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Abstract

Epidermal growth factor receptor EGFR inhibitors are widely used as first line therapy for

the treatment of non-small-cell lung cancer (NSCLC) in patients harboring EGFR mutation.

However, the acquisition of a second-site mutation (T790 M) limited the efficacy and devel-

oped resistance. Therefore, discovery and development of specific drug target for this muta-

tion is of urgent needs. In our study we used the ChemDiv diversity database for receptor-

based virtual screening to secure EGFR-TK inhibitors chemotherapeutics. We identified

four compounds that bind to the ATP-binding region of the EGFR-TK using AutoDock 4.0

and AutoDock Vina1.1.2 and post-docking investigations. The ligand showed hydrophobic

interactions to the hydrophobic region of the binding site and engaged in hydrogen bonding

with Met793. The ligands also explored π–cation interactions between the π-system of the

ligand–phenyl ring and the positive amino group of Lys745. Molecular mechanics Poisson–

Boltzmann surface area MM/PBSA per-residue energy decomposition analyses revealed

that Val726, Leu792, Met793, Gly796, Cys797, Leu798, and Thr844 contributed the most to

the binding energy. Biological evaluation of the retrieved hit compounds showed suppress-

ing activity against EGFR auto phosphorylation and selective apoptosis-induced effects

toward lung cancer cells harboring the EGFR L858R/T790M double mutation. Our work

anticipated into novel and specific EGFR-TKIs and identified new compounds with thera-

peutic potential against lung cancer.

Introduction

The family of epidermal growth factor receptor tyrosine kinase (ErbBs) is an essential compo-

nent of the cellular signaling pathways that control vital processes such as cell survival, differ-

entiation, proliferation, and apoptosis [1]. The erythroblastic leukaemia viral oncogene, for

which the receptors are identical, is the source of the ErbB family’s name. The four structurally

conserved members of this family are epidermal growth factor receptors EGFR/ErbB1, ErbB2,

ErbB3, and ErbB4. Their common domain structure includes an intracellular area with a
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juxtamembrane domain (53 aa), tyrosine kinase (TK) domain (260 aa), C-terminal tyrosine-

rich region (232 aa). The extracellular domain that binds ligands includes a hydrophobic trans-

membrane segment and an extracellular segment [2, 3]. The growth factors (transforming

growth factor-α (TGF-α) and epidermal growth factor (EGF)) bind to the extracellular portion

of the receptor. This results in activation and phosphorylation of the TK domain at its C-termi-

nal residues, causing the receptor to homo- and/or heterodimerize and initiate downstream

signaling cascades [4]. EGFR is overexpressed in approximately 60% of individuals with non-

small cell lung cancer (NSCLC), the most prevalent type of lung cancer and the primary cause

of cancer-related deaths globally [5]. Clinical studies had highlighted EGFR dysregulation as a

therapeutic target in NSCLC [6]. Four different types of anti-EGFR chemotherapies are cur-

rently available: monoclonal antibodies (mAbs), which target the extracellular domain of

EGFR [7]; antisense oligonucleotides, which stop the synthesis of EGFR; antibody-based

immunoconjugates [8, 9]; and small molecular-weight compounds that block tyrosine kinase

activity. First-generation EGFR-TK inhibitors (EGFR-TKIs) includes gefitinib (IressaTM,

AstraZeneca), erlotinib (TarcevaTM, OSI-Pharma/Genentech/Roche), and lapatinib

(TykerbTM, GlaxoSmithKline) are small molecules that compete with ATP in the TK binding

domain [10] (Fig 1). Second- and third-generation EGFR-TKIs include afatinib (GilotrifTM;

Boehringer Ingelheim) and avitinib (clinical trials), respectively. Although only a few NSCLC

cases are gefitinib-susceptible, responses to treatment with gefitinib may be linked to various

mutations in the EGFR-TK domain, including the L834R mutation, which increases kinase

activity. However, there is evidence that patients with NSCLC with the L834R mutation as the

primary cause of the disease can develop acquired resistance to gefitinib and erlotinib, result-

ing in the T766M mutation.

