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Abstract

Galectin-3 is a beta-galactoside-binding lectin that plays important roles in diverse physiologi-

cal functions, such as cell proliferation, apoptosis, and mRNA splicing. This protein is

expressed on inflammatory cells and acts as a local inflammatory mediator. Recently, galec-

tin-3 has been detected in several diseases, such as chronic liver, heart, and kidney diseases,

diabetes, viral infection, autoimmune and neurodegenerative diseases, and tumors, and its

role as a biomarker has attracted attention. Alpha-galactosylceramide is an artificially synthe-

sized sphingolipid that can induce acute liver injury via the natural killer T pathway. However,

the pathophysiological roles and kinetics of galectin-3 in acute liver injury are not fully under-

stood. This study aimed to elucidate the expression and time course of galectin-3 in liver tis-

sues during acute liver injury following alpha-galactosylceramide injection. Animals were

histologically examined on days 1, 2, 4, and 7 after intraperitoneal injection of alpha-galacto-

sylceramide, and the expressions of galectin-3 and ionized calcium-binding adaptor molecule

1 were analyzed. Notably, galectin-3 formed characteristic cluster foci, particularly on day 2

after injection. Cluster formation was not observed in chronic liver disease. Simultaneously,

ionized calcium-binding adaptor molecule 1-positive cells were observed in the cluster foci.

Serum galectin-3 levels increased on day 2 of treatment and correlated well with the number

of galectin-3-positive cell clusters in the liver. Moreover, galectin-3 expression was an impor-

tant mediator of the early phase of liver injury after alpha-galactosylceramide injection. These

results suggest that serum galectin-3 may be a biomarker for the early diagnosis of acute liver

injury and that clusters of galectin-3-positive cells may be a specific finding in acute liver injury.

Introduction

Galectins are a class of β-galactoside-binding lectins that bind to sugar chains and immuno-

globulin E on the surface of mammalian cells [1]. These proteins are expressed in
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inflammatory cells, such as neutrophils, eosinophils, mast cells, macrophages, and histiocytes

(mononuclear phagocytic histiocytes) [2]. Galectins are widely expressed in various cell types.

Their roles are diverse and include intercellular and cell-matrix adhesion, regulation of cell

proliferation, apoptosis, mRNA splicing, signal transduction, and immune regulation [3].

Galectins’ roles in angiogenesis, cell migration, and tumor immune evasion during carcino-

genesis are also closely related to cancer biology, and galectins have recently attracted much

attention in the field of cancer research and therapy [4, 5]. Galectins, soluble proteins, play

important regulatory roles inside and outside the cell. Intracellular galectins exhibit functions

such as regulating cell proliferation and apoptosis and regulate intracellular signaling pathways

through protein-protein interactions [6]. Galectins secreted extracellularly bind to receptor

proteins and act as mediators of inflammation, for example, or are involved in cell adhesion.

Galectins are classified into three groups based on the composition of their intramolecular

sugar-binding domains: proto-types, which have one sugar-binding domain and form dimers;

chimeric types, which have a sugar-binding domain and a multimeric domain and form multi-

meric bodies; and tandem repeat types, which have two sugar-binding domains. One of the

most intensively studied galectins with several biological functions, galectin-3 (Gal-3), is a chi-

meric galectin of approximately 30 kDa and is expressed on various immune cells, such as

mast cells, histiocytes, and macrophages. Notably, this protein exists primarily in the cyto-

plasm but is also expressed on the cell surface, transcribed and synthesized in the microenvi-

ronment during inflammation, and released into the extracellular space [7]. Gal-3 plays

important roles in diverse physiological functions, such as cell proliferation, apoptosis, and

mRNA splicing, and acts as a local inflammatory mediator [8]. Additional studies have

detected Gal-3 in several diseases, including heart disease [9], kidney disease [10], diabetes

[11], viral infections [12, 13], autoimmune diseases [14], neurodegenerative diseases [15, 16],

and tumors [17, 18].

