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Abstract

Low-carbon is a part of China’s efforts to pursue the national strategy of “carbon peaking

and carbon neutrality.” Meanwhile, the path of low-carbon transformation of logistics has

become a topic of global concern. This study constructs a technical framework of logistics

carbon emissions (LCE), which is composed of carbon emission evaluation, carbon emis-

sion prediction and low-carbon strategy. All 13 prefecture-level cities in Jiangsu, China, are

the application objects in empirical research. Then, the influence analysis of the LCE effi-

ciency based on the panel Tobit model and the evolution of LCE under different scenarios

are explored. The results show that: (i) during the study period (2013–2020), the LCE in

Jiangsu showed an overall upward trend, with Xuzhou, Suzhou and Nanjing being the cities

with the highest carbon emissions; (ii) the static efficiency of LCE in Jiangsu is at a medium

level, with fluctuations in Suzhou, Changzhou, Zhenjiang, Nantong, and Suqian caused by

the technical change index; (iii) economic level, industrial structure, fixed asset utilization

rate, and ecological environment in Jiangsu are significantly positively correlated with LCE

efficiency, while education popularization and energy intensity are negative; (iv) LCE in

Jiangsu has been drastically reduced in the low-carbon scenario compared to the baseline

scenario. On the above basis, this study proposes suggestions for the low-carbon develop-

ment strategies of logistics in Jiangsu.

1. Introduction

China has entered a new stage of implementing the “carbon peaking and carbon neutrality

goals”. At present, all industries have begun the low-carbon transformation, the existing litera-

ture mainly focus on low carbon development concepts, carbon emission assessment, digital

technology applications, low carbon production benefits [1–4], etc. Logistics is a strategic and

fundamental industry that supports the national economic activities, which should pay more

attention to the green development process. Since 2020, China’s total social logistics growth

rate has been higher than that of its gross domestic product (GDP), and the scale of logistics
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demand has grown steadily. In 2022, China’s total logistics revenue accounted for 10.49% of

GDP, and the logistics market scale ranked first in the world for seven consecutive years. In

2020, the world’s CO2 emissions will be 319.8×108 tons, and China’s CO2 emissions will be

98.92×108 tons, accounting for 30.93% of the world’s, making China the largest contributor of

carbon emissions. More seriously, energy consumption and LCE in China continue to grow.

According to the statistics from the Green Logistics Branch of the China Federation of Logistics,
the total energy consumption of China’s logistics was 3.85×108 tons of standard coal in 2020,

which accounted for 7.73% of total consumption, and the CO2 emissions of the whole industry

were 8.57×108 tons, accounting for 8.66% of total emissions. The low-carbon transformation

of logistics is motivated by an urgent need for ecological protection, production efficiency

improvement, and sustainable development.

Carbon emissions accounting is a key prerequisite for decision-making regarding low-car-

bon strategies. LCE refers to the emissions of carbon dioxide generated in the logistics process.

The logistics mainly includes cargo transportation, warehousing, loading and unloading, and

packaging, which consume large amount of energy and release greenhouse gases. Existing

studies mainly focus on energy activities, industrial processes and product use, land use/land

cover, and waste disposal [5–8]. Furthermore, practical measurements, mass balance methods,

carbon emission factor methods, carbon footprint analyses, material flow analyses, and life

cycle assessments have also been applied [9–13]. Scientific research institutions around the

world, including the Global Carbon Budget, Emissions Database for Global Atmospheric

Research, and Multi-resolution Emission Inventory for China and China Emission Accounts

and Datasets. Additionally, carbon compensation policies, trade carbon deficit, land use/land

cover pattern optimization, agricultural production mode, and urban architectural design

[14–19], were discussed to explore the concept of carbon balance.

Evaluation of LCE performance is generally divided into two categories: (i) constructing

the evaluation index system [20] and (ii) measuring the efficiency value [21]. Carbon emission

efficiency (CEE) measures the level of regional economic, social or industrial development

under carbon emission constraints, and reflects the relationship between carbon emissions

and economic growth. CEE can be considered from a single-factor and total-factor economic

perspective. It can be evaluated by nonparametric methods (e.g., Data Envelopment Analysis,

DEA) and parametric methods (e.g., Stochastic Frontier Analysis, SFA) [22]. While there are

drawbacks to SFA in a multi-input-output scenario, DEA can compensate for these deficien-

cies. DEA models are divided into normal and super-efficiency models [23]. BCC, CCR, DDF,

SBM, EBM, super-efficiency DEA [24], two-stage and three-stage DEA models can be used to

evaluate static CEE [25] While the Malmquist model, in conjunction with DEA models, is

mostly used to measure dynamic efficiency. Unlike the traditional CCR or BCC models, the

SBM model is a non-radial, non-angle model that allows for various proportional changes in

input and output variables (including non-angle and slack variables). The SBM model is

uniquely suited to measure research components that contain undesirable outputs and is able

to take into account the relationship between multiple input and output indicators, resulting

in a more comprehensive assessment of efficiency. However, the SBM model suffers from the

defect that the efficient DMUs are all equal to one, which precludes comparisons. On the other

hand, the opposite is true for the super-efficiency model. Thus, this study supplements the

undesirable output SBM model with the undesirable output super-efficiency SBM model.

The formulation of low-carbon strategies for regions or industries must be based on mea-

surements of either the total amount or efficiency of carbon emissions. Index decomposition

analysis (IDA), structural decomposition analysis (SDA) and stochastic impacts by regression

on population, affluence, and technology (STIRPAT) were used to analyze the factors that

determine total carbon emissions [26–28]. The factors that affect CEE was revealed by
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ordinary least squares (OLS), the spatial Durbin model, and the Tobit regression model [29,

30]. In terms of factor selection, economic growth, industrial structure, energy structure, inno-

vation level, and foreign investment was mostly considered. Since CEE values are truncated

data, and ordinary OLS models do not take the efficiency values as a finite dependent variable,

so the regression results are biased and inconsistent. The Tobit model is able to handle contin-

uous response variables with upper or lower bounds, which makes it more suitable for study-

ing the factors affecting CEE.