To date, 26 crystal structures of EGFR-TK, including its wild-type and mutant forms, have

been described. These structures show that EGFR-TK exists in active and inactive conformers,

which differ in terms of activation loop (A-loop) organization, Asp-Phe-Gly (DFG) motif,

L834 and L837, and α-helix-C orientation [11]. With the aid of the X-ray structures of

EGFR-TK bound to erlotinib or gefitinib, important binding interactions of quinazoline moi-

ety to the kinase hinge region have been investigated [12, 13]. These investigations aid in

understanding the relationship between EGFR-TK and its inhibitors that is principle in devel-

oping novel target-specific kinase suppressors. Target-based virtual screening (VS) is a high-

throughput in silico drug-discovery approach [14]. Macromolecule-based VS utilizes a molec-

ular docking technique that aids understanding of the three-dimensional (3D) structure of the

target protein binding site. In numerous instances including those involving break-point clus-

ter region-abelson murine leukemia (BCR-ABL) TK [15], checkpoint kinase 1(Chk1) [16],

FK506 binding protein (FKBP) [17], and protein tyrosine phosphatases [18], structure-based

VS methods have been helpful in identifying new inhibitors. A few EGFR-TK receptor-based

VS studies against industrial and commercial chemical compounds in the anilinoquinazoline,

pyridopyrimidine, and pyrrolopyrimidine families have been described [19].

In our study, we applied the VS study using EGFR-TK receptor-gefitinib complex structure

against a diversity set of 350,000 small-molecule compounds (ChemDiv Library DC0, accessed

Sep 08, 2022) in order to identify new EGFR inhibitors as potential anti-cancer agents. The

process includes ligand- and structure-based pharmacophore mapping, molecular docking

approaches in conjunction with post-docking analysis, molecular dynamics (MD) simulations,

and molecular mechanics/generalized born surface area calculations (MM/GBSA). The study

shed light on the mechanism of EGFR-TK enzyme suppression in four compounds. The

EGFR-TK conformational changes observed in the MD simulation and the binding free ener-

gies of the compounds, as calculated using the MM/GBSA analysis explored the importance of

the hydrophobic and electrostatic characteristics of the ligands for ligand-protein bindings.
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Methods and procedures

Preparation of EGFR protein structure and compound dataset

The Protein Database (http://www.pdb.org (accessed 23-Dec-2021) was used to obtain the

crystal structure of the EGFR-TK–gefitinib complex (PDB:4wkq) [20]. Missing residues were

fixed and the entire protein sequence structure was numbered 694–1020, and the protein

sequence structure was modified using Modeler10.4 software by ignoring the three terminal

Fig 1. Representative chemical structure of epidermal growth factor receptor (EGFR) kinase inhibitor drugs.

https://doi.org/10.1371/journal.pone.0298326.g001
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amino acids 1, 1021, and 1022. The structures of the screening library of 350,000 compounds

were obtained from the ChemDiv (https://www.chemdiv.com/) (accessed on 1-Jan-2022)

online collection using the publicly available discovery chemistry (DC01).

Ligand-based VS

For drug-like chemical libraries, Ghose et al. recommended qualifying range with the follow-

ing restrictions: molecular weight between 160 and 480; estimated logP between 0.4 and 5.6;

molar refractivity between 40 and 130; and overall atom count between 20 and 70 [21]. A cus-

tomized Ghose rule was used in screening the dataset using Mwt range of 350–480 and logP

2.5–4.8. LigandScout4.1 [22] was used for structure- and ligand-based database screening on

the reduced library subset of 157,850 chemicals. LigandScout extracted gefitinib and its macro-

molecular environment from 4wkq PDB files and automatically created a 3D pharmacophore

model. In addition, LigandScout was used to generate pharmacophore models based on a

small-molecule database injected into the active site and produce docking pose results for VS

at the binding site.

Structure-based VS

Removing the heteroatoms allowed for the preparation of the receptor with the 3D crystallo-

graphic structure (PDB: 4wkq). Using AutoDock Vina1.1.2 [23], Autodock 4 [24] and

LigandScout program-output library was scored and ranked. Docking process was validated

using co-crystallized ligands (xray ligand). The root-mean-square deviation (RMSD) of the

xray ligand-structure from its docked conformation was used as a measure in validating the

docking protocols. The atuotodock4 program grid box dimensions were x = 11.138, y = 10.5,

and z = 10.5 Å. The atuotodock-vina program grid box dimensions were x = 15.529,

y = 14.712, and z = 17.414 Å and exhaustiveness value of 8. The atomic affinity potentials gen-

erated on a grid were used to measure the binding energy at each stage of the docking simula-

tion. Using PyMOL software, the compounds’ binding conformations were visualized [26].

