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Abstract

Introduction

Hamstring strain injuries (HSI) and re-injuries are endemic in high-speed running sports.

The biceps femoris long head (BFlh) is the most frequently injured muscle among the ham-

strings. Structural parameters of the hamstring muscle are stated to be susceptible to strain

injuries at this location. This retrospective study targeted comparing the BFlh’s structural

parameters between previously injured and uninjured athletes.

Methods

Nineteen male athletes with previous BFlh strain injury history and nineteen athletes without

former lower extremity injury history were included in this study. Fascicle length, mid-muscle

belly and distal musculotendinous (MTJ) passive stiffnesses of the biceps femoris long head

(BFlh) were examined via b-mode panoramic ultrasound scanning and ultrasound-based

shear-wave elastography. Parameter comparisons of both legs within and between athletes

with and without injury history were performed.

Results

Comparison of the BFlh fascicle length between the injured leg of the injured group and the

legs of the controls revealed a trend to shorter fascicle lengths in the injured leg (p = 0.067, d

= -0.62). However, the mid-muscle belly passive stiffness of the BFlh was significantly

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0298146 February 26, 2024 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yagiz G, Fredianto M, Ulfa M, Ariani I,

Agustin AD, Shida N, et al. (2024) A retrospective

comparison of the biceps femoris long head

muscle structure in athletes with and without

hamstring strain injury history. PLoS ONE 19(2):

e0298146. https://doi.org/10.1371/journal.

pone.0298146

Editor: Esedullah Akaras, Erzurum Technical

University: Erzurum Teknik Universitesi, TURKEY

Received: October 17, 2023

Accepted: January 17, 2024

Published: February 26, 2024

Copyright: © 2024 Yagiz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: Research and Innovation Center of

Universitas Muhammadiyah Yogyakarta Indonesia

funded this study (funding code: 16/R-LRI/I/2023),

and Siloam Hospitals Yogyakarta supported the

study by providing their radiological assessment

unit for the measurements of this study. The

funders had no role in study design, data collection

https://orcid.org/0000-0002-9214-1948
https://orcid.org/0009-0001-6692-4922
https://doi.org/10.1371/journal.pone.0298146
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298146&domain=pdf&date_stamp=2024-02-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298146&domain=pdf&date_stamp=2024-02-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298146&domain=pdf&date_stamp=2024-02-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298146&domain=pdf&date_stamp=2024-02-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298146&domain=pdf&date_stamp=2024-02-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298146&domain=pdf&date_stamp=2024-02-26
https://doi.org/10.1371/journal.pone.0298146
https://doi.org/10.1371/journal.pone.0298146
http://creativecommons.org/licenses/by/4.0/


higher in the injured legs (p = 0.009, d = 0.7) compared with the controls. Additionally, the

distal MTJ stiffness was much higher in the previously injured legs compared with controls

(p < 0.001, d = 1.6).

Conclusions

Outcomes support the importance of BFlh properties related to stiffness, and fascicle length

for injury susceptibility in athletes. Future prospective studies should determine whether the

higher stiffness in the injured athletes is a cause or consequence of the HSI. Physical ther-

apy and rehabilitation programmes after HSI should focus on BFlh muscle properties i.e.,

elasticity and fascicle length for reducing re-injury and increasing sports performance.

1. Introduction

Hamstring strain injuries (HSI) are common in sports with requirements for high-speed run-

ning. A further problem with HSI is the high and severe reoccurrence of HSI [1], which could

indicate difficulty in rehabilitating the initial HSI effectively. HSI incidence has increased com-

pared with earlier epidemiologic data in various sports [1]. For example, 24% of all injuries

have been recorded as HSI in soccer nowadays [2]. Hence, scientists have focused on identify-

ing risk factors and developing an optimal prevention strategy for HSI over the last two

decades.

The late swing phase of running is often described as the most vulnerable time for HSI [3–

5]. During the late swing phase of running, the hamstrings produce eccentric contraction to

control the antagonists and decelerate the tibia [6]. At this moment, the biceps femoris long

head (BFlh) undergoes the greatest elongation among the hamstrings by reaching 110% of its

length [7]. Due to this elongation, HSI generally occur when the muscle fascicles can not resist

the increased tensile force [3]. In particular, HSI occur frequently in the BFlh among the ham-

strings [8], with BFlh distal musculotendinous junction (MTJ) injuries being more common

[9], recurrent, severe and require longer rehabilitation than other HSI [9, 10].