With the increasingly serious problem of climate change, predicting carbon emissions has

become a topic of global significance. Most prediction models in early studies mainly relied on

statistical methods, such as regression analysis and time series analysis [31, 32]. However,

these methods have limitations in dealing with nonlinear and complex causal relationships. To

solve this problem, machine learning and artificial intelligence technology have been applied

to predict carbon emissions. Zhang proposed a carbon emission prediction model based on

deep learning [33], which can effectively handle nonlinear relationships and high-dimensional

data. Yin predicted China’s carbon emissions based on a gray prediction model [34], revealing

that China’s carbon emissions are closely tied to economic growth and energy consumption,

and industrial restructuring is an important means to reduce carbon emissions. Karamouz

constructed a system dynamics model to simulate the feedback relationship between the socio-

economic system and the climate system and predicted carbon emissions based on this model

[35]. Comparably, system dynamics has the advantage of simulating and analyzing the interac-

tions, feedback mechanisms, nonlinear effects among the factors influencing carbon emis-

sions, and analyze the impacts of initiatives to minimize them.

Jiangsu is an economically developed province in eastern China with an advanced logis-

tics cluster that spans across multiple industries. In 2020, the province’s total social logistics

amounted to 32.88 trillion-yuan, accounting for approximately 11% of the national, which

shows that the logistics in Jiangsu are at the forefront in China. In such situations, the LCE

in Jiangsu remains high, which seriously affects ecological environment and hinders meet-

ing the province’s “carbon peaking and carbon neutrality goals.” Therefore, it is necessary

to account and predict the LCE in Jiangsu and formulate adaptive low-carbon strategies for

it.

Scholars generally limit the research object to national or provincial areas due to data avail-

ability. The level of economic development varies across municipalities, and the implementa-

tion of the same development policy may be deviated. Meanwhile, most scholars tend to select

the variables affecting CEE from the perspective of the economy, energy, technology, and

industry and seldom consider the impact of ecological indicators. Therefore, it is urgent to fur-

ther study LCE from the following aspects: (i) analysising of LCE from a municipal perspec-

tive; (ii) including ecological indicators in the exploration of LCEE influencing factors; (iii)

constructing a system dynamics model of LCE.

This study takes all 13 cities in Jiangsu as the research obiects, mainly to achieve the follow-

ing goals: (i) integrate the logistics carbon footprint and carbon emission efficiency accounting

model; (ii) propose a LCE prediction method based on the system dynamics model; (iii) ana-

lyze the influence factors of the efficiency of LCE; (iv) explore the feasible low-carbon strategies

for logistics. Therefore, this study first introduces the research progress and development

dilemma and investigates the development of logistics and the carbon emissions of study area.

Then,constructing the technical framework of LCE composed of three parts: measurement,

prediction, and strategy. Next, we conduct an empirical study of Jiangsu. In the discussion, we

discuss the drivers of LCE efficiency, the evolution trend of LCE in two scenarios, and formu-

late low-carbon development strategies for logistics.
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2. Data and methodology

2.1 Case summary

Jiangsu is a developed coastal province in eastern China. In 2022, the province’s GDP reached

12.29 trillion yuan, the second highest in the country. The total value of foreign trade imports

and exports was 5.45 trillion yuan. Logistics has supported the growth of Jiangsu’s economy.

In 2021, the four modes of transportation (highway, railway, water, and air) completed a total

of 3.07 billion tons of freight volume and 1244.17 billion tons/km of freight turnover. The out-

put value of the transportation, warehousing and post and telecommunications(P&T) industry

reached 346.62 billion yuan. At the same time, the total energy consumption of Jiangsu was

326.73 million tons of standard coal, and the energy consumption of the transportation, ware-

housing and post and telecommunications industry was 26.07 million tons of standard coal.

Among them, the total energy consumption and carbon emissions of highway and waterway

transportation in Jiangsu reached 15.62 million tons of standard coal and 27.67 million tons of

carbon dioxide, respectively. Therefore, the total carbon emissions of the Jiangsu are the third

highest in the country. The contradiction between the development of logistics and carbon

emission constraints in Jiangsu has become increasingly acute, and there is an urgent need for

low-carbon strategies.

2.2 Technical framework of LCE

The technical framework of logistics carbon emissions constructed in this study consists of

three parts: (i) carbon emission measurement; (ii) carbon emission prediction; and (iii) low-

carbon strategy (see Fig 1).

2.2.1 Carbon emission measurement. (1) Carbon footprint accounting model. This study

uses the IPCC emission factor method to measure the carbon footprint of logistics (LCF). The

following eight core energy sources are involved in logistics: raw coal, gasoline, kerosene, die-
sel, fuel oil, liquefied petroleum gas, natural gas and electricity. Using the method proposed

by Shan. [36], the provincial energy consumption data were converted to the city scale using

GDP. Based on energy consumption data and the conversion coefficient of standard coal and

carbon conversion reference coefficient (see S1 File), the LCF is calculated by the following

equation:

Ec;i ¼ Ep;i � m ¼ Ep;i �
Gc
Gp

LCF ¼
X

i¼1

ðEc;i � εi � yiÞ � l�
44

12

ð1Þ

where Ec,i and Ep,i are the i-th total energy consumption at municipal and provincial levels,

respectively, 104 tons; μ is the ratio of municipal logistics output value (Gc) to provincial logis-

tics output value (Gp); εi is the conversion coefficient of standard coal for the i-th energy, kg

standard coal/kg; θi is the carbon conversion reference coefficient for the i-th energy, kg/kg

standard coal; λ is the correction factor; 44/12 is the conversion factor of carbon atoms to car-

bon dioxide.

(2) Carbon emission efficiency accounting model. To conduct a global comparative analysis

of carbon emission efficiency of the logistics (LCEE), this study uses a combination of DEA

and super-DEA models for measurement. Because the research samples in the actual logistics

generally have non-constant returns to scale, the DEA model based on variable returns to scale

(VRS) is chosen. Therefore, this study uses the SBM model to measure the static LCEE. Each

DMU contains three elements: (i) input, (ii) desirable output, and (iii)undesirable output [37].
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To further analyze these effective DMUs, this study applies the undesirable output SBM model

combined with Super-SBM model. The practitioners and the fixed assets investment of logis-

tics are selected as input indicators, the logistics output value as the desirable output indicator,

and the LCF as the undesirable output indicator. Then, this study constructs the Global Malm-

quist-Luenberger(GML) index based on the SBM model and decomposes the index into the

technical efficiency change index(TECI) and technical change index(TCI) to analyze dynamic

efficiency of LCE [38].