MD simulations

Using AmberTools22 package [27] on ubuntu20.04, EGFR-TK-docked ligand complex of the

hit compounds ZINC21802765, ZINC21802749, ZINC21802742 or ZINC21802768 was used

as initial structures to the MD simulations process. A water box, 10 Å of TIP3P water model,

was applied. The particle mesh Ewald was used to calculate long-range electrostatic interac-

tions with the periodic boundary condition imposed. The ff14SB force field, and non-bonding

interactions cut-off value 8 Å were assigned [28]. Counter ions and water molecules under-

went 1000-cycle minimizations followed with 1000-cycle minimizations of the whole system.

At first, the system equilibrated within a simulation time-period of 170 ps. During the first 20

ps, counter ions and water molecules equilibrated while the solutes kept restrained. During the

next 50 ps, the amino acid side chains were relaxed and during the last 100 ps the whole system

constraints were released. The MD simulations run for 10 ns at 298.15 K and 1 atm pressure

using time step of two femtoseconds (fs). Throughout the simulations, 1 ps time-intervals were

used to save the atom coordinates in the complex system. The starting structures from the MD

simulation were utilized as the reference structures to calculate RMSDs using the CPPTRAJ

module of AmberTools18 package to confirm the convergence of the MD simulation proce-

dures. The local flexibility at each amino acid residue could be calculated using root-mean-

square fluctuations (RMSFs) and reference structures that represented as average structures

over the course of the last four ns trajectories.
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Binding free energy estimation

The EGFR-TK-ligand binding free energy (ΔGbinding) was calculated by the MM/GBSA mod-

ule [34] using 100 snapshots of the trajectories obtained during the last 4 ns simulation time.

The input variables were set for the generalized born method igb = 5, salt concentration salt-

con = 0.1 M and the level of output variable verbose = 1.

Per-residue free energy decomposition

Molecular mechanics Poisson–Boltzmann surface area MM/PBSA.py was utilized to realize

free binding energy calculations and to execute energy decomposition analysis, using the Poi-

son-Boltzmann (PB) model from 100 snapshots during the last 4 ns simulation time [23]. The

input variables for the Poisson Boltzmann variables, ionic strength istrng = 0.1 M, internal

dielectric constant indi = 1.0, nonpolar optimization method inp = 1. The variables for the

energy decomposition idecomp = 1 and the level of decomp_output dec_verbose = 2.

Biological evaluations

Materials and cell preparations. The American Type Culture Collection (Rockville, MD,

USA) provided EGFR wild-type lung adenocarcinoma A549 cells and EGFR L858R/T790M

double mutant NSCLC H1975 cells. The cells were cultured in 75 or 150 mL tissue culture

flasks at 37˚C in a 5% CO2 humidified atmosphere with Dulbecco’s modified Eagle’s medium

(DMEM), phenol red, 10% fetal bovine serum, 200 μM L-glutamine, and 1X antibiotic–anti-

mycotic. For immunofluorescence and flow cytometry, the cells were plated in cell culture

plates using DMEM. The stock solutions of all compounds ZINC21802765, ZINC21802749,

ZINC21802742 and ZINC21802768 were prepared in DMSO, with the DMSO concentration

in each treatment not exceeding 0.1% (v/v).

Immunofluorescence assay. H1975 cells were grown for 7 d on glass slides at a density of

20,000 cells/mL before being preserved in 4% formaldehyde. Compound ZINC21802765,

ZINC21802749, ZINC21802742 or ZINC21802768 was added to H1975 cells. Following pri-

mary antibody staining for the cell signaling molecules EGFR and p-EGFR, fixed cells were

next labeled with FITC-conjugated secondary antibodies and 1 μg/mL 40-6-diamidino-2-phe-

nylindole (DAPI), a fluorescent stain for nuclear DNA. Each antibody was added to each sam-

ple in triplicate. A BD Pathway 855 Bioimager (BD, Franklin Lakes, NJ, USA) was used to

analyze the fluorescence staining intensity and intracellular localization (v/v).