Besides various risk factors [11], research has identified increased passive hamstring muscle

stiffness [12] and shorter BFlh fascicle lengths [13] as structural risk factors for HSI [11]. How-

ever, it was suggested that the use of trigonometric equation [14] or manual linear extrapola-

tion [15, 16] techniques overestimate the BFlh fascicle length in comparison to the extended

field of view (EFOV)/panoramic ultrasound scanning technique [17]. The former techniques

were used in previous retrospective studies comparing BFlh fascicle lengths between athletes

with and without injury history [18–22]. Specifically, trigonometric equations techniques

(+0.5 to +1.9 cm), and manual linear extrapolation technique (+0.33 cm) overestimate BFlh

fascicle lengths [17]. Additionally, a further study [12] found passive muscle stiffness is a risk

factor for HSI. However, an unspecific technique (free oscillation) was used that measures the

passive stiffness of all muscle and tendon units of all knee flexors. Thus, this technique does

not provide specific information for the BFlh, i.e., not providing specific measurements of stiff-

ness of the MTJ and other locations of the BFlh. The recent technological advancements allow

scientists to explore the passive stiffness of a specific part of individual muscles via ultrasound-

based shear-wave elastography [23]. In this way, specific information on BFlh muscle stiffness

in athletes who returned to play from HSI can provide new insights into the hamstring injury

rehabilitation process.

PLOS ONE A retrospective comparison of the biceps femoris

PLOS ONE | https://doi.org/10.1371/journal.pone.0298146 February 26, 2024 2 / 19

and analysis, the decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0298146


To the authors’ knowledge, no retrospective study compared the BFlh fascicle length via the

EFOV technique or passive stiffness of muscle belly and distal MTJ of the BFlh in athletes with

and without HSI history altogether. Exploring these structural parameters of the BFlh can

bring new insights into the rehabilitation and prevention strategies for HSI.

Therefore, this study aimed to compare the BFlh fascicle length via the EFOV technique,

passive stiffness of the mid-belly and MTJ of the BFlh via ultrasound-based shear wave elasto-

graphy between previously injured legs and uninjured contralateral legs of athletes with HSI

history, and both legs of athletes without HSI history. The hypotheses of this study were con-

sidered as follows: 1) previously injured legs will have shorter fascicles in the BFlh compared to

contralateral uninjured legs and both legs of the athletes without HSI due to possible decreased

exertion at the beginning of rehabilitation [22], reduced involvement in sports [24], and/or

neural inhibition after the HSI [24–29]; 2) previously injured legs will have higher stiffness in

the BFlh after the injury compared with contralateral uninjured legs and both legs of the ath-

letes without HSI due to possible contractures or scars in the muscle [24, 26, 30–35].

2. Methodology

2.1. Research design

This study was designed as a retrospective comparative case-control study. The injured legs of

the athletes with HSI history constituted the injured group (n = 19). The uninjured legs of the

athletes with HSI formed the internal control group (n = 19). Both legs of the athletes without

HSI and lower extremity injuries participating in the same sports were used as the external

control group (n = 38). Ethical approval was obtained from the Health Research Ethics Com-

mittee of Universitas ‘Aisyiyah Yogyakarta (Approval No. 2843/KEP-UNISA/V/2023). Before

the study, participants read and signed a written informed consent according to the Declara-

tion of Helsinki [36]. Indonesian authors (second, third, fourth and fifth authors) of this study

communicated with the participants in Indonesian languages. The recruitment and data col-

lection of the study started on the 10th of May 2023 and finished on the 30th of June 2023.

2.2. Participants

Athletes who returned to sports after an HSI were included in the injured group. In this study,

athletes were defined as people partaking professionally and semi-professionally in sports. The

inclusion criteria for the injured group were: a) male athlete between 18–45 years old; b)

returning to pre-level sports competition after HSI in the BFlh. Criteria for the control group

were: a) male athlete between 18 and 45 years old, b) being without a known lower extremity

injury history, c) performing the same sports as the injured group (e.g., if one professional

football player is included in the injured group, one professional football player from the same

competition level participated to the study in the control group.)