Gal-3 and macrophages play major roles in acute inflammation and chronic fibrosis in sev-

eral diseases. Our previous study showed that Gal-3 expression in macrophages was elevated

during the early stages of myocarditis in encephalomyocarditis virus-infected mice. We dem-

onstrated that detecting Gal-3 could be an early diagnostic method for myocardial degenera-

tion in acute myocarditis [13]. Studies reflecting more clinical conditions have been conducted

on the circulatory system, and in patients with acute myocardial infarction, overexpression of

circulating Gal-3 is associated with a significant cardiovascular outcome [19] and an increased

risk of myocardial fibrosis and sudden cardiac death [20].

In the liver, Gal-3 is associated with fibrosis, cirrhosis, non-alcoholic steatohepatitis

(NASH), and primary cholangitis [21]. In addition, Gal-3 may be a biomarker of liver damage

in patients with biliary atresia, NASH, and chronic kidney disease with compensated cirrhosis

[22–25]. However, reports examining the histological localization of Gal-3 in the early stages

of liver injury, the time course of its expression, and its correlation with blood levels remain

unavailable.

We hypothesized that elevated Gal-3 levels could be an early diagnostic biomarker for liver

lesions and myocarditis caused by viral infection, and we tested this hypothesis.

Alpha-galactosylceramide (GalCer) is a sphingoglycolipid artificially synthesized from a

sponge (Agelas mauritianus) and is a specific ligand for natural killer T (NKT) cells. When

administered in vivo, alpha-GalCer can cause hepatitis (acute liver injury) and has been estab-

lished as a model for liver injury via the NKT pathway [26, 27]. Further, ionized calcium-bind-

ing adaptor molecule 1 (Iba1) is a protein specifically expressed in macrophages, and its

expression increases upon activation of these cells [28]. Alpha-GalCer induced acute liver

injury is a very stable model of liver injury and is usually induced by a single intraperitoneal

injection.
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This study aimed to elucidate the expression and time course of Gal-3 in liver tissues during

acute liver injury via the NKT pathway following alpha-GalCer injection. The expression pat-

terns of Iba1 and Gal-3 cells in liver tissue in alpha-GalCer-induced mouse liver injury were

analyzed by immunofluorescence staining to confirm the localization of Gal-3 positive cells in

the liver. In addition, the time course of serum Gal-3 and alanine aminotransferase (ALT) was

examined; ALT is a known and clinically routinely used hepatic abscisic enzyme. Conse-

quently, our study confirmed the expression of Gal-3 in tissues and its time course in serum,

confirming the potential of Gal-3 as a biomarker for acute liver injury.

Materials and methods

Ethics statement and study approval

This study was conducted in accordance with the "Gifu University Animal Experiment Han-

dling Regulations". The animal experiment protocol for this study was approved by the Gifu

University Animal Experimentation Ethics Committee (2020–104). Isoflurane anesthesia was

used for invasive procedures on the animals in an effort to minimize suffering.

Experimental animals

C57BL/6J wild-type male mice aged 6–10 weeks were purchased. (Japan SLC, Inc., Hamama-

tsu, Japan). The mice were kept in a dedicated rearing facility with a room temperature of

22˚C, with a 12-hour cycle of light and dark at 8:00 am and 8:00 pm, and well supplemented

with water and food.

Alpha-GalCer injection

Alpha-GalCer (KRN7000; Funakoshi Co., Ltd., Tokyo, Japan) was obtained and stored in

dimethyl sulfoxide as a 2 mg/mL stock solution. Male mice aged 6–10 weeks were intraperito-

neally inoculated at a dose of 20 μg/mouse. After being injected, the mice were kept in a dedi-

cated rearing facility with a room temperature of 22˚C, a 12-hour cycle of light and dark at

8:00 am and 8:00 pm, and an adequate supply of water and food. In the current study, the

injection day was defined as day 0.

Preparation of chronic liver disease model mice

The liver models of chronic diseases were developed based on previous studies [29]. To create

a primary sclerosing cholangitis (PSC) model, thioacetamide (TAA) (Sigma-Aldrich Co. LLC,

MO, USA) was administered at a concentration of 300 mg/L in drinking water for 8 weeks. To

create a NASH model, a methionine- and choline-deficient diet (MP Biomedicals, LLC, CA,

USA) was administered for 3 weeks. To ensure adequate liver injury, the duration of drug

administration was extended based on previous studies while assessing liver status.