Apoptosis assay. By employing a flow cytometer and the Vybrant apoptosis test kit

(Annexin V, APC conjugate; Molecular Probes, Thermo Fisher Scientific, Waltham, MA,

USA), the percentage of cells experiencing apoptosis in response to the tested compounds

ZINC21802765, ZINC21802749, ZINC21802742 or ZINC21802768 and gefitinib, a reference

medication, was calculated. A549 and H1975 cells that had been exposed to the test substances

for 48 h were collected, pelleted, and resuspended in DMEM. A total of 104 cells were col-

lected, stained with annexin V and DAPI to detect viability, and immediately examined on a

BD LSRII Flow Cytometer (BD). If the cells tested negative for both Annexin V and DAPI,

they were considered viable.

Statistical analysis. All results were presented as mean ± SEM. Student’s t-test using

Excel1 was carried out to assess which treatment groups show significant differences from the

control ones. The differences were considered significant when p< 0.05.
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Results and discussion

Library establishment

Fig 2 shows a flowchart of the VS procedure. The publicly available Discovery Chemistry,

ChemDiv compound library (DC01), was used to obtain a combined dataset of 350,000 com-

pounds. Selected candidates with good drug-like properties according to Ghose-rule[21]

screening constituted a virtual library of 157,850 compounds.

Ligand structure-based database screening

A pharmacophore is a spatial arrangement of functional groups or atoms that describes how a

binder interacts with the binding site of a target protein. The pharmacophore theory assumes

that the pharmacophores of compounds that share a binding site are identical. [21]. There are

two pharmacophore modeling methods based on the knowledge available regarding ligands

and receptors. Ligand-based methods involve the extraction of a common 3D-arrangement of

chemical characteristics from a known diverse set of compounds that have similar binding

mode to a certain macromolecule structure. However, a structure-based protocol requires the

3D structure of the active site or a target–ligand complex. Using the 3D structure of the

EGFR–gefitinib complex (4wkq) [20], the LigandScout program [22] was used to build a phar-

macophore model by the survey of the paired chemical characteristics of the binding site and

their spatial organization around the binders. The resulting pharmacophore model consisted

of two aromatic rings, one hydrophobic ring, and one hydrogen acceptor (Fig 3). LigandScout

analysis decreased the library set to 610 hits (Supplementary File 1) based on pharmacophore

score value.

Fig 2. Schematic representation of the virtual screening process.

https://doi.org/10.1371/journal.pone.0298326.g002
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Database search using docking studies

The processed ligand set was docked using a consensus-docking approach [23]. This strategy

is both feasible and affordable. The root mean square deviation (RMSD) between AutoDock

Vina1.1.3 [24] and Autodock 4.2 [25] binding modes (RMSD�2) predicted for each complex

yielded a small collection of 27 molecules with high scores, 4 of which had top docking scores

Fig 3. Ligand structure-based pharmacophore model of the gefitinib 4wkq.pdb structure. Hydrogen acceptor (red

sphere), aromatic ring (blue circles) and hydrophobe (yellow sphere).

https://doi.org/10.1371/journal.pone.0298326.g003
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in both Autodock Vina1.1.2 (−10.8: −9.5 Kcal−1) and Autodock 4.2 (−11.4: −9.28 Kcal−1) (Sup-

plementary File 2) and were selected. The 2D structures, zinc ID numbers, and molecular

weights of the four hit compounds are listed in Table 1. The hit compounds were hybrids of

[1,2,4]triazolo[1,5-a]pyrimidin-7-one and a 2-(4-substitutedpiperazin-1-yl)-2-oxoethyl

fragment.

Binding conformation of the hit compounds

The selected hit compounds, ZINC21802765, ZINC21802749, ZINC21802742, and

ZINC21802768 (Table 1), had a common scaffold skeleton, 2-phenyl-4H,7H-[1,2,4]triazolo

[1,5-a]pyrimidin-7-one, which plays main role in the binding of ligands to proteins. For com-

pounds ZINC21802765, ZINC21802749, and ZINC21802742, the pyrimidinone oxygen atom

engaged in hydrogen bonding with Met793 and explored π–cation interactions the π-system

of phenyl ring to the positive amino group of Lys745, while hydrophobic contacts were present

between the 4-[2-oxo-2-(4-phenylpiperazin-1-yl)ethyl moiety and Leu718, Cys797, and

Val726 in the central hydrophobic region. In contrast, compound ZINC21802768 exhibited a

hydrogen bond to Met793 and hydrophobic interactions to the hydrophobic side chains of the

binding-site residues (Fig 4).