2.3. Sample size

A priori sample size calculation was made using the F test, one-way ANOVA option in the

G*Power (Version 3.1) [37] for two groups, 0.74 effect size [22], 0.05 alpha level, 0.95 statistical

power. In total, a sample size of 26 was required for the study (13 previously injured players,

13 controls). However, this study compared 19 athletes for the injured group and 19 athletes

for the uninjured group. Therefore, 19 injured legs were compared to 19 contralateral unin-

jured legs and 38 legs of the control group to reach a high statistical power. The achieved

power of the study was determined as 0.96 for the fascicle length (effect size: 0.62 (injured leg

vs. uninjured legs of the control group), two groups, 0.05 alpha level and 38 sample size (total
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legs)); the power of 0.97 for mid-muscle belly stiffness (effect size: 0.70 (injured leg vs unin-

jured legs of the control group), two groups, 0.05 alpha level and 38 sample size (total legs));

and power of 1.00 for the distal MTJ stiffness measurements of the BFlh (effect size: 1.6

(injured leg vs uninjured legs of the control group), two groups, 0.05 alpha level and 38 sample

size (total legs)) via G*Power (Version 3.1) [37].

2.4. Measurement procedures

Before starting the measurements, a medical examination was performed by a medical team

consisting of an orthopaedic surgeon, a medical doctor, and a physiotherapist. Physical charac-

teristics (height (cm), body mass (kg), body mass index (BMI)), injury history, and playing his-

tory (years) of the participants were recorded. The preferred kicking leg of a ball was accepted

as the dominant leg.

The BFlh fascicle length was measured via the EFOV technique via b-mode ultrasound

(LOGIQ P8, General Electric Healthcare, Wauwatosa, WI). The mid-belly and distal MTJ pas-

sive muscle stiffness measurements of the BFlh were completed via ultrasound-based shear

wave elastography (SWE) (LOGIQ P8, General Electric Healthcare, Wauwatosa, WI). The

BFlh fascicle length and passive stiffness measurements were performed twice for each domi-

nant and non-dominant leg by totally removing the ultrasound probe (L3-12-RS: Wideband

Linear Array Probe, 2 to 11 MHz, width: 51.2 mm, depth: 40 to 80 mm) from the skin between

the measurements on the same measurement session. The average results of the two measure-

ments were accepted as the outcomes. Reliability analyses were performed for the outcomes of

BFlh fascicle length, mid-belly and distal MTJ passive stiffnesses of the BFlh between these two

measurements for all the legs of all the athletes. The measurements were performed by the first

author, who is highly experienced with the BFlh fascicle length, passive muscle stiffness and

morphology measurements of the BFlh [16, 38, 39], alongside at least one of the medical team.

The fascicle length digitisations were directly performed using the ultrasound machine’s mea-

sure function, and the results were recorded during the measurement sessions. Likewise, the

ultrasound machine directly provided passive muscle stiffness results, which were recorded

during the measurement sessions.

2.4.1. The BFlh fascicle length measurement via the EFOV technique. The participants

laid down on a standard medical bed in a prone position when the hamstring was at the pas-

sive resting position. Firstly, the proximal and distal MTJ were determined by monitoring via

the ultrasound probe [17]. Then, the path of the BFlh muscle belly was monitored [17]. After-

wards, the ultrasound probe was continuously moved parallel to the BFlh muscle orientation,

starting from the distal MTJ towards the proximal MTJ around the ischial tuberosity at a con-

stant speed. This process was performed a few times for each participant until determining the

correct path to visualise the BFlh fascicles. Then, the first measurement followed the visible

path within the ultrasound gel on the skin. During the measurements, the assessor continu-

ously adjusted the ultrasound probe to make the fascicles and aponeuroses of the BFlh visible

based on different anatomical features of the BFlh (Fig 1). Then, four visible fascicles starting

around the BFlh’s mid-belly were digitised using the ultrasound machine’s measure function.

The four fascicle length values were averaged and accepted as the BFlh fascicle length. Subse-

quently, this process was repeated after totally removing the ultrasound probe from the skin

after about two minutes of a waiting period. The mean value of the two measurements was

accepted as the BFlh fascicle length of the measured leg.