Tissue preparation

At 1, 2, 4, and 7 days after alpha-GalCer injection, the control and chronic disease model ani-

mals were perfused transcardially with physiological saline, followed by phosphate-buffered

10% formalin. Control animals were used as day 0 samples. The mice livers were harvested,

cut into appropriate sizes, and embedded in paraffin. Liver tissue sections were cut from the

paraffin blocks at a thickness of 3 micrometers and placed on glass slides. Hematoxylin and

eosin (H&E) staining and Azan staining were performed. H&E-stained specimens were evalu-

ated for inflammation score based on the new Inuyama classification [30] with the degree of
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inflammatory cell infiltration and necrosis. Azan staining was performed to assess liver

fibrosis.

Immunohistochemistry

Anti-mouse Gal-3/Mac2 antibody (Rat IgG, 14–5301; (Thermo Fisher Scientific Inc., MA,

USA) and Anti-Iba1 antibody (rabbit IgG, 019–19741; Wako Pure Chemical Corp., Osaka,

Japan) were used. Deparaffinized sections were incubated in distilled water containing 3%

hydrogen peroxide for 5 min to inhibit endogenous peroxidase activity. Heat-induced antigen

retrieval was performed by Pascal (Dako, Agilent Technologies Inc., CA, USA) using a 0.01 M

citrate buffer (pH 6.0) for both anti-Gal-3 and anti-Iba1 antibodies. Furthermore, nonspecific

binding sites were blocked by immersing the slides in 0.01 M phosphate-buffered saline (PBS;

pH 7.4) containing 2% bovine serum albumin (BSA; Wako Pure Chemical Corp.) for 40 min.

Subsequently, anti-Gal-3 antibody diluted 1:4000 in PBS and anti-Iba1 antibody diluted 1:400

in PBS were then added to the slides and incubated overnight at 4˚C. Gal-3 and Iba1 were

detected using biotinylated anti-rat IgG (1:200, E0468; Dako, Agilent Technologies Inc.) and

biotinylated anti-rabbit IgG (1:250, 5260–0038; SeraCare Life Sciences Inc., MA, USA) each

for 60 min. The slides were then incubated with avidin-biotin-labeled enzyme complexes (Vec-

tastain ABC kit; Vector Laboratories Inc., CA, USA) for 30 min. Furthermore, enzyme active

sites were detected using staining with 3,3’-diaminobenzidine. Avidin-peroxidase binding sites

were detected using staining with 3,3’-diaminobenzidine in 50 mM Tris-ethylenediaminetetra-

acetic acid buffer. Counterstaining was performed using Mayer’s hematoxylin. Gal-3 immuno-

histochemically stained specimens were evaluated based on the number of Gal-3-positive cell

cluster foci. The cluster foci were defined as positive cell clusters of�700 μm2 (this corre-

sponds to approximately 10 positive cells). The number of Gal-3-positive cell cluster foci per

unit area was evaluated using the ImageJ software.

Immunofluorescent staining

Heat-induced antigen retrieval was performed on deparaffinized sections using Pascal (Dako,

Agilent Technologies Inc.). Slides were heated in 0.01 M citrate buffer (pH 6.0) to activate the

antigen. Blocking of nonspecific binding sites was performed by immersion in 0.01 M PBS

(pH 7.4) containing 2% BSA for 40 min. Anti-Gal-3 antibody diluted 1:4000 in PBS and anti-

Iba1 antibody diluted 1:400 in PBS were then added to the slides and incubated overnight at

4˚C. Goat anti-rat Alexa Fluor 488 (1:200, ab150165, Abcam plc., Cambridge, UK) and goat

anti-rabbit Alexa Fluor 594 (1:300, ab150084, AbCam plc.) were then prepared as secondary

fluorescent antibodies. Slides with the secondary antibodies were incubated at 25˚C for 1 h.