MD Simulations. Using AmberTools22 [26] EGFR-TK-docked ligand complexes of the

selected compounds, ZINC21802765, ZINC21802749, ZINC21802742, and ZINC21802768,

were used to compute the binding affinity and stability of the protein–ligand complex struc-

tures. All complexes were subjected to MD simulations, MM/GBSA [27] binding energy calcu-

lations, and molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) per-residue

energy decomposition [28] to identify amino acid residues critical for in silico prediction of

EGFR-TK-ligand binding affinity. It should be highlighted that docking studies, whether rigid

or semi-flexible, provide a single snapshot of the interactions between ligands and proteins.

Consequently, to better understand how the complex interaction profile is affected by protein

structural variations and flexibility, the docked minimized complexes underwent 10 ns MD

simulation time frames. The dynamic stabilities were determined using the RMSD changes

Table 1. Results of the docking studies of the four selected hit molecules with the EGFR-TK protein.

ZINC ID / IUPAC name Chemical

formula (MWt.)

Docking energy (Kcal mol-1) H-Bonds π-Cation

interactions

Hydrophobic

interactionsAutodock

Vina1.1.2

Autodock

4.2

Estimated

IC50 (nM)

ZINC21802765

5-methyl-2-(2-methylphenyl)-4-[2-oxo-2-

(4-phenylpiperazin-1-yl)ethyl]-4H,7H-[1,2,4]

triazolo[1,5-a]pyrimidin-7-one

C25H26N6O2

(442.51)

-10.8 -11.4 787.87 Met793 Lys745 Val726, Ala743,

Lys745,

Thr790, Met793,

Leu844,

ZINC21802749

5-methyl-2-(2-methylphenyl)-4-[2-

(4-methylpiperazin-1-yl)-2-oxoethyl]-4H,7H-

[1,2,4]triazolo[1,5-a]pyrimidin-7-one

C19H22N6O2

(380.2)

-10.5 -11.1 674.28 Met793 Lys745 Val726, Ala743,

Lys745, Thr790,

Leu792,

Met793, Leu844

ZINC21802742

4-{2-[4-(4-fluorophenyl)piperazin-1-yl]-

2-oxoethyl}-5-methyl-2-(2-methylphenyl)-

4H,7H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one

C25H25FN6O2

(460.5)

-10.3 -10.05 446.41 Met793 Lys745 Val726, Ala743,

Lys745, Met766,

Thr790,

Met793, Asn842,

Leu844

ZINC21802768

4-{2-[4-(2-methoxyphenyl)piperazin-1-yl]-

2-oxoethyl}-5-methyl-2-(2-methylphenyl)-

4H,7H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one

C25H26N6O2

(472.55)

-9.5 -9.28 361.43 Met793 Leu718, Val726,

Val726, Lys745,

Leu792, Met793,

Leu844, Thr854,

Asp855

https://doi.org/10.1371/journal.pone.0298326.t001
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during the MD simulations. Throughout the last 4 ns, the protein and ligand structures of the

four complexes (Fig 5) equilibrated, with no apparent RMSD fluctuations.

The per-residue root mean square fluctuation of EGFR-TK–ligand complexes over the last

4ns simulation period shows the least flexible residues numbers 50–150 (original xray numbers

743–853) that suggest the great impact of these residues on the binding of the EGFR-TK recep-

tor to the ligands (Fig 6).

The analysis of the crystal structure of EGFR-gefitinib (pdb id: 4wkq) revealed a contact dis-

tance to the side chain of Thr854 and a hydrogen bond bridge that connected the nitrogen

atom of the pyrimindine ring of gefitinb to the Thr854 side chain via a water molecule Fig 7.

According to recent reports, erlotinib-induced tyrosine phosphorylation inhibition was elimi-

nated by the EGFR T854A mutation, leading to the development of erlotinib drug resistance

Fig 4. Autodock results of EGFR-TK with ZINC21802765 (a); ZINC21802749 (b); ZINC21802742 (c); ZINC21802768 (d). Hydrogen bonds in dotted lines; π-

Cation interactions in yellow cone shape.

https://doi.org/10.1371/journal.pone.0298326.g004
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[29]. Thr854 is found in the EGFR activation loop [30]. It may be possible to achieve more

kinase selectivity in this binding form by combining interaction with the Met790 side chain

with a hydrogen-bonding connection with Thr854 [31].