Undesirable output SBM model and Super-SBM model

Suppose there are a total of NDMUs, each representing a city (n = 1,2,3. . .N), and for each

DMUn, there areM input variables, P desirable output variables, and Q undesirable output

variables. Define the input vector X, the desirable output vector Y, and the undesirable output

vector Z:

X ¼ ðxnÞ 2 R
M�N ;Y ¼ ðynÞ 2 R

P�N ;Z ¼ ðznÞ 2 R
Q�N ð2Þ

Fig 1. Technical framework of LCE.

https://doi.org/10.1371/journal.pone.0298206.g001
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Let X> 0, Y> 0 and Z> 0. Then the production possibility set C is

C ¼ fðx; y; zÞjxm �
XN

n¼N

xmnln; yp �
XN

n¼N

ypnln; zp �
XN

n¼N

zqnlng

s:t:xmn � 0; ypn � 0; zpn � 0; ln � 0

ð3Þ

where xmn is them-th input of city n; ypn is the p-th desirable output of city n; zqn is the q-th unde-

sirable output of city n; and λn is the weight of city n, indicating the linear combination coefficient

of the decision unit on the frontier; The three inequalities in C indicate that the actual input level

and the actual undesirable output are greater than the frontier level and the actual desirable output

level is less than the frontier level, respectively. The DMU (x0, y0, z0) is evaluated using a non-ori-

ented SBM model for undesirable outputs assuming the undesirable outputs is VRS:

r ¼ min
1 �

1

M

XM

m¼1

sxm
xm0

1þ
1

P þ Q
ð
XP

p¼1

syp
yp0
þ
XQ

q¼1

szq
zq0
Þ

s:t: xm0 ¼
XN

n¼1

xmnln þ s
x
m; 8m

yp0 ¼
XN

n¼1

ypnln � s
y
p; 8p

zq0 ¼
XN

n¼1

zqnln þ s
z
q; 8q

sxm � 0; syp � 0; szq � 0; ln � 0;
XN

n¼1

ln ¼ 1; 8m; p; q; n

ð4Þ

DMU(x0,y0,z0) is evaluated using a non-oriented Super-SBM model with undesirable outputs:

r ¼ min
1þ

1

M

XM

m¼1

sxm
xm0

1 �
1

P þ Q
ð
XP

p¼1

syp
yp0
þ
XQ

q¼1

szq
zq0
Þ

s: t:xm0 �
XN

n¼1;6¼0

xmnln � s
x
m; 8m

yp0 �
XN

n¼1;6¼0

yqnln þ s
y
p; 8p

zq0 �
XN

n¼1;6¼0

zqnln � s
z
q; 8q

1 �
1

P þ Q
ð
XP

p¼1

syp
yp0
þ
XQ

q¼1

szq
zq0
Þ > 0

sxm � 0; syp � 0; szq � 0; ln � 0;
XN

n¼1

ln ¼ 1; 8m; p; q; n

ð5Þ
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where 1

M

XM

m¼1

sxm
xm0

is the average value of the input redundancyM as a proportion of actual input;

1

PþQ ð
XP

p¼1

syp
yp0
þ
XQ

q¼1

szq
zq0
Þ is the average value of the output shortfall of P+Q as a proportion of the

actual output; xm0; yp0; zq0 are them-th input, the p-th desirable output and the q-th undesirable

output, respectively; sxm; s
y
p; s

z
q are the slack variables for them-th input, the p-th desirable output

and the q-th undesirable output, respectively; ρ is a relative value, under the SBM model: when ρ
= 1, it indicates that the point is above the frontier surface, that the carbon efficiency is effective,

and that the city brings more output and less carbon emissions for a given input compared to

other cities; Conversely, when ρ<1, it indicates that the point is below the frontier surface and the

carbon emission efficiency is ineffective or weakly effective; while under Super-SBM: when ρ = 1,

it indicates that the carbon emission efficiency is ineffective or weakly effective; when ρ>1, it indi-

cates that the carbon emission efficiency is effective.

② GML Index

Based on the SBM model, the GML index is further used to analyze the dynamic changes of

CEE, which can be expressed as:

GMLGc ðx
t; yt; zt; xtþ1; ytþ1; ztþ1Þ ¼

EGc ðx
tþ1; ytþ1; ztþ1Þ

ECc ðxt; yt; ztÞ

ECc ¼
ETc ðx

tþ1; ytþ1; ztþ1Þ

ETc ðxt; yt; ztÞ

TCc ¼
E
c Gðx

tþ1; ytþ1; ztþ1Þ
�

Ec
Tðxtþ1; ytþ1; ztþ1Þ

E
c Gðx

t; yt; ztÞ
�

Ec
Tðxt; yt; ztÞ

� �

ð6Þ

where GMLGc is the change in the GML index of the DMU from year t to t+1; EGc ; E
T
c denote the

SBM directional distance functions based on the global and current production sets, respec-

tively; ECc is the technical efficiency change index; When ECc>1, it means that the DMU is

closer to the current frontier in period t+1 than in period t, i.e., more efficient; TCc is the tech-

nological change index, when TCc>1, it means that DMU is closer to the global frontier in

period t+1 than in period t, i.e., technological progress.

2.2.2 Carbon emission prediction method based on system dynamics model. (1) System
boundary and subsystem. The system dynamics (SD) model can depict and analyze the interac-

tions, feedback mechanisms and nonlinear effects among the factors influencing carbon emis-

sions, as well as analyze the impacts of various carbon emission control schemes. Confirming

the system boundary is the first step in establishing the SD model. In this study, the system

boundary of LCE is determined as the whole Jiangsu, the starting point is 2013, the end point

is 2030, and the time step is set to one year.

Through Vensim, this study constructs a LCE SD model including an economy subsystem,

population subsystem, energy subsystem and environment subsystem. The four subsystems

are interrelated, and there is a causal relationship between them. S2 File shows the variables

contained in the four subsystems.

(2) System causality diagram. This study illustrates three causal feedback loops to construct

the system causality diagram, S3 File.

(3) Flow chart of the system. According to the causal diagram of the system, the characters

of each variable and the relationship between them, the flow chart of the LCE system is drawn

(see Fig 2). The model contains 48 variables, including two horizontal variables, two rate vari-

ables, two constants and 42 auxiliary variables. The simulation of the system is divided into
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two stages. The first stage (2013–2020) is used to test and debug the simulation, and determine

the parameters of the system. The second stage (2021–2030) is used to predict LCE. Based on

the validity of the model, it is simulated with a step of 1 year.

The parameters of the system variables are set mainly through ratio analysis, direct assign-

ment, literature references and table functions. For space reasons, the main model parameter

equations are placed in S4 File, taking Suzhou city as an example. The annual GDP growth

rate is set as 5.5% for 2021–2025 and 5.0% for 2026–2030 in accordance with the " The Four-

teenth Five-Year Plan for National Economic and Social Development of Jiangsu Province and

the Outline of Visionary Goals for 2035", while the remaining variables are calculated at the

average annual growth rate for 2013–2020.