2.4.2. The BFlh mid-belly and distal MTJ passive stiffness measurements. Participants

kept their position on a medical bed as described in the fascicle length measurement section

for both mid-muscle belly and distal MTJ stiffness measurements of the BFlh. The ultrasound
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Fig 1. A-F: Random examples of the biceps femoris long head fascicle length measurements via panoramic ultrasound scanning in various participants.

https://doi.org/10.1371/journal.pone.0298146.g001
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probe was placed on the 50% distance between the proximal MTJ and Distal MTJ on the mus-

cle belly [39]. The probe was arranged parallel to the muscle fascicle orientations as described

in the BFlh fascicle length measurement section. At the same time, the superficial and interme-

diate aponeuroses were visible, and they were parallel to each other as much as they could be at

the location [39]. A slight and equal transducer pressure was applied during the measurements

[39]. The region of interest (ROI) was selected on the centre of the BFlh muscle, and an elasto-

gram with a 1 cm diameter was taken from the ROIs [39] (Fig 2). For the distal MTJ stiffness

measurements of the BFlh, the participants kept the same position in the mid-muscle belly pas-

sive muscle stiffness of the BFlh. The ultrasound probe was oriented parallel to the BFlh muscle

orientation, and the distal MTJ was visualised. The distal MTJ was determined by following

the previous relevant research [40, 41]. An elastogram with a 0.25 cm diameter was taken from

the closest place to the distal MTJ, where the 0.25 cm elastogram chamber fits into the triangle

of the distal MTJ (Fig 3). The measurements were replicated by totally removing the ultra-

sound probe from the skin, and the mean value of these two measurements was accepted as

the mid-belly passive muscle stiffness of the BFlh.

2.5. Statistical analyses

The BFlh fascicle length, mid-belly and distal MTJ passive stiffness results complied with

parametric test assumptions (Levene’s test) and were compared between the injured legs, unin-

jured contralateral legs, and both legs of the control group via one-way analysis of variance

(ANOVA). Additionally, the one-way ANOVA was also used to compare the participants’

physical characteristics and total years of performing sports to confirm no significant differ-

ences between comparison groups. Tukey posthoc tests were performed to assess statistical sig-

nificance between grouped results using SPSS software (IBM SPSS Statistics, version 29). The

alpha level was set as 0.05 for the statistical significance. Cohen’s d-effect sizes [42] were calcu-

lated for all parameters. Effect sizes for our sample consisting of highly trained athletes were

interpreted as follows: < 0.25, trivial; 0.25–0.50, small; 0.50–1.00, moderate; > 1.00, large [43].

For intra-rater reliability analyses, the intraclass correlation coefficients (ICC, two-way mixed,

absolute agreement on single measurements) were calculated for each outcome. The reliability

results were classified as follows: < 0.50, low reliability; 0.50–0.75, moderate reliability; 0.75–

0.90, high reliability; > 0.90, very high reliability [16].

3. Results

The injured group consisted of 8 professional runners, 8 semi-professional football players, 2

semi-professional basketball players, and 1 semi-professional cyclist. The control group con-

sisted of the athletes who exactly matched with the injured group (8 professional runners, 8

semi-professional football players, 2 semi-professional basketball players, and 1 semi-profes-

sional cyclist). There were no significant differences between the participants’ physical charac-

teristics and total years of performing sports between the groups (Table 1).

In the injured group, ten participants injured their dominant legs and nine participants

injured their non-dominant legs. Four injuries were located around proximal MTJ, eight were

located around distal MTJ, and seven were situated around the mid-muscle belly of the BFlh.

Among the injured athletes, fourteen athletes experienced the HSI for the first time (mean

time to injury = 9 ± 11.8 months ago), and five athletes experienced the HSI twice (mean time

to first injury = 3.9 ± 2.1 years ago; mean time to last injury = 12.4 ± 14.8 months ago). In the

injured group, three athletes stated that they have received a structured physiotherapy pro-

gram; three athletes received massage; four athletes mentioned they received ice compression,

one of the four athletes mentioned he swam in addition to the ice compression during the
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Fig 2. A-F: Random examples of the measurements of mid-muscle belly passive stiffness of the biceps femoris long head via ultrasound-based shear-wave

elastography in various participants. The different image orientations, whether from left to right or vice versa, result from the 180˚ differences in the grip

positions of the ultrasound probes during each measurement, which do not affect the outcomes.

https://doi.org/10.1371/journal.pone.0298146.g002
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Fig 3. A-F: Random examples of the measurements of distal musculotendinous junction passive stiffness of the biceps femoris long head via ultrasound-based

shear-wave elastography in various participants. The different image orientations, whether from left to right or vice versa, result from the 180˚ differences in the

grip positions of the ultrasound probes during each measurement, which do not affect the outcomes.

https://doi.org/10.1371/journal.pone.0298146.g003
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healing process; two athletes pointed out they used warm compression during the healing pro-

cess; eight athletes mentioned they did not receive any rehabilitation and waited for the natural

healing process.