In our study, the program for processing coordinate trajectories and data files, CPPTRAJ

[32], showed the hydrogen bonds with high occupancy for the four simulation systems during

the final 4 ns equilibration time frame, as shown in Table 2 and Fig 8. For the ZINC21802765–

EGFR-TK complex Fig 8A, the amino acid residues Met793 and Cys797 formed a very stable

hydrogen bond with the ligand, with occupancies of 95% and 84%, respectively. For

ZINC21802749–EGFR-TK Fig 8B, amino acid residues Met793 and Cys797 formed stable

hydrogen bonds with the ligand, with 86% occupancy. Moreover, ZINC21802749 explored

hydrogen bond bridge (same hydrogen bond profile of gefitinib xray structure) between the

nitrogen atom of its triazole ring to Thr854 side chain via a water molecule that suggests its sig-

nificant EGFR-Tk inhibitor activity and potential selectivity. On the other hand, the remaining

three compounds ZINC21802765, ZINC21802742, ZINC21802768 failed make hydrogen

bond bridge between the nitrogen atom of its triazole ring to Thr854 side chain via a water

Fig 5. RMSD in MD simulations, showing protein backbones (green lines), protein all atoms (red lines), and ligands (black lines) for ZINC21802765 (a),

ZINC21802749 (b), ZINC21802742 (c), ZINC21802768 (d).

https://doi.org/10.1371/journal.pone.0298326.g005
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molecule. This is could attributed to the bulk un(substituted)phenyl ring attached to pipera-

zine nitrogen that increase the whole volume of the molecule that inside the ATP binding

pocket that prevent the structure to orient near Thr854 at a distance enough for water-medi-

ated bridge hydrogen bonding.

For ZINC21802742–EGFR-TK Fig 8C, the amino acid residues Met793 and Cys797 showed

strong hydrogen bonds with the ligand, with occupancies of 83% and 77%, respectively. For

ZINC218022768–EGFR-TK Fig 8D, the amino acid residues Met793 and Cys797 showed

moderate hydrogen bonding with the ligand, with occupancies of 52% and 53%, respectively.

The 2-methoxyphenyl moiety in ZINC218022768 structure was oriented between the side

chains of Arg841 and Phe723. This orientation and the electronic effect of the methoxy group

(positive inductive and mesomeric effects) may have a role in the weak inhibitor activity of the

compound and it is suggested for further study and consideration.

Binding free energy estimation. Using 100 snapshots obtained from the final simulation

trajectories, the binding efficiencies of the hit compounds were estimated using the MM/

GBSA method (Table 2). The most active compounds, ZINC21802765 and ZINC21802749,

Fig 6. Per-residue root mean square fluctuation of EGFR-TK–ligand complexes over all simulations times. Protein complex with ZINC21802765 (a),

ZINC21802749 (b), ZINC21802742 (c), ZINC21802768 (d).

https://doi.org/10.1371/journal.pone.0298326.g006
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showed preferred binding energies of −63.4480 and −61.5184 kcal mol−1 respectively. For all

ligands, the vdW interaction energy values were two to three times those of the electrostatic

interactions. The results in accordance with prior research on a number of small-molecule

therapeutic kinase inhibitors, including olmutinib, lapatinib, and icotinib [33, 34].

Per-residue free energy decomposition

The MM/PBSA analysis was used in identifying the amino acid residues crucial for effective

binding to the EGFR-TK active site [35,36]. For the active hit compounds, EGFR-TK--

ZINC21802765 and EGFR-TK- ZINC21802749 complexes, the residues Val726, Leu792,

Met793, Gly796, Cys797, Leu798, and Leu844 showed decomposition energy values in the

range of–-2.025 to–-3.194 kcal mol−1 and -2.082 to -3.595 194 kcal mol−1 respectively. For the

partial active compound, EGFR-TK- ZINC21802742 complex, the residues Leu792, Met793,

Gly796, Cys797, and Leu844 showed decomposition energy values in the range of–-2.0 to–-

Fig 7. X-ray structure of EGFR-gefitinib (4wkq). Gefitinib structure (cyan stick), amino acids side chains (beige sticks), water molecules (red spheres).

https://doi.org/10.1371/journal.pone.0298326.g007

Table 2. Binding free energy results of MM/GBSA calculations (kcal mol−1 a).

