-2 (Decaffeinated coffee) + anhydrous caffeine 57.14 55.36 56.25

UCC sample A-3 (Decaffeinated coffee) + anhydrous caffeine 49.19 51.11 50.15

Asahi sample A-1 62 59.03 54.43 56.73

Asahi sample A-2 60.89 60.19 60.54

Asahi sample A-3 63.70 65.10 64.40

KIRIN sample A-1 70 70.00 76.72 73.36

KIRIN sample A-2 64.14 70.80 67.47

KIRIN sample A-3 61.33 63.04 62.18

Asahi sample B-1 70 76.34 74.76 75.55

Asahi sample B-2 70.78 66.59 68.69

Asahi sample B-3 70.5 65.69 68.09

KIRIN sample B-1 78 75.05 64.24 69.64

KIRIN sample B-2 75.69 70.79 73.24

KIRIN sample B-3 76.18 71.89 74.03

Asahi sample C-1 80 80.78 85.60 83.19

Asahi sample C-2 83.02 80.42 81.72

Asahi sample C-3 82.65 77.42 80.04

Suntory sample C-1 82 78.27 82.47 80.37

Suntory sample C-2 81.90 91.80 86.85

Suntory sample C-3 78.51 77.19 77.85

https://doi.org/10.1371/journal.pone.0298331.t001
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The principle, number of pretreatments to perform the measurement with high accuracy,

and expected measurement time, including pretreatment, were compared with other studies

(Table 5). Compared to standard HPLC, the number of pretreatments and measurement times

were significantly higher. HPLC showed 99.2% quantitative accuracy for commercial beverages,

indicating that HPLC is a simple measurement method, but its accuracy is inferior. The colori-

metric and Raman spectrophotometric detection methods used a smaller number of pretreat-

ments and measurement times to quantify commercial beverages or prepared caffeine. In both

methods, a calibration curve was prepared to determine the quantity of caffeine, and it was nec-

essary to prepare a standard for each case. The major advantage of this study is that it can be

Table 2. Details of graded evaluation.

Caffeine content (mg/100 g)

Unknown solution Manufacturer published

value

Predicted

value

Recovery

(%)

Subtract the remainder of Recovery divided by 100

from 100 (%)

Suntory sample A 40 47.58 119.0 81.0

Suntory sample B 40 42.25 105.6 94.4

Coca-Cola sample A 60 62.70 104.5 95.5

UCC sample A (Decaffeinated coffee)

+anhydrous caffeine

60 51.64 86.1 86.1

Asahi sample A 62 60.54 97.6 97.6

KIRIN sample A 70 67.46 96.4 96.4

Asahi sample B 70 68.68 98.1 98.1

KIRIN sample B 78 73.24 93.9 93.9

Asahi sample C 80 81.72 102.2 97.8

Suntory sample C 82 80.36 98.0 98.0

https://doi.org/10.1371/journal.pone.0298331.t002

Table 3. Error between each predicted value and manufacturer’s published value.

Caffeine content (mg/100 g)

Unknown liquid Analysis evaluation Logical evaluation Graded evaluation

Suntory sample A -7.30 -7.70 -7.58

Suntory sample B 1.44 -5.89 -2.25

Coca-Cola sample A -2.48 -2.94 -2.71

UCC sample A (Decaffeinated coffee) +anhydrous caffeine 9.56 7.15 8.35

Asahi sample A 1.11 1.81 1.46

KIRIN sample A 5.86 -0.80 2.53

Asahi sample B -0.50 3.41 1.31

KIRIN sample B 2.31 7.21 4.76

Asahi sample C -2.65 -0.42 -1.72

Suntory sample C 3.49 -0.47 1.63

https://doi.org/10.1371/journal.pone.0298331.t003

Table 4. Correct solution rate.

Contained section (%) Content rate (%)

more than 80 100

more than 85 95

more than 90 90

Average (%) Median (%)

93.88 95.95

https://doi.org/10.1371/journal.pone.0298331.t004
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used for product evaluation without the need to create a calibration curve if it has been studied

in advance. Comparisons were made with other electrochemical caffeine sensors. By fabricating

an electrode with a structure suitable for caffeine and measuring under optimal solvent condi-

tions, we succeeded in achieving ultrahigh sensitivity and 99.9% accuracy in a single step. Elec-

trochemical sensors can be constructed with high sensitivity under optimal conditions. In this

study, no pretreatment was performed, and the electrochemical double layer formed at the elec-

trode interface in the solution was not stable because no electrolyte was added. This leads to

measurement instability and a reduced sensitivity. By utilizing machine learning, we succeeded

in quantification with an accuracy of over 90% even from products containing emulsifiers with-

out using any electrolytes, whereas it was originally necessary to establish optimal conditions as

in previous studies. However, this is difficult to achieve using other electrochemical sensors.

Conclusion

This study aimed to experimentally explore the feasibility of quantifying a manufacturer’s pub-

lished values without the need for added reagents. In previous studies, quantifying compo-

nents dissolved in solution was expensive or time consuming [16, 30]. Quantification requires

the addition of reagents to extract the caffeine spectrum. Furthermore, constructing a calibra-

tion curve requires more time and effort. Therefore, machine learning has been employed to

overcome these limitations. Consequently, quantification was possible with an average accu-

racy of approximately 94%. However, it was crucial to reexamine the vagueness of the defini-

tion of the data, such as the current value of the measured data being roughly similar in all

three cases. Furthermore, the manufacturer-published values were quantified as teacher data

using machine learning with electrochemically measured data. Therefore, this technology

could enhance the versatility of electrochemical measurements by improving data reliability by

changing the method of scrutinizing measured data.

The combination of electrochemical measurements and machine learning demonstrated

that quantitative estimation is possible even from solutions containing foreign substances, as

long as the peaks are prominent. However, many organic compounds, including caffeine, have

similar oxidation potentials. To make this technique more versatile, a new data learning

method that mechanically processes the minor differences in oxidation potential between sub-

stances with similar oxidation potentials to separate peaks at a high level is required. In the

future, we will verify whether it is possible to quantify other components with high contribu-

tion rates using a similar algorithm.

Supporting information

S1 Fig. SEM image of BDD after acid treatment.

(TIF)

Table 5. Comparison with other caffeine detection in coffee beverages.

means of measurement Sample solution Step number until measurement Measurement time (min) Accuracy Ref

1 HPLC commercial beverages 6 120 99.2 [31]

2 Colorimetric commercial beverages 2 15 ―* [32]

3 Surface enhanced Raman scattering Chemical agents 2 within 15 ―* [30]

4 Electrochemistry 0.01 M H₂SO₄ 1 within 10 99.9 [33]

This research Electrochemistry commercial beverages 0 2 93.88

* Not stated because no experiments were conducted with commercial beverages.

https://doi.org/10.1371/journal.pone.0298331.t005
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S2 Fig. A) 100 cycles of the gold electrode in NaCl solution. B) 100 cycle of glassy carbon elec-

trode in NaCl solution.

(TIF)

S3 Fig. A-I) Results of 10 coffee samples from five companies measured repeatedly by SWV.

(TIF)

S1 Table. pH measurements of beverages.

(DOCX)

S2 Table. HPLC measurement results of coffee beverages.

(DOCX)
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