All the measurements were performed twice except for one participant for the fascicle

length and distal MTJ muscle stiffness measurements due to a human error in recording the

results during the measurement sessions. Therefore, these measurements could not be

included in the reliability analysis. However, the single measurements were accepted as the

valid fascicle length and distal MTJ values in the primary analyses to compare injured and

uninjured athletes. The reliability results of the measurements were as follows: Fascicle length

(n = 75 legs), ICC = 0.982, 95% CI [0.971, 0.988]; mid-belly muscle stiffness (n = 76 legs),

ICC = 0.973, 95% CI [0.955, 0.988], distal MTJ stiffness (n = 75 legs), ICC = 0.995, 95% CI

[0.993, 0.997].

BFlh fascicle length measurements in the injured legs compared with the uninjured contra-

lateral legs showed no significant difference (Mean difference (MD) = -0.43 ± 0.70 cm,

p = 0.719). However, BFlh fascicle lengths of the injured legs in comparison with the legs of the

control group revealed a trend to be shorter with a medium effect size despite its statistical

nonsignificance (d = 0.62, MD = -1.10 ± 2.93 cm, p = 0.067) (Table 2). Moreover, the differ-

ence in the BFlh fascicle lengths between the uninjured contralateral legs of the injured athletes

and both legs of the control group were not significantly different (MD = -0.67 ± 2.9 cm,

p = 0.362) (Table 2). For the mid-belly passive muscle stiffness of the BFlh between the injured

leg and control group legs, a significantly higher stiffness was detected for the injured legs

(MD = 3.29 ± 6.09 KPa, p = 0.009) (Table 2). However, within injured athletes, the comparison

of injured and uninjured legs showed no difference (MD = 2.17 ± 6.71, p = 0.198). Moreover,

the passive stiffness of the BFlh distal MTJ was significantly higher in the injured legs

Table 1. Participants’ physical characteristics and total years of performing sport.

Injured group (n = 19) Control group (n = 19) p-value for Levene’s test the p-value for the mean difference

Age (years) 29.3 ± 6.5 26.4 ± 7.3 0.504 0.195

Height (cm) 171.2 ± 5.7 171.6 ± 6 0.844 0.825

Weight (kg) 68.9 ± 9.2 66.2 ± 8.6 0.958 0.358

BMI (kg/m2) 23.5 ± 2.9 22.5 ± 2.7 0.747 0.262

Total years of performing the sport 8.7 ± 5.5 8.4 ± 5.3 0.661 0.870

https://doi.org/10.1371/journal.pone.0298146.t001

Table 2. Differences in the BFlh fascicle length, Mid-muscle belly stiffness and distal MTJ stiffness between the groups.

Injured thighs

(n = 19)

(mean ± SD)

Uninjured

contralateral

thighs (n = 19)

(mean ± SD)

Control thighs

(n = 38)

(mean ± SD

Mean Difference Cohen’s

d effect size (Injured

thighs vs. uninjured

contralateral thighs)

(mean ± SD, ES)

Mean Difference and

Cohen’s d effect size

(Injured thighs vs.

control thighs)

(mean ± SD, ES)

Mean Difference

(Uninjured

contralateral thighs vs.

control thighs)

(mean ± SD, ES)

Fascicle length (cm) 8.03 ± 2 8.46 ± 1.86 9.13 ± 1.52 -0.43 ± 0.7 p = 0.719,

d = 0.22

-1.1 ± 2.93 p = 0.067,

d = 0.62

-0.67 ± 2.9 p = 0.362,

d = 0.39

Passive stiffness of mid-

muscle belly (kPa)