After washing with PBS, the slides were stained with 4’6-diamino-2-phenylindole for 5 min-

utes as nuclear staining. An Olympus BX-53 fluorescence microscope and DP80 camera

(Olympus Corporation, Tokyo, Japan) were used to observe and photograph fluorescent

slides.

Measurement of ALT and Gal-3 levels in serum

ALT and Gal-3 levels were quantitatively determined in the sera of mice inoculated with

alpha-GalCer. The blood samples were centrifuged at 3500 rpm/1100 × g at 4˚C for 15 min.

The serum was collected and stored at 4˚C until analysis. Serum ALT activity was measured

using an automated clinical analyzer (BM8040; JEOL Ltd., Tokyo, Japan). Serum Gal-3 levels

were measured using an enzyme-linked immunosorbent assay (ELISA), according to the man-

ufacturer’s recommendations (ab203369-Simple Step ELISA Kit; Abcam plc.).
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Statistical analyses

All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical Uni-

versity, Saitama, Japan) [31], a statistical analysis software that incorporates more versatile sta-

tistical analysis functions into R Commander, which is based on R (The R Foundation for

Statistical Computing, Vienna, Austria). Data in the tables are expressed as mean + standard

deviation; data in the figures are expressed as individual data and mean. One-way analysis of

variance was used to determine significant differences between groups. Correlations were

quantified using Pearson’s product-rate correlation coefficient. The statistical significance was

set at p< 0.05.

Results

Galectin-3 expression in lesions of acute liver injury

All alpha-GalCer inoculated mice were used in the experiment. Morphological changes in

H&E staining, number of Gal-3-positive cells, degree of fibrosis, serum Gal-3 levels, and

inflammation scores according to the new Inuyama classification are summarized in Table 1.

The new Inuyama classification, which evaluates inflammation in chronic hepatitis based on

fibrosis and inflammation, is widely used in clinical practice in Japan. In this study, inflamma-

tion was evaluated in terms of inflammatory cell infiltration of the lobules and degeneration/

necrosis of hepatocytes based on the new Inuyama classification inflammation score evalua-

tion method, which was classified into four levels, ranging from no activity (0) to high activity

(3). Representative photomicrographs of H&E, Azan, and immunohistochemical staining for

Gal-3 and Iba1 in injured liver tissues are shown in Fig 1. One day after intraperitoneal alpha-

GalCer injection, no evident changes were observed in H&E staining. H&E staining showed

mild inflammatory cell infiltration 2 days after injection and moderate to severe inflammation

4 days after injection. Azan staining revealed no apparent fibrosis at any stage. Immunostain-

ing revealed a small number of sporadic Gal-3-positive cells in the liver tissue before injection

and a small number of Iba1-positive cells. Gal-3-positive cells showed an increasing trend on

day 1 and increased markedly on day 2, forming characteristic clusters. On day 4, Gal-3-posi-

tive cells were found diffusely in the liver tissue and reached their peak. On day 7 after injec-

tion, Gal-3-positive cells were almost completely absent and returned to almost the same state

as before injection. The localization of Gal-3 was remarkably similar to that of Iba1, indicating

that Gal-3-positive cells are Iba1-positive macrophages. This finding was confirmed using

immunofluorescence staining.

Table 1. Number of galectin-3-positive cell clusters, serum levels of galectin-3, degree of fibrosis, and inflammation score in liver tissue after alpha-galactosylcera-

mide injection.

Time course n (n) Galectin-3-positive cell cluster (clusters/mm2) Serum level (μg/mL) Fibrosis (%) Inflammation grade