Compounds Hydrogen bond (occypancy %) ΔGvdw ΔGelec ΔGpolar
b ΔGsurf

c ΔGMMGBSA

ZINC21802765 Cys797 (95.8) Met793 (84.0) -60.5632 -29.7624 34.0888 -7.2112 -63.4480

ZINC21802749 Cys797 (86.6) Met793 (85.0) -60.1177 -29.3884 34.9215 -6.9337 -61.5184

ZINC21802742 Cys797 (83.8) Met793 (77.2) -56.6452 -23.6452 28.0661 -6.4519 -58.6762

ZINC21802768 Cys797 (52.4) Met793 (53.6) -52.3461 -19.6195 23.3532 -6.1635 -54.7760

a Average of 1000 frames
b Whole electrostatic contribution: ΔGelec = ΔGelectrostatic + ΔGpolar

c Whole nonpolar contribution: ΔGnp = ΔGvdw + ΔGsurf

https://doi.org/10.1371/journal.pone.0298326.t002
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2.985 kcal mol−1. For the weak active hit compound, EGFR-TK- ZINC21802768 complex the

residues Gly796 and Leu798 showed decomposition energy values in the range of–-2.013 to

-2.45 kcal mol−1 (Table 3).

Biological evaluations

EGFR phosphorylation inhibition. Epidermal growth factor receptor (EGFR) is an onco-

genic tyrosine kinase receptor that driving the initiation and progression of non-small-cell

lung cancer (NSCLC) [37]. First-generation EGFR-tyrosine kinase inhibitors (TKIs) such as

gefitinib and erlotinib reversibly bind to the ATP cleft within the EGFR kinase domain to

block auto phosphorylation of EGFR [38]. Several autocrine growth factors, including as EGF

and TGFα, promote EGFR. Here, we evaluated the anti-EGFR activity of the hit compounds

by inhibiting EGF-induced phosphorylation. The activity of hit compounds was examined by

inhibiting EGF-induced EGFR phosphorylation and confirmed by immunofluorescence assay

in H1975 cells. Staining of untreated and compound-treated cells by total and phosphorylated

Fig 8. Average structures of EGFR-ligand complexes obtained during the final snapshots (4 ns) of MD simulations. The ligands are cyan colored sticks of

ZINC21802765 (a), ZINC21802749 (b), ZINC21802742 (c) and ZINC21802768 (d).

https://doi.org/10.1371/journal.pone.0298326.g008

Table 3. Results of per-residue energy decomposition analysis (kcal mol−1).

EGFR-TK residues Val726 Leu792 Met793 Gly796 Cys797 Leu798 Leu844

ZINC21802765 -2.562 -2.025 -2.753 -3.194 -2.057 -2.471 -2.641

ZINC21802749 -2.845 -2.948 -2.237 -2.773 -2.455 -2.082 -3.595

ZINC21802742 -2.0 -1.024 -2.418 -2.088 -2.179 -1.498 -2.985

ZINC21802768 -1.384 -1.805 -1.463 -2.450 -1.030 -2.130 -1.158

https://doi.org/10.1371/journal.pone.0298326.t003
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EGFR antibodies, showed complete inhibition of EGFR phosphorylation by ZINC21802765

and ZINC21802749. Partial inhibition was detected with ZINC21802742 and no activity was

observed with ZINC21802768 treatment (Fig 9). Interestingly, both ZINC21802765 and

ZINC21802749 inhibited the total EGFR and phosphorylated expression which, indicated full

coverage on the drug target. Compounds ZINC21802765 and ZINC21802749 with complete

inhibition of wild type EGFR possess a phenyl or methyl group respectively at the 4-position of

piperazine moiety, these two compounds possess phenyl or methyl group respectively. On the

other hand, compounds ZINC21802742 and ZINC21802768 with either partial or no inhibitor

activity respectively of wild type EGFR possess p-fluorophenyl or o-methoxyphenyl group at

the the 4-position of piperazine moiety. These results suggest the smaller the group at 4-posi-

tion of piperazine the better the inhibitory activity of the compound.