13.2 ± 6.4 11.03 ± 3.5 9.91 ± 1.81 2.17 ± 6.71 p = 0.198,

d = 0.37

3.29 ± 6.09 p* = 0.009,

d = 0.7

1.12 ± 3.22 p = 0.557;

d = 0.4

Passive stiffness of

distal musculotendinous

junction (kPa)

31.95 ± 17.39 20.98 ± 15.12 11.46 ± 5 10.97 ± 14.46 p* = 0.017,

d = 0.67

20.49 ± 19.56 p** <
0.001, d = 1.6

9.52 ± 17.66 p* = 0.017,

d = 0.85

Abbreviations. BFlh, biceps femoris long head; ES, effect size; MTJ, musculotendinous junction; SD, standard deviation. *, statistically significant (p < 0.05); **,
statistically significant (p < 0.001).

https://doi.org/10.1371/journal.pone.0298146.t002
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compared with the contralateral uninjured legs (10.97 ± 14.46, p = 0.017). These findings were

consistent in further comparisons between the injured legs and both legs of the control group

(MD = 20.49 ± 19.56, p< 0.001), and between the contralateral uninjured legs and both legs of

the control group (MD = 9.52 ± 17.66, p = 0.017) (Table 2).

4. Discussion

The structural parameters of human skeletal muscles have traditionally been given great atten-

tion by studies focusing on sports performance [44–67] and recently by research conducted on

musculoskeletal injuries [12, 13, 16, 38, 68–76]. Likewise, this study has retrospectively exam-

ined athletes with and without HSI to compare changes in the muscle structure-related param-

eters of the BFlh muscle after an HSI. BFlh fascicle length was measured via b-mode

panoramic ultrasound scanning, plus mid-muscle belly and distal muscle belly stiffness by

ultrasound-based shear wave elastography.

This study employed a panoramic ultrasound scanning to measure the BFlh fascicle length

which is methodologically different to former relevant retrospective studies [18–22] compar-

ing athletes with and without HSI history. Most of these retrospective studies [18, 20–22] used

the trigonometric equation technique, except for one study employing the manual linear

extrapolation technique [19] for estimating the BFlh fascicle length. By using panoramic ultra-

sound scanning, all the lengths of BFlh fascicles could be monitored and calculated without an

estimation of invisible parts, which may reduce an overestimation of the BFlh fascicles [17].

Only one former retrospective study [77] compared injured and uninjured legs of previously

injured athletes using panoramic ultrasound scanning, however, they did have an external

control (i.e., uninjured matched athletes). Our study did not detect significant differences

between BFlh fascicle length despite being appropriately powered (0.96 statistical power).

There were trivial and moderate effect sizes for the differences between the limbs of the injured

group (MD = -0.43 ± 0.70 cm, d = 0.22) and between the injured leg of the injured group and

legs of the controls (MD = -1.10 ± 2.93 cm, d = 0.62). This suggests that differences in BFlh

between groups may be relevant for HSI susceptibility.

The previous retrospective studies found shorter BFlh fascicle lengths of the injured leg

compared to the control ranging between -1.74 cm to -0.47 cm. In agreement, our study found

a decrement of BFlh fascicle length (about -1.10 cm) in the injured legs of the athletes. Findings

and the BFlh ultrasound assessment methods of the previous studies are presented in Table 3.

Table 3. Differences in the BFlh fascicle lengths between athletes with and without hamstring strain injury history in the previous retrospective studies.

Study Participants Injured leg vs. uninjured

contralateral leg mean

difference (cm) and ES

Injured leg vs. control group mean

difference (cm) and ES

Ultrasound assessment method

de Lima-E-Silva

et al. [18]

20 injured football players vs. 60

uninjured football players

0.11 cm (p = 0.91, d = 0.04) -1.80 cm (p = 0.02*, d = 0.59) Trigonometric equation method

Nin et al. [19] 5 injured athletes (mix) vs. 10

uninjured athletes (mix)

-0.41 cm (p = NG, d = -0.37) -0.58 cm (p = NG, d = -0.67) Manual Linear Extrapolation

method

Pimenta et al.

[20] (Baseline

values)

12 injured football players vs. 20

uninjured football players:

-1.74 cm (p = 0.012*, d = NG) -0.80 cm (p = 0.014*, d = NG) Linear Extrapolation method via

trigonometric equation for

invisible part

Timmins et al.