Day 0 12 (5) 0.0 ± 0.0 20.8 ± 6.1 0.2 ± 0.2 0.0 ± 0.0

Day 1 9 (6) 1.1 ± 0.9 13.4 ± 4.9 0.3 ± 0.1 0.7 ± 0.5

Day 2 8 (6) 1.9 ± 1.2 37.5 ± 13.5 03 ± 0.2 1.7 ± 0.5

Day 4 8 (3) 2.1 ± 1.2 27.5 ± 14.1 0.4 ± 0.1 1.3 ± 0.6

Day 7 4 (2) 0.1 ± 0.0 24.2 ± 9.9 0.3 ± 0.1 1.0 ± 0.0

Values are shown as the group mean ± SD. n: number of animals examined, (n): number of animals examined for histology. The number of galectin-3-positive cell

aggregates in liver tissue was measured (clusters/mm2). The degree of fibrosis was assessed as a percentage of the total liver tissue in fibrotic areas at each time point

using Azan staining. Serum galectin-3 levels were measured using enzyme-linked immunosorbent assay (μg/mL). The degree of inflammation was evaluated on a

4-point scale from grade 0 to 3 based on the new Inuyama classification.

https://doi.org/10.1371/journal.pone.0298284.t001
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Immunofluorescence staining for Gal-3 and Iba1

To examine the infiltrating cells expressing Gal-3 in the liver, immunofluorescence staining

for Iba1 and Gal-3 was performed on cell clusters formed 4 days after alpha-GalCer injection.

Co-localization of Iba1 and Gal-3 immunoreactivity was demonstrated in the same cells. This

indicates that infiltrating Gal-3-positive cells are activated macrophages/tissue cells (Fig 2).

Relationship between Gal-3 expression in the liver and liver fibrosis

The number of Gal-3-positive cell clusters was counted per mm2 of liver tissue. Gal-3-positive

cell clusters were counted at each time point using Gal-3 immunohistochemistry in mice with

hepatitis induced by alpha-GalCer (Fig 3A). The degree of fibrosis was quantified as the per-

centage of fibrotic areas in the liver tissue at each time point of Azan staining (Fig 3B). Gal-

Fig 1. Representative histological findings of liver tissue after intraperitoneal injection of alpha-galactosylceramide. Hematoxylin and eosin staining

showed evident inflammatory cell infiltration from day 2. Azan staining revealed no apparent fibrosis at any stage. Galectin-3-positive cells showed an

increasing trend from day 1, forming characteristic clusters by day 2 and reaching a peak on day 4. Galectin-3-positive cells had almost disappeared by day

7; however, Iba1-positive cells were still observed. Scale bars = 100 μm.

https://doi.org/10.1371/journal.pone.0298284.g001
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3-positive cell aggregation foci increased markedly after 2 days, peaked after 4 days, and were

almost absent after 7 days. However, no significant differences in fibrosis were observed at any

time point.

Association between ALT and serum Gal-3 levels

ALT levels markedly increased on day 1 after alpha-GalCer injection and peaked on day 2.

Serum Gal-3 levels peaked on day 2 after alpha-GalCer injection. The peak increase in serum

Gal-3 levels was similar to that of ALT (Fig 4A and 4B), suggesting an association between

these two quantities.

Gal-3 expression in mouse models of chronic liver injury

We performed additional experiments to determine whether the current findings regarding

Gal-3 expression were specific to acute hepatitis. We analyzed the NASH and PSC mouse

Fig 2. Immunofluorescent image confirming the co-localization of galectin-3 and ionized calcium-binding adaptor molecule 1 (Iba1)

immunoreactivity 4 days after alpha-galactosylceramide injection. Galectin-3 and Iba1 are expressed in the same cells, indicating that galectin-

3-positive cells are macrophages. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0298284.g002
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Fig 3. Relationship between the number of galectin-3-positive cells and degree of fibrosis. (A) The number of

galectin-3-positive cell clusters (determined using immunohistochemistry) in the liver tissue was counted at each time

point. Statistical difference between day 0 and day 2, p = 0.023; between day 0 and day 4, p = 0.034. (B) The degree of

fibrosis of the liver tissue (determined by Azan staining) was quantified as the percentage of fibrotic areas in the total

liver tissue at each time point. The sample numbers were as follows: n = 5 for day 0, n = 6 for day 1, n = 6 for day 2,

n = 3 for day 4, n = 2 for day 7. *Statistical difference between each group determined using analysis of variance

(p< 0.05) (One-way analysis of variance).

https://doi.org/10.1371/journal.pone.0298284.g003
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Fig 4. Association between alanine aminotransferase (ALT) and serum galectin-3 levels. (A) Serum ALT levels.