Induction of apoptosis. We first sought to investigate whether the inhibition of hit com-

pounds on EGFR phosphorylation will lead to inhibit the survival of lung cancer cells. There-

fore, we assessed the efficacy of hit compounds induced apoptosis on H1975 cells as a marker

of cell killing and decreased cell survival. For this purpose, cells were treated with the indicated

hit compounds in 1μM for 48 hrs, thereafter the percentage of cells underwent apoptosis was

Fig 9. A) Hit compounds ZINC21802765 (a), ZINC21802749 (b), ZINC21802742 (c), and ZINC21802768 (d). B) Staining of H1975 cells with EGFR and

PEGFR. Compounds a, b, and c inhibit the autophosphorylation of EGFR induced by EGF (10 ng/mL) treatment. H1975 cells were stained with primary

antibodies against EGFR/p-EGFR (magenta) followed by secondary antibodies and DAPI (red). Thereafter, the constituted EGFR and PEGFR proteins and

localization were determined by immunofluorescence assay.

https://doi.org/10.1371/journal.pone.0298326.g009
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determined by flow cytometry. Treatment with compounds ZINC21802765, ZINC21802749,

ZINC21802742, and ZINC21802768 induced efficient apoptosis as shown in Fig 10. Hit com-

pounds showed increase in apoptosis percentage by 20.6,22,25 and 26% compared with 10% in

mock treated cells. Unlike the inhibition of EGFR phosphorylation, the induction of apoptosis

was shown to be independent of EGFR inhibition activity. Furthermore, effective response

and good clinical outcomes of EGFR inhibitors, enable their use as the first-line setting for

patients with advanced NSCLC harboring activating EGFR mutation (a deletion in exon 19 or

the L858R mutation in exon 21) [39, 40]. However, NSCLC patients initially response to these

EGFR-TKIs almost invariably develop drug resistance [41], which commonly arise through

the acquisition of a second-site mutation (T790 M) within EGFR, or via activation of compen-

satory signaling pathways that bypass receptor and restore downstream oncogenic signaling

[42]. Therefore, we sought to evaluate the induction of apoptosis using H1975 cells harboring

the EGFR L858R/T790M double mutation and A549 cells that harboring wild-type EGFR.

ZINC21802765 and ZINC21802749 the most active hits were used and compared with the

EGFR inhibitor reference drug Gefitinib. The treatment showed a persistent apoptosis-induc-

ing effect on mutant EGFR H1975 cells and increased the percentage of apoptosis by 20.5 and

22%, receptively. In higher concentration by 2μM, the apoptosis percentage was increased by

21 and 25.8%, respectively. Both hit compounds are more effective than gefitinib by at least

one fold in inducing cell killing toward mutant EGFR H1975 but not on wild-type A549 cells

as shown in (Fig 11). Taken together, the biological evaluation results of hit compounds

showed inhibition of EGFR and selective apoptosis-induced effects on mutant cells, rather

than on wild-type lung cancer cells.

Fig 10. Apoptosis induction effect of compounds. The cells were collected and then stained with annexin V–APC/DAPI. The percentage of cells underwent

to apoptosis was then analyzed on a LSRII Flow Cytometer. One of the three representative experiments using different cell preparations was only shown. The

values represent mean ± SEM (n = 3). Compounds are ZINC21802765 (a), ZINC21802749 (b), ZINC21802742 (c), and ZINC21802768 (d).

https://doi.org/10.1371/journal.pone.0298326.g010
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Conclusions

In conclusion, the study utilized a ChemDiv dataset to identify drug-like compounds for

EGFR-TK inhibition. Through various computational methods, four hit compounds were

identified and their interactions with EGFR-TK were analyzed. The most active compounds

showed strong inhibition of EGFR and selective effects on mutant cells, suggesting their poten-

tial as therapeutic agents for lung cancer. We anticipate that our current research into novel

and specific EGFR-TKIs using the ChemDiv database will be helpful in identifying new com-

pounds with therapeutic potential against lung cancer.

Fig 11. Selective apoptosis induction effect of compounds on H1975 cells harboring the EGFR L858R/T790M double mutation vs A549 cells that

harboring wild-type EGFR compared with EGFR inhibitor reference drug gefitinib. The percentage of cells that underwent apoptosis was then analyzed on

LSRII Flow Cytometer. The values represent mean ± SEM (n = 3) *; p< 0.05 compared to control by Student’s t-test. Compounds are ZINC21802765 (a),

ZINC21802749 (b).

https://doi.org/10.1371/journal.pone.0298326.g011
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