2.3 Data sources

China has not yet defined logistics as an separate industry in its own right. In fact, transporta-

tion, warehousing, P&T are the core components of logistics activities. Meanwhile, according

to the "China Tertiary Industry Statistical Yearbook", the total added value of these three

industries accounts for more than 83% of the total added value of logistics. Therefore, this

study selects the relevant statistical data from these three industries to represent logistics in

Jiangsu. The detailed description and source of the data are shown in Table 1.

3. Results

3.1 Carbon emissions measurement of logistics in Jiangsu

3.1.1 LCF in Jiangsu. The city-level LCF in Jiangsu from 2013 to 2020 is shown in Fig 3.

All 13 cities could be divided into three clusters. The high carbon emission cluster consistently

comprises Xuzhou, Suzhou and Nanjing. On average, these three cities account for approxi-

mately 40% of the LCF of Jiangsu. The medium carbon emission cluster comprises Zhenjiang,

Fig 2. Flow chat of system of LCE.

https://doi.org/10.1371/journal.pone.0298206.g002
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Changzhou, Taizhou, Wuxi and Nantong. The low carbon emissions cluster comprises Yan-

cheng, Huai’an, Lianyungang, Yangzhou and Suqian.

3.1.2 LCEE in Jiangsu. (1) Static efficiency. The static LCEE in Jiangsu from 2013 to 2020

is shown in Fig 4. The average value was 0.63, which was considered moderate. The values of

the central region (including Yangzhou, Taizhou, and Nantong) were higher than those of the

northern region (including Huai’an, Yancheng, Suqian, Xuzhou, and Lianyungang), and also

higher than those of the southern region (including Suzhou, Nanjing, Wuxi, Changzhou, and

Zhenjiang). The growth rates of the central, northern, and southern regions were 21.43%,

-4.19% and 50.65% respectively. In terms of cities, the static efficiencies of Yangzhou, Huai’an,

Yancheng and Lianyungang were not effective, with Huai’an and Lianyungang consistently

ranking last. The top three cities in terms of average annual static efficiency are Suqian,

Xuzhou and Nantong. Among them, Xuzhou is the city with the most years in which the

LCEE has reached an effective level.

Then, we analyze the slack variables of cities with ineffective LCEE. The existence of a slack

variable indicates that this indicator is the key point for the improvement of the LCEE of a

city, and the value of the slack variable indicates the gap that can be improved. Taking 2020 as

Table 1. Data source.

Date Source Unit

Total consumption of eight types of energy in

Jiangsu

China Energy Statistics Yearbook (2014–
2021)

104 tons

Gross Domestic Product in Jiangsu Jiangsu Statistical Yearbook (2014–2021) 108 yuan

Gross Domestic Product in each city Statistical Yearbook (2014–2021) by City
Per capita of GDP in each city 108 yuan /person

Tertiary industry output value in each city 108 yuan

Logistics output value in each city

Fixed assets investments of logistics in each city

Science and technology expenditure in each city

Environmental pollution control investment in each

city

Highway mileage in each city kilometers

Area in each city Square

kilometers

Total population in each city person

Urban population in each city

Size of the logistics practitioners in each city

Number of college students per 10,000 in each city

https://doi.org/10.1371/journal.pone.0298206.t001

Fig 3. LCF in Jiangsu from 2013 to 2020.

https://doi.org/10.1371/journal.pone.0298206.g003
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an example, see Table 2. For the desirable output, only Suqian has a slack variable, which indi-

cates that the logistics output value in Suqian still has room for growth, while the remaining

cities have reached the optimal under the existing conditions. Wuxi, Zhenjiang, Taizhou and

Xuzhou’s practitioners and fixed assets investments of logistics had slack variables, indicating

that these cities have redundancy in these two aspects. For the undesirable output (LCE),

Suzhou, Nanjing, Changzhou, Huai’an and Lianyungang showed slack variables, indicating

that there remain carbon emission reductions of logistics to be enhanced in these five cities.

Among them, Nanjing, with the largest slack variable value, should have the largest reduction

scale of LCE.

(2) Dynamic efficiency. To study the dynamic change pattern of LCEE and its decomposi-

tion terms in 13 cities in Jiangsu, TECI and TCI of each city were calculated by using the GML

index, as shown in Tables 3 and 4. The TECIs of Suzhou, Changzhou, Zhenjiang, Nantong,

and Suqian were all equal to one in the study period, indicating that the fluctuations in LCEE

in these five cities are attributable to the TCI. The TCIs of Suzhou, Changzhou, and Zhenjiang

were greater than one in most years, indicating that these cities need to emphasize the opera-

tional logistics efficiency. While the TCIs of Nantong and Suqian were smaller than one in

most of the years, they need to devote themselves to improving efficiency and technology

simultaneously. The TECIs of Yangzhou, Huai’an, Yancheng, Lianyungang were greater than

one in most years, and the TCIs were less than one in most years, indicating that these four cit-

ies should focus on innovation of logistics technology.

Fig 4. LCEE in Jiangsu from 2013 to 2020.

https://doi.org/10.1371/journal.pone.0298206.g004

Table 2. Slack variable values of input-output indicators of logistics in Jiangsu.

Practitioners of logistics Fixed assets investments of logistics Logistics output value LCE

Suzhou 1.21 67.77 0.00 13.78

Nanjing 1.34 123.66 0.00 176.48

Wuxi 0.00 0.00 0.00 0.00

Changzhou 0.00 197.96 0.00 2.25

Zhenjiang 0.00 0.00 0.00 0.00

Yangzhou 0.79 175.88 0.00 0.00

Taizhou 0.00 0.00 0.00 0.00

Nantong 0.12 117.62 0.00 0.00

Huai’an 0.69 164.72 0.00 61.02

Yancheng 0.13 110.93 0.00 0.00

Suqian 0.13 141.66 0.29 0.00

Xuzhou 0.00 0.00 0.00 0.00

Lianyungang 1.27 18.92 0.00 48.29

https://doi.org/10.1371/journal.pone.0298206.t002
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3.2 Carbon emissions prediction of logistics in Jiangsu

3.2.1 Model calibration. Before the prediction, we tested the constructed SD model for

operation, sensitivity, and historical results. See S5 File.

3.2.2 Analysis of prediction results. The forecast results of LCE in 13 cities of Jiangsu

from 2021 to 2030 are shown in Table 5. According to the analysis of the prediction results, 13

cities in Jiangsu can be divided into three categories: (i) continuously rising cities (Suzhou,

Nanjing, Wuxi, Huai’an, Yancheng and Lianyungang), (ii) continuously declining cities

(Changzhou, Nantong, Suqian and Xuzhou), and (iii) fluctuating cities (Zhenjiang, Yangzhou

and Taizhou). From the perspective of LCE, Nanjing, Suzhou and Xuzhou still rank among

the top three in the province. However, since the LCE of Xuzhou has been decreasing year by

year since 2021, Nanjing will become the city with the largest LCE in Jiangsu by 2030. The

LCEs of Yangzhou and Suqian are consistently ranking last of Jiangsu, and Suqian is the city

with the smallest LCE in 2030.