ALT levels markedly increased 1 day after alpha-galactosylceramide (GalCer) injection and peaked at 2 days. Statistical

difference between day 2 and day 0: p< 0.001; between day 2 and day 1: p = 0.025. (B) Serum galectin-3 levels. Serum

galectin-3 levels markedly increased and peaked 2 days after alpha-GalCer injection. Statistical difference between day

0 and day 2: p = 0.006; between day 1 and day 2: p< 0.001. (C) A weak positive correlation between ALT and serum
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models. Mild inflammatory cell infiltration was observed using H&E staining, and fibrosis

using Azan staining was observed only in PSC (Fig 5A and 5B). Gal-3-positive cells were

observed in the tissue; however, cluster formation was not observed in NASH or PSC. The

PSC model showed the presence of Gal-3-positive cells consistent with fibrosis (Fig 5A and

5C).

galectin-3 levels was observed. (r = 0.366, p = 0.043) (Pearson product-moment correlation coefficient). The sample

numbers were as follows: n = 12 for day 0, n = 9 for day 1, n = 8 for day 2, n = 8 for day 4, n = 4 for day 7. *Statistical

difference between groups determined by analysis of variance (p< 0.05) (One-way analysis of variance).

https://doi.org/10.1371/journal.pone.0298284.g004

Fig 5. Representative histological findings in mice models of non-alcoholic steatohepatitis (NASH) and primary sclerosing

cholangitis (PSC). (A) Fibrosis is only observed in the PSC model; no clusters of galectin-3-positive cells are observed in either the

NASH or PSC models; galectin-3-positive cells are observed in fibrotic areas in the PSC model. Scale bars = 100 μm. (B) The degree of

fibrosis in liver tissue (determined using Azan staining) is quantified as a percentage of fibrotic areas in total liver tissue. (C) The number

of galectin-3-positive cell aggregation foci (determined using immunohistochemistry) in the liver tissue is counted at each time point.

The sample numbers were as follows: n = 5 for day 0, n = 6 for day 1, n = 6 for day 2, n = 3 for day 4, n = 2 for day 7, n = 5 for NASH,

n = 4 for PSC. *Statistical difference between each group determined using analysis of variance (p< 0.05) (One-way analysis of

variance).

https://doi.org/10.1371/journal.pone.0298284.g005
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Discussion

This is the first study to analyze the relationship between Gal-3 expression and serum levels in

an animal model of acute hepatitis after alpha-GalCer injection. As revealed using immunohis-

tochemistry, Gal-3-positive cells were present in small numbers in the liver before alpha-Gal-

Cer injection; however, they markedly increased and formed characteristic clusters at day 2

after alpha-GalCer injection, peaked at day 4, and were almost absent after day 7.

Using H&E staining, inflammation was evaluated based on the inflammatory cell infiltra-

tion and liver cell degeneration/necrosis according to the new Inuyama classification. Based

on H&E staining, inflammatory cell infiltration on day 1 was remarkably mild. However, an

increasing trend of positive cells was clearly observed on day 1 using immunostaining for Gal-

3. On day 2, inflammatory cell infiltration was also mildly observed with H&E staining but was

more markedly increased with Gal-3 immunostaining, showing characteristic clusters. Com-

pared with H&E staining alone, Gal-3 immunostaining revealed these inflammatory cell trends

more clearly.

Kupffer cells, tissue-resident macrophages, are normally present in the liver. These cells

reside in sinusoids within the liver tissue and are maintained independently of the bone mar-

row [32]; specifically, they remove microorganisms, cellular debris, and aged red blood cells,

and play a role in immune surveillance [33, 34]. In the present experiment, Gal-3-positive/Iba-

positive cells, presumably Kupffer cells, were found in the liver before alpha-GalCer injection.

Kupffer cells in the liver have been observed to express Mac-2 (i.e., Gal-3) [35].