[21]

12 injured Australian footballers

vs. 18 uninjured Australian

footballers

-0.47 cm (p = NG, d = NG) -0.73 cm (p = NG, d = NG) Trigonometric equation method

Timmins et al.

[22]

16 previously injured athletes vs.

20 recreationally active controls

-1.54 cm (p < 0.001*, d = -0.74) -0.47 cm (The control group was

accepted as the average results of both

limbs (p = NG, d = NG)

Trigonometric equation method

Abbreviations. BFlh, biceps femoris long head; ES, effect size; NG, not given; *, statistically significant (p < 0.05).

https://doi.org/10.1371/journal.pone.0298146.t003
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A recent meta-analytic study [26] indicated moderately shorter BFlh fascicle lengths of injured

legs of the athletes (effect size = 0.57), which is similar to our present research (effect

size = 0.62). Variability of results in the literature might have multifactorial causes including

athlete age [47, 78, 79], ethnicity [80], sports disciplines [81], rehabilitation process [82–84],

abd ultrasound measurement methods [17, 38]. However, due to the nature of the retrospec-

tive study, longitudinal trials are needed to understand the differences in athletes after HSI.

A previous study [26] suggested that neural inhibition following the injury [24–29] and

reduced exertion may cause BFlh fascicle shortening at the early phase of rehabilitation [22].

Together with the former, decreased participation in sports [24] are a possible underlying

mechanism for the shortening of BFlh fascicle lengths after injury. Future studies are needed

to monitor the architecture of the hamstrings before the HSI, during rehabilitation, and after

returning to play for a better understanding of the mechanisms behind the architectural alter-

ations after the HSI. Based on the findings of this study, it may be suggested that rehabilitation

programs should include exercises that can lead to fascicle lengthening in the hamstrings of

both legs of previously injured athletes to minimise the possibility of microscopic damage of

the fascicles during eccentric contraction [25, 26, 85].

To the authors’ knowledge, this study was the first retrospective study comparing the pas-

sive distal MTJ stiffness of the BFlh between athletes with and without an HSI history. Our

study observed significantly higher stiffness in the previously injured BFlh muscles at the mid-

muscle belly (MD = 3.29 ± 6.09 kPa, p = 0.009, d = 0.70) and distal MTJ compared to the con-

trols (MD = 20.49 ± 19.56 kPa, p< 0.001, d = 1.60) with moderate and large effect sizes,

respectively. A previous retrospective study [19] pointed out larger stiffness (d = 1.28) at the

muscle belly of the BFlh in HSI athletes compared to controls. Our study also detected greater

mid-belly stiffness, though only moderately higher (d = 0.70), in the athletes with HSI history.

Additionally, we detected large (d = 1.60) differences at the distal MTJ of the BFlh between the

injured muscle and controls. Additionally, we foundmoderately higher stiffnesses at the distal

MTJ of this injured leg compared to the contralateral legs (d = 0.67). The larger stiffness at the

distal MTJ (d = 1.60) compared to the mid-part (d = 0.70) of the injured BFlh can be caused by

distal MTJ injuries which were the most frequent in our sample (8 of 19 athletes). Distal MTJ

injuries were pointed out as common [9], more recurrent and severe, and requiring longer

rehabilitation [9, 10]. Reasons for higher stiffness in the injured legs compared with the con-

trols might be explained by potential scarring of tissue around the injury location [24, 26, 30–

34]. Tissue changes (i.e., mechanical properties) would affect the passive tension and stiffness

of the BFlh structure towards higher values [86]. Moreover, sixteen out of nineteen of the

injured athletes in our study did not receive a structured physiotherapy program including

eccentric training and static stretching. Such structured rehabilitation may help to prevent

muscle shortening [39] and improve muscle elasticity [87] during the healing process. Higher

stiffness after lower extremity injuries is not uncommon. A previous study detected consider-

able increments in hamstrings’ passive muscle stiffness for both injured and uninjured legs

after anterior cruciate ligament reconstructions compared to healthy controls [35]. Another

study [34] observed significant increases in stiffness within the first 6 weeks and 6 months

after a tendon injury. Of our participants, ten were injured within less than six months, with

seven of them injured approximately six weeks (1–2 months) before the measurement day

(Supporting Information S1). Measurements closer to the injury occurrence may have contrib-

uted to the differences in the distal MTJ stiffness results.