Table 3. Technical efficiency change index.

2014/2013 2015/2014 2016/2015 2017/2016 2018/2017 2019/2018 2020/2019

Suzhou 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Nanjing 0.61 1.30 1.12 0.85 1.10 2.69 0.82

Wuxi 1.27 0.90 1.25 0.90 0.88 1.26 1.00

Changzhou 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Zhenjiang 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Yangzhou 1.33 0.86 1.05 1.05 1.31 0.74 1.15

Taizhou 0.97 0.94 1.10 1.00 1.00 1.00 1.00

Nantong 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Huai’an 0.96 1.48 1.08 1.24 0.78 1.05 1.12

Yancheng 1.18 0.99 0.89 1.00 1.07 1.27 1.00

Suqian 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Xuzhou 1.00 1.00 1.00 0.66 1.52 1.00 1.00

Lianyungang 0.73 1.26 1.50 2.14 1.00 0.53 1.87

https://doi.org/10.1371/journal.pone.0298206.t003

Table 4. Technical change index.

2014/2013 2015/2014 2016/2015 2017/2016 2018/2017 2019/2018 2020/2019

Suzhou 0.99 1.04 1.08 1.35 1.00 0.70 1.15

Nanjing 1.03 0.89 1.01 1.31 1.20 1.12 0.81

Wuxi 0.82 0.92 0.91 1.17 1.63 1.15 1.09

Changzhou 0.80 0.92 0.97 1.21 1.18 1.54 0.65

Zhenjiang 0.71 0.96 0.95 1.16 1.46 1.08 1.12

Yangzhou 0.87 0.83 0.98 1.35 1.29 0.75 0.87

Taizhou 0.91 0.99 1.00 1.01 1.49 1.44 1.00

Nantong 0.87 0.92 0.93 1.29 1.04 0.76 1.13

Huai’an 1.00 0.70 0.92 0.90 1.14 1.07 0.97

Yancheng 0.85 0.92 0.99 1.24 1.11 0.87 0.98

Suqian 1.00 0.72 0.88 1.26 1.25 1.00 0.64

Xuzhou 1.00 0.94 1.06 0.80 0.88 1.43 1.00

Lianyungang 1.03 0.72 0.81 0.52 1.19 2.27 0.74

https://doi.org/10.1371/journal.pone.0298206.t004
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4. Discussion

4.1 Analysis of the influencing factors of LCEE in Jiangsu

This study analyzes LCEE by selecting nine indicators from three aspects: economy, society

and ecology. The specific variable explanations are shown in Table 6. The selection of the first

several indicators can be confirmed by previous studies. For example, Sun found that eco-

nomic level, industrial structure, energy intensity and urbanization rate can affect the CEE of

resource-based cities [39]; Sun argued that degree of openness can negatively affect the CEE of

Chinese cities [40]. In the current research on CEE, scholars seldom take ecological factors

into account, so this study also selected the forestland area as one of the ecological indicators

to more comprehensively analyze the factors affecting LCEE.

Further analysis based on indicator selection. For economy: (i) economic development will

inevitably require energy consumption; (ii) industrial structure is one of the key factors that

affects CEE, there is no agreement on the positive or negative impact of industrial structure in

previous studies, thus this factor is a topic of scholarly debate; (iii) higher degrees of openness

to the outside world affects the increase in the level of domestic and foreign freight trade,

which leads to an increase in energy consumption. For society: (i) the fixed assets utilization

rate and the infrastructure level in the logistics will increase logistics efficiency, thus affecting

the LCEE; (ii) the high urbanization rate and the education penetration rate may, on the one

Table 5. Predicted results of LCE in Jiangsu (2021–2030).

104 tons 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Suzhou 595.68 604.81 613.14 622.29 629.62 636.60 643.26 648.33 653.44 658.76

Nanjing 699.73 716.37 730.14 743.51 755.45 767.53 779.72 788.79 800.41 810.67

Wuxi 205.20 210.07 214.71 219.65 224.34 228.78 232.31 236.31 240.05 244.37

Changzhou 184.17 182.19 180.47 178.65 176.89 174.79 172.40 169.75 166.93 164.46

Zhenjiang 226.46 228.12 227.00 229.11 236.31 243.07 249.42 255.74 262.02 268.37

Yangzhou 94.22 92.41 90.31 87.95 85.64 82.97 82.84 85.26 83.16 80.48

Taizhou 174.14 174.65 174.97 175.16 175.26 175.35 175.04 174.59 174.05 173.39

Nantong 154.53 151.19 147.86 144.69 141.43 138.43 134.73 131.48 127.97 124.65

Huai’an 147.00 152.09 157.50 163.00 168.83 174.78 180.60 186.48 191.98 192.81

Yancheng 122.95 126.00 129.10 131.88 134.74 137.27 139.33 141.08 143.74 146.18

Suqian 22.75 21.47 20.18 19.14 17.95 16.86 15.77 14.73 13.70 12.78

Xuzhou 582.81 555.69 530.16 504.51 480.44 467.59 449.07 431.00 413.63 396.44

Lianyungang 147.88 151.72 155.65 159.50 163.23 167.26 170.58 174.24 177.59 181.33

https://doi.org/10.1371/journal.pone.0298206.t005

Table 6. Influencing factors of LCEE.

Category Symbol Indicator Explanation of indicator Unit

Economy EL Economic level Per capita of GDP 108 yuan

IS Industry structure The proportion of logistics output value to tertiary industry output value %

O Degree of opening to the outside world The proportion of total import and export trade to GDP %

Society FAU Utilization rate of fixed assets The ratio of logistics output value to fixed asset investment of logistic -

ISL Infrastructure level The ratio of road miles to area -

UR Urbanization rate The proportion of urban population to population %

EP Education penetration rate Number of college students per 10,000 people person

Ecology EI Energy intensity energy consumption per logistics output value tons / 104 yuan

ECO Ecological environment The area of forest land Square kilometers

https://doi.org/10.1371/journal.pone.0298206.t006
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hand, lead to technological advancements, and on the other hand, lead to higher energy con-

sumption. For ecology: (i) energy consumption is one of the most direct drivers of carbon

emissions, and energy intensity, as a measure of energy consumption per unit, becomes the

key to LCEE; (ii) forestland is the largest proportion of the land carbon sink, so it is also

included as a variable. Synthesizing the above analysis, the nine influencing factors were cho-

sen to analyze LCEE.