The present study observed a characteristic cluster formation of Gal-3-positive cells, espe-

cially 2 days after alpha-GalCer injection. Wijesundera et al. [36] investigated Gal-3 in a rat

model of acute liver injury induced with TAA and reported an increase in Gal-3-positive cells.

However, they did not report clusters of Gal-3-positive cells as in the present study. Notably,

hepatitis induced by alpha-GalCer is mediated by tumor necrosis factor-α secreted by NKT

cells [37] and not by Kupffer cells [26]. As mentioned above, Gal-3 was also observed in Kupf-

fer cells in the liver, suggesting that Gal-3-positive cells observed early in liver injury are liver

Kupffer cells, which are also positive for Iba1, a tissue macrophage marker [38–40]. Notably,

alpha-GalCer-induced liver injury occurs independently of Kupffer cells. The absence of galec-

tin-3-positive cell clusters in thioacetamide-induced acute liver injury but their appearance in

alpha-GalCer-induced acute liver injury may be due to the immune responses and underlying

mechanisms that differ between NKT- and Kupffer cell-mediated liver injury. Therefore, clus-

ters of Gal-3-positive cells may be induced as a secondary response mediated by alpha-GalCer-

induced NKT cells.

In the alpha-GalCer-induced acute liver injury observed in this study, inflammatory cell

infiltration returned to nearly normal levels after day 7, and no prolonged inflammation was

observed. Alpha-GalCer-treated livers damage hepatocytes and induce apoptosis in NKT cells

1 day after injection. NKT cells are activated by alpha-GalCer and are presumed to mediate

NKT cell toxicity to the surrounding tissue and induce apoptosis [41]. Such hepatocyte dam-

age and apoptosis are observed remarkably early (day 1) after injection, explaining why inflam-

mation was not prolonged during the recovery period in this case. No significant increase in

fibrosis in the liver tissue was observed after 7 days, and the relationship between Gal-3-posi-

tive cells and fibrosis and their localization could not be confirmed in the alpha-GalCer-treated

model. However, the relationship between liver fibrosis and Gal-3 has been widely reported in

previous studies [22], and in our study, Azan staining in the PSC model revealed Gal-3-posi-

tive cells in fibrotic sites, suggesting a relationship between fibrosis and prolonged tissue Gal-3

localization.
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Only a weak correlation was found between serum Gal-3 level and serum ALT levels. This

may be related to the fact that ALT is a hepatic enzyme that is elevated by the destruction of

hepatocytes. Serum Gal-3 and serum ALT, both are marker which elevated in acute liver

injury, serum ALT level has the property of being elevated when hepatocyte destruction

occurs. In contrast, serum Gal-3 level may be derived from the fact that it is elevated not only

by hepatocyte destruction but also by other factors that precede inflammation and destruction.

The increase in the number of Gal-3-positive cells and characteristic cluster formation in the

liver in the remarkably early stages of liver injury, even when inflammatory cell infiltration in

the liver is not evident using H&E staining, is of pathological importance. These findings indi-

cate that Gal-3 may be an early biomarker of liver injury.

This study has some limitations. First, this study has been conducted on animal models,

and its relevance to human liver injury is a presumption. Second, the cause of Gal-3-positive

cell cluster formation and whether it was caused by the alpha-GalCer-induced liver injury or

other mechanisms of liver injury remains unknown. Third, although inflammation in the cur-

rent study was reduced to mild levels by day 7, the trend in Gal-3-positive cells in the presence

of prolonged inflammation and its relationship with fibrosis are unclear. However, the

involvement of Gal-3 in early liver injury may be generalized, as the infiltration of Gal-3-posi-

tive cells has been observed in other models of acute liver injury.

In conclusion, our results indicate that Gal-3 is upregulated in the early phase of liver injury

after alpha-GalCer injection in both the serum and liver tissue. Gal-3-positive cells are recog-

nized as macrophages that infiltrate inflammatory sites and show characteristic cluster forma-

tion. These findings indicate that Gal-3 expression may be a useful indicator of acute liver

injury in tissue biopsies. Further studies are required to determine whether Gal-3 is a useful

early diagnostic marker of human hepatitis.
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