Moreover, it is documented in the literature that hamstring muscle stiffness results may be

influenced by age [88, 89], genetics [88, 90], sex [91], sports profession [39, 92], pelvic tilt type

[93], hip and knee positions [94], injury and scar status [32–34], and operator of the shear-

wave elastography [95]. Besides reasons based on the characteristics and history of the
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individual, stiffness results of the BFlh vary between different ultrasound brands and versions

even at similar measurement positions in healthy participants. Baseline or reliability values of

the BFlh passive muscle belly stiffness at resting appeared as 4.5 kPa [96], 9.91 kPa (this study),

10.54–15.72 [97], 10.8 kPa [98], 11.3–11.7 kPa [99], 11.57 kPa, [100], 14.43–16.27 kPa [101],

15.74–19.01 kPa [102], 16.47–19.87 kPa [41], 16.9–24.7 kPa [39]. A future study should com-

pare differences in the BFlh stiffness values on the same sample between commercially avail-

able devices to determine the comparability of results in the literature.

Outcomes suggest rehabilitation programmes should consider establishing muscle elasticity

after the HSI. In one study, researchers found a four-week static stretching program was effec-

tive in maintaining elasticity of the BFlh [87]. However, the effectiveness of other rehabilitation

modalities are not well-documented in the literature. Future studies should investigate the

effectiveness of rehabilitation modalities on the stiffness of hamstrings. Ultrasound-based

shear-wave elastography could be a useful tool to monitor muscle stiffness during the rehabili-

tation process in the injured area.

The first limitation of this study is its retrospective cross-sectional design which does not

allow conclusions towards cause or effect of the measured parameters for the HSI. Another

limitation of the retrospective design is not having detailed information about the participants’

rehabilitation process, which may lead to difficulties in interpreting the results. Additionally,

the absence of retrospective information regarding the severity of injuries in the players with a

history of HSI is acknowledged as a limitation in this study. Moreover, this study only applied

intra-rater reliability assessments, which is another confounding factor. The measurements

could not blinded due to the multiple required tasks of the assessor during the data collection.

Furthermore, another confounding factor of this study was the BFlh fascicle length measure-

ment method. There is no gold standard measurement method for BFlh fascicle length in the

literature [17]. Despite this, panoramic ultrasound scanning does not overestimate the BFlh

fascicle length compared to trigonometric equations and manual linear extrapolation methods.

A recent study [103] stated that ultrasound assessment can overestimate increases in serial sar-

comere numbers by about 5%. On the other hand, shear-wave elastography values can be

influenced by assessment depths and the size of the ROIs and elastograms [104]. Despite the

potential advantages of measuring a specific location within a muscle, not assessing the entire

muscle and tendon structures can be another drawback of ultrasound-based shear-wave stud-

ies, such as ours. Therefore, future studies should aim to provide standardised measurement

approaches for measuring the skeletal muscles and tendons at their entire muscle volumes by

providing specific location and overall volume stiffness information.

Initially, it was also planned to measure the proximal MTJ stiffness of the BFlh as an addi-

tional study outcome. However, the shear waves of the ultrasound machine could not reach a

full ROI colour distribution at the proximal MTJ of the BFlh. This issue might have been

because: a) the shear waves of our ultrasound machine were not durable enough to pass

through gluteus maximus muscle fascicles, which have a different orientation than the BFlh,

for reaching the proximal MTJ of the BFlh; b) the higher depth of the proximal MTJ compared

the distal MTJ, c) the technical abilities of the ultrasound machine, or d) another reason which

may be identified by future studies. Consequently, we decided not to continue proximal MTJ

stiffness measurements after a few trials, and we noted this issue as a limitation of this study.

5. Conclusions

This study has used relatively advanced measurement methods for measuring the BFlh fasci-

cles and stiffness, e.g. panoramic ultrasound scanning and shear-wave elastography. Results

showed significantly higher mid-muscle belly and distal MTJ stiffness values in previously
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injured athletes compared to the controls. Despite being only a trend, moderately shorter fasci-

cles were observed in the injured players compared to the controls. Physical therapy and reha-

bilitation programmes should aim to improve BFlh muscle elasticity and fascicle length after

the HSI. Future prospective studies should investigate whether higher stiffness is a cause or

consequence of HSI.
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