Due to the different calculation methods and units of each indicator, the explained variables

were normalized using the maximum-minimum standardization to avoid the standard devia-

tion caused by the inconsistent dimension, according to the following Formula (7):

x0it ¼
xit � minðxÞ

maxðxÞ � minðxÞ
ð7Þ

Since the efficiency values of DEA model belong to the restricted explained variables, the

panel Tobit regression model with the maximum likelihood method was used to carry out the

regression analysis to avoid the dispersion of the efficiency values and the biased situation of

parameter estimation, who formula shown below (8):

Yit ¼
b0 þ

XT

t¼1

btx
0

it þ εit Yit > 0

0 Yit � 0

ð8Þ

8
>><

>>:

Based on the above formulation, the corresponding Tobit regression model was developed

below (9):

Yit ¼ b0 þ b1ELit þ b2ISit þ b3Oit þ b4FAUit þ b5ISLitþ

b6URit þ b7EPit þ b8EIit þ b9ECOit þ εit
ð9Þ

where Yit is an explained variable indicating LCEE in city i in year t; β0 is a constant term; xit is

the original value of explanatory variable (influencing factor) in city i in year t; x0it is the nor-

malized value of explanatory variable; βt is the regression coefficient of explanatory variable xit,
and t is the number of explanatory variables (t = 1,2,3. . ., T); εit is a disturbance term, and εit ~

(0, σ2).

With the help of Stata software, the original data of the selected indicators were subjected to

maximum-minimum normalization, and according to the LR test results, strongly rejecting

“H0:σu = 0”, the random-effects panel Tobit regression model should be selected for estima-

tion, and the regression results are shown in Fig 5 with the left imputation point at zero and

the right imputation point at infinity:

The economic level (R = 0.750), fixed asset utilization rate (R = 0.695) and energy intensity

(R = -0.116) are significantly correlated with LCEE at a 1% confidence level. This confirms

that a developed economy and high fixed asset utilization rate have a positive effect on improv-

ing LCEE, but a low energy utilization rate has an inhibitory effect on LCEE.

The ecological environment and education popularization are significantly correlated with

LCEE at the confidence level of 5%. Among them, the ecological environment is positively cor-

related (R = 0.501). This enlightens us that the improvement of ecosystem quality, including

the expansion of forestland area, will promote the absorption of CO2, thereby alleviating the

pressure on LCE control. Education popularization is negatively correlated (R = -0.596). This

implies that the educated population has not resulted in sufficiently skilled labor force to the

logistics in Jiangsu to improve LCEE.
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4.2 Analysis of the carbon emission evolution trend of logistics in Jiangsu

based on scenario simulation

In this study combined the SD model with the scenario analysis, then a total of two scenarios,

baseline and low-carbon, are set to analyze the future LCE simulations. The use of forecasting

in combination with scenario simulation is now widely used in various industry sectors, e.g.,

Huo used SD and scenario analysis to set up a baseline and a low-carbon scenario to simulate

the carbon emissions of commercial buildings in China until 2060 [41]; Similarly, Xiao used

the STIRPAT with scenario analysis to study carbon emissions during the operation of a uni-

versity building in Jiangxi, and set three scenarios of baseline, low carbon, and ultra-low car-

bon for analysis [42]. However, most scholars only choose a research object for prediction.

Different from other studies, the logistics of 13 cities in Jiangsu were chosen by this study, then

use the SD model to simulate the LCE of 13 cities in Jiangsu in two scenarios one by one.

The key of scenario simulation lies in the regulatory parameters. This study analyzed in

term of economy, energy, and environment were based on the LCE system flow chart. For

economy, the annual GDP growth rate was chosen since GDP is the most representative eco-

nomic indicator. For energy, optimizing the energy structure can effectively reduce LCE, thus

the proportion of each energy was chosen. For environment, in addition to LCE, another

important indicator in the system flow diagram is logistics carbon emission reduction (LCER),

and by backward reasoning of this variable, environmental pollution control investment was

included.

The purpose of this study is to carry out LCER actions. LCE and LCER are the two core

indicators of the system flow chart and they can best reflect the differences between the two

scenarios. The former is an indicator representing the current status of LCE, while the latter is

a quantitative indicator representing the measures taken by the logistics to reduce carbon

emissions. Therefore, LCE and LCER are chosen as the two indicators for analyzing the evolu-

tionary characteristics:

i. In this scenario, logistics continues to maintain the current development trend based on

the corresponding policies in Jiangsu, which is an annual GDP growth rate that is consistent

with the "The Fourteenth Five-Year Plan for National Economic and Social Development of

Jiangsu Province and the Outline of Visionary Goals for 2035". Both the energy structure and

the Share of environmental pollution control investment have evolved at historical average

annual growth rates. This is the scenario explored in the previous Section 3.2.

Fig 5. Regression results by Tobit model.

https://doi.org/10.1371/journal.pone.0298206.g005
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ii. Low-carbon scenario. In this scenario, logistics tended toward ecological protection,

which slows GDP growth, increases the proportion of clean energy use, and increases environ-

mental pollution investment. The specific setting of the scenario parameters is shown in

Table 7.

The LCEs under the low-carbon scenario from 2021–2030 are shown in Table 8. Compared

with the baseline scenario, it decreased by an average of 13.28%, with the largest average

decrease in Yancheng (13.79%). Table 9 is the comparative data of LCER in 13 cities of Jiangsu

under the two scenarios. Under the low-carbon scenario, the LCER of Jiangsu increased by

207.96% on average compared with the baseline scenario. Among them, the least average

increase was seen in Suzhou (106.72%) and the largest increase was seen in Taizhou (433%).

Comparing LCE and LCER under different scenarios in different cities, the comparison fig-

ures were shown in S6 File. The direct factor affecting LCE lies in the energy consumption

and energy structure in the logistics, and the energy consumption is determined by the energy

intensity and the logistics output value. The energy intensity and the logistics output value

vary from city to city, resulting in LCE in different cities under the low-carbon scenario has

experienced different development trends. LCER can be traced back to environmental pollu-

tion control investment. The share of environmental control investment in the 13 cities is dif-

ferent, leading to different trends in LCER in each city under the low-carbon scenario.

The LCE of Nanjing continues to rise under the baseline scenario, and reaches the top of

the province in 2030. Therefore, Nanjing is used as an example to conduct a comparative anal-

ysis at the city scale. Fig 6A shows the LCE between two scenarios. Under the baseline scenario,

Table 7. Scenario parameters.

Scenario Indicators

Annual growth rate of GDP Energy Structure Share of environmental pollution control

investment

Baseline

scenario

5.5% growth rate in 2021–

2025 and 5.0% growth rate in

2026–2030

According to the historical average annual growth rate According to the historical average annual

growth rate

Low Carbon

Scenario

4.5% growth rate in 2021–

2025 and 4.0% growth rate in

2026–2030

Compared to the baseline scenario, the share of gasoline and diesel

decreased by 5%, the share of kerosene decreased by 2%, the share of

fuel oil decreased by 1%, and the share of natural gas increased by

13%

Compared to the baseline scenario, the share of

environmental pollution investment increased

by 0.2%

https://doi.org/10.1371/journal.pone.0298206.t007

Table 8. LCE under low-carbon scenario (2021–2030).

104 tons 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Suzhou 528.33 533.23 531.49 542.77 546.53 550.11 553.49 555.60 557.87 560.44

Nanjing 620.61 631.72 633.49 649.41 656.91 664.63 672.50 677.79 685.33 691.79

Wuxi 182.00 185.22 186.13 191.59 194.74 197.70 199.89 202.52 204.95 207.90

Changzhou 163.35 160.70 156.57 156.01 153.77 151.31 148.64 145.80 142.87 140.29

Zhenjiang 200.86 202.82 200.19 202.19 204.72 209.56 214.04 218.51 222.98 227.51

Yangzhou 83.56 80.71 76.87 75.85 78.15 77.27 74.37 71.58 68.73 66.06

Taizhou 154.45 154.07 151.84 153.02 152.43 151.87 151.01 150.06 149.07 148.03

Nantong 137.06 133.40 128.35 126.44 123.06 119.96 116.30 113.08 109.68 106.49

Huai’an 130.37 134.58 137.50 143.63 148.47 153.40 155.80 155.02 154.31 169.24

Yancheng 109.04 110.64 111.02 113.75 115.78 117.62 119.34 120.89 122.70 124.34

Suqian 20.17 18.95 17.52 16.73 15.63 14.62 13.62 12.68 11.75 10.93

Xuzhou 516.91 491.01 461.62 443.01 419.98 401.22 386.14 369.43 353.21 337.34

Lianyungang 131.16 133.86 135.10 139.38 142.02 144.95 147.25 149.86 152.22 154.93

https://doi.org/10.1371/journal.pone.0298206.t008
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the average annual growth rate of LCE in Nanjing is 1.65%, and the growth rate from 2030 to

2021 is 15.86%. Under the low-carbon scenario, the average annual growth rate of LCE is

1.22%, and the growth rate from 2030 to 2021 is 11.47%. After 2021, the LCE under the low-

carbon scenario will be reduced by 1 million tons compared with the baseline scenario, and

the growth rate will be smaller. Fig 6B shows the LCER between two scenarios. Under the low-

carbon scenario, the LCER in Nanjing increased by an average of 7.06×104 tons compared

with the baseline scenario. The average annual growth rate of the carbon emission reduction

increased from 6.18% to 11.12%, and the growth trend was steeper. The above results show

that the annual growth rate of GDP, energy structure and proportion of investment in envi-

ronmental pollution control have a positive effect on energy conservation and emission reduc-

tion, and the low-carbon scenario set in this study is conducive to the reduction of LCE in

Jiangsu.

4.3 Low-carbon strategy of the logistics in Jiangsu

4.3.1 Build a city “carbon bank”. The results show that improving the eco-environment

positively contributes to LCEE. The delay of the carbon sink construction is one of the impor-

tant reasons behind the enormous carbon emissions of Jiangsu. Actually, Jiangsu, with its

diversified ecological elements, has certain advantages in the construction of city “carbon

Table 9. The carbon emission reduction of logistics under two scenarios (2021–2030).

Baseline scenario/104 tons 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Suzhou 3.95 4.61 5.32 6.12 7.00 8.00 9.09 10.31 11.65 13.16

Nanjing 3.94 4.11 4.34 4.62 4.94 5.28 5.63 6.00 6.37 6.76

Wuxi 0.97 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.97

Changzhou 0.52 0.52 0.52 0.52 0.53 0.53 0.53 0.53 0.53 0.53

Zhenjiang 0.36 0.37 0.42 0.49 0.58 0.69 0.82 0.98 1.16 1.38

Yangzhou 0.36 0.41 0.53 0.76 1.12 1.68 2.53 3.81 5.74 8.63

Taizhou 0.26 0.23 0.22 0.20 0.19 0.18 0.17 0.16 0.15 0.15

Nantong 0.34 0.34 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41

Huai’an 0.09 0.09 0.09 0.09 0.10 0.11 0.11 0.12 0.13 0.14

Yancheng 0.29 0.25 0.23 0.22 0.21 0.20 0.20 0.19 0.18 0.18

Suqian 0.29 0.29 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28

Xuzhou 1.90 1.67 1.56 1.52 1.52 1.54 1.55 1.57 1.59 1.60

Lianyungang 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.22 0.21

Low Carbon Scenario/104 tons 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Suzhou 6.30 9.53 11.88 13.83 15.63 17.44 19.27 21.19 23.24 25.47

Nanjing 6.45 8.78 10.29 11.40 12.32 13.16 13.93 14.67 15.41 16.16

Wuxi 1.57 2.02 2.28 2.44 2.54 2.62 2.67 2.71 2.75 2.78

Changzhou 0.96 1.36 1.59 1.72 1.81 1.88 1.92 1.96 1.99 2.03

Zhenjiang 0.72 0.91 1.04 1.19 1.36 1.55 1.76 2.00 2.27 2.58

Yangzhou 0.64 0.91 1.22 1.64 2.21 3.01 4.13 5.70 7.95 11.18

Taizhou 0.57 0.81 0.94 1.00 1.04 1.06 1.07 1.07 1.08 1.08

Nantong 0.78 1.22 1.48 1.65 1.77 1.86 1.94 2.01 2.08 2.14

Huai’an 0.17 0.25 0.30 0.33 0.36 0.39 0.41 0.44 0.46 0.48

Yancheng 0.58 0.72 0.80 0.84 0.87 0.89 0.90 0.91 0.91 0.92

Suqian 0.45 0.56 0.62 0.66 0.68 0.70 0.71 0.71 0.72 0.72

Xuzhou 3.70 4.56 5.07 5.42 5.70 5.93 6.12 6.28 6.44 6.59

Lianyungang 0.50 0.65 0.73 0.76 0.77 0.77 0.77 0.76 0.75 0.74

https://doi.org/10.1371/journal.pone.0298206.t009
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bank”. Increasing the establishment of city “carbon banks” will help to improve the ecological

environment and enhance the attractiveness of cities, thereby attracting more talent and

investment. Therefore, Jiangsu should leverage the diversified ecological factors to build a city

“carbon bank”. First, the benefits of carbon sequestration should be incorporated as the stan-

dard of city eco-space planning. It is suggested to coordinate the optimal carbon sequestration

combination of forestland, cultivated land, wetlands, and ocean. Second, native species of

Jiangsu, such as purple heather, red cedar, and ginkgo biloba, should be planted to achieve car-

bon reduction and economic effects simultaneously. Third, the city carbon bank needs to be

equipped with a carbon sink monitoring mechanism to track its evolution in real time.

4.3.2 Construct a low-carbon transportation system. During the study period (2013–

2020), there was a redundancy in the fixed asset investment of the logistics in majority cities in

Jiangsu. Meanwhile, the fixed asset utilization rate was significantly positively correlated with

the LCEE. This indicated that the utilization efficiency of fixed assets of the logistics in Jiangsu

was far from the efficient status. Jiangsu should promote the construction of low-carbon trans-

portation system and reduce energy consumption throughout the life cycle of transportation

infrastructure. On the one hand, it can help to address the global climate change, and on the

other hand, it can improve transportation efficiency and urban spatial efficiency, as well as

promote the new energy vehicle industry and facilitate economic transformation and sustain-

able development. For freight transportation, Jiangsu may accelerate the construction of a low-

carbon multimodal transport system and promote “road-to-rail” and“road-to-water” in bulk

cargo and long-distance transport. For public transportation, Jiangsu could replace conven-

tional fuel vehicles with new energy vehicles to curb exhaust emissions effectively. For individ-

ual travel, Jiangsu should popularize low-carbon shared travel modes such as shared bicycles

or electric vehicles, and optimize urban slow-moving systems such as non-motorized lanes.

4.3.3 Cultivate logistics talent and innovate low-carbon logistics technology. The slack

variables of the logistics practitioners calculated in this study have redundancy, indicating that

the technical ability of the logistics practitioners in Jiangsu is not saturated. At the same time,

the TCI of the Jiangsu is mostly less than one. Therefore, Jiangsu must vigorously cultivate

professional modern logistics talent and innovate low-carbon logistics technology. The former

may improve the quality and efficiency of logistics services; the latter could accelerate the

green development of the logistics and promote the transformation of traditional logistics. As

the main generator of logistics professionals, universities could improve training modes by

teaching basic theoretical knowledge related to low-carbon logistics and training in operating

skills of green logistics facilities and equipment. Meanwhile, the government can guide logis-

tics enterprises to expand the recruitment scale of graduate major in low-carbon logistics by

preferential policies. Logistics enterprises could integrate artificial intelligence, blockchain,

Fig 6. Comparison of trends in the two scenarios (Nanjing).

https://doi.org/10.1371/journal.pone.0298206.g006
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cloud computing, big data, 5G to build a regional cooperation platform to foster information

exchange and collaboration between supply chain entities.

4.3.4 Establish a provincial integrated logistics system. There is marked spatio-temporal

heterogeneity in the level of the logistics and LCF in all 13 cities of Jiangsu. Provincial inte-

grated logistics systems are suitable for vast and prosperous economies area, it is conducive to

the optimization and reallocation of resources, the formation of industrial agglomeration

effects, the improvement of provincial logistics operation efficiency, and the cooperation of

inter-provincial trade. Therefore, Jiangsu could adhere to establish an integrated provincial

logistics system. As a closely linked and highly integrated spatial geographical unit, the metro-

politan circle is a prerequisite for developing an integrated provincial logistics system. Each

city should focus on leveraging its respective advantages, and serve as a logistics hub according

to its own logistics function, driving the synergistic operation of the provincial logistics

system.

4.3.5 Implement differentiated low-carbon logistics policies. All 13 cities in Jiangsu can

be categorized into high-carbon, medium-carbon, and low-carbon cities based on the level of

LCF in this study. The implementation of differentiated low-carbon logistics policies could

better fulfill the needs of different regions and logistics enterprises, and improve the operability

and flexibility of policy. First, high-carbon cities are encouraged to adopt energy-efficient

logistics technologies and increase the utilization of renewable energy by improving the effi-

ciency of power generation equipment and developing energy storage technologies. Second,

medium-carbon cities can gradually implement the decarbonization of logistics while expand-

ing the scale of the logistics. Specifically, they should gradually adopt clean energy instead of

traditional energy to reduce their dependence on high-carbon energy. At the same time, this

type of city can make up the space for logistics development in order to balance the develop-

ment of regional logistics. Finally, low-carbon cities should fully utilize their remaining carbon

capacity. On the one hand, it may continue to maintain and increase the carbon sink. On the

other hand, it could undertake more logistics business to share the logistics pressure of

medium- and high-carbon cities, to achieve the ultimate goal of reducing the total amount of

LCE in the province.

4.4 Limitations

When calculating LCF, we cannot directly obtain the energy consumption data of each city

limited by the current data statistics and publication principles. Therefore, this study con-

structs a scale conversion index based on GDP and the logistics output values, which may lead

to a gap between the actual performance and calculation results in city scale studies. Then, it is

urgent to explore a more persuasive and operable method of transforming carbon emissions

from large scale to small or medium scale for a specific industry.

5. Conclusions

This study constructs a technical framework of LCE, and takes Jiangsu, China as an example

for empirical research: (i) results found that LCFs in Jiangsu are generally at a high level. In

particular, LCFs in Suzhou, Xuzhou, and Nanjing are severe; (ii) LCEE is at a medium level,

the efficiency values of the central region were higher than those of the northern and the

southern; (iii) the economic level, fixed asset utilization rate, energy intensity, ecological envi-

ronment, and education popularization are significantly correlated with LCEE; (iv) the low-

carbon scenario is helpful in alleviating the logistics carbon emission pressure of Jiangsu.

From the perspectives of carbon sink, transportation systems, professional training, low-car-

bon technological innovation and integration of regional logistics, the following
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countermeasures are provided for the low-carbon transformation of logistics in Jiangsu: (i)

build a city “carbon bank”; (ii) construct a low-carbon transportation system; (iii) cultivate

logistics talent and innovate low-carbon logistics technology; (iv) establish a provincial inte-

grated logistics system; (ⅴ) implement differentiated low-carbon logistics policies. It is

expected to provide valuable references for the improvement of logistics in Jiangsu, China.
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