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Abstract

Background

The prognosis of nasopharyngeal carcinoma (NPC) is challenging due to late-stage identifica-

tion and frequently undetectable Epstein-Barr virus (EBV) DNA. Incorporating radiomic fea-

tures, which quantify tumor characteristics from imaging, may enhance prognosis assessment.

Purpose

To investigate the predictive power of radiomic features on overall survival (OS), progres-

sion-free survival (PFS), and distant metastasis-free survival (DMFS) in NPC.

Materials and methods

A retrospective analysis of 183 NPC patients treated with chemoradiotherapy from 2010 to

2019 was conducted. All patients were followed for at least three years. The pretreatment

CT images with contrast medium, MR images (T1W and T2W), as well as gross tumor vol-

ume (GTV) contours, were used to extract radiomic features using PyRadiomics v.2.0.

Robust and efficient radiomic features were chosen using the intraclass correlation test and

univariate Cox proportional hazard regression analysis. They were then combined with clini-

cal data including age, gender, tumor stage, and EBV DNA level for prognostic evaluation

using Cox proportional hazard regression models with recursive feature elimination (RFE)

and were optimized using 20 repetitions of a five-fold cross-validation scheme.

Results

Integrating radiomics with clinical data significantly enhanced the predictive power, yielding

a C-index of 0.788 ± 0.066 to 0.848 ± 0.079 for the combined model versus 0.745 ± 0.082 to

0.766 ± 0.083 for clinical data alone (p<0.05). Multimodality radiomics combined with clinical
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data offered the highest performance. Despite the absence of EBV DNA, radiomics integra-

tion significantly improved survival predictions (C-index ranging from 0.770 ± 0.070 to 0.831

± 0.083 in combined model versus 0.727 ± 0.084 to 0.734 ± 0.088 in clinical model, p<0.05).

Conclusions

The combination of multimodality radiomic features from CT and MR images could offer

superior predictive performance for OS, PFS, and DMFS compared to relying on conven-

tional clinical data alone.

Introduction

Nasopharyngeal carcinoma (NPC) is a type of malignancy that is more common in specific parts

of the world, such as East Asia and Africa [1]. The identification of this disease can be challenging

due to its vague symptoms, which may include a painless swelling or growth on either side of the

neck’s rear, a result of lymph node enlargement from metastasis. The illness can cause a variety of

symptoms, including sore throat, difficulty breathing, speaking, and hearing. Additional potential

signs of NPC encompass facial discomfort or lack of sensation, vision impairment, and repeated

ear infections [2, 3]. Reliable algorithms for prediction are essential for improving therapy strategies

and patient prognosis due to the complexity of NPC. The primary treatment strategy is intensity-

modulated radiation therapy (IMRT), which can be used with chemotherapy to reduce the size of

the tumor and increase the effectiveness of radiation [4]. To ensure the implementation of the

most effective treatment plan, it is crucial to employ precise prognostic instruments that can fore-

cast the patient’s reaction to therapy, as well as the likelihood of relapse or disease advancement.

Plasma Epstein-Barr virus (EBV) DNA is a commonly used biomarker for early detection,

prognosis, and monitoring of treatment outcomes in NPC [5–9], often used alongside the clin-

ical staging protocol developed by the American Joint Committee on Cancer (AJCC) [7, 10–

12]. However, it is worth noting that EBV DNA levels are not detectable in up to 40% of non-

Chinese patients [13]. This highlights the need for more efficient biomarkers to improve the

accuracy of prognostic assessments.

Radiomics is a rapidly-growing field that utilizes advanced mathematical methods to extract

extensive quantitative data from medical images [14–19]. In the realm of head and neck oncol-

ogy, its noninvasive applications are particularly promising for differentiating benign from

malignant lesions [20]. A crucial task given the complex anatomy of the head and neck where

traditional biopsy may be challenging. Radiomic signatures are not limited to identification;

they have potential in correlating with treatment responses [21, 22], prognostic outcomes [23,

24], and even genetic expressions [25]. Such insights are invaluable in customizing treatment

for head and neck cancer patients. A variety of imaging modalities, including [26], MRI [27],

PET/CT [28], and ultrasound [29], are instrumental in radiomics research. They provide a

foundation for extracting radiomic features, which are essential in the ongoing research to

develop noninvasive biomarkers for these cancers.

For NPC patients, it is a standard practice to perform computed tomography (CT) and

magnetic resonance (MR) simulations prior to radiotherapy to collect data for treatment plan-

ning [30, 31]. Building upon our previous research, which established a prognostic model

using CT images alone [32], this study attempted to enhance model performance by integrat-

ing MRI data. We hypothesized that MRI can reveal additional tumor characteristics, particu-

larly soft tissue anomalies, which are not as discernible on CT. By enriching our model with

these multidimensional radiomic features, we anticipated a marked improvement in its
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prognostic power. Our goal was to construct a more comprehensive prognostic model by com-

bining clinical factors with a multimodal radiomic approach, incorporating both CT and MRI

data, to predict key survival outcomes for NPC patients, including overall survival (OS), pro-

gression-free survival (PFS), and distant metastasis-free survival (DMFS). By doing so, we

expected to provide an improved tumor prognostic tool, which could lead to more personal-

ized and effective treatment strategies, ultimately advancing NPC patient management.

Materials and methods

Data collection

Medical data of patients with NPC, between October 2010 and January 2019, at King Chula-

longkorn Memorial Hospital, Bangkok, Thailand, were retrospectively collected (accessed on

September 30, 2021). The patients were partially involved in a previously published random-

ized study comparing the intensity-modulated radiation treatment (IMRT) technique between

sequential boost and simultaneous integrated boost technique [33], as well as in a radiomics

study for NPC tumor prognosis using only CT images [32]. The following eligibility require-

ments had to be met for patients with newly diagnosed NPC to participate in the study: (a)

absence of distant metastasis; (b) at least three years of follow-up; (c) encountering CT with

contrast medium and T1W- and T2W-MRI simulation; (d) receiving IMRT with chemother-

apy; and (e) having pre-treatment plasma Epstein-Barr virus (EBV) DNA level.

Demographic and clinical information were collected, including age, sex, and tumor stage,

and the patients were then restaged based on the 8th edition cancer staging of AJCC. All

patients were treated based on the severity of their disease. In detail, those with T1 or less and

negative nodal disease were treated with IMRT alone while patients with� T2 and/or positive

nodal disease received IMRT with concurrent weekly 40 mg/m2 cisplatin up to seven cycles,

followed by adjuvant chemotherapy comprised of 80 mg/m2 cisplatin and 1000 mg/m2/24 hr

of 5-fluorouracil (5-FU) administered continuously for 96 hours at 4-week intervals for three

cycles. The institutional review board of the Faculty of Medicine, Chulalongkorn University

approved this retrospective study (IRB no. 672/64). The need for written informed consent

was waived by the ethics committee. All the data were anonymized before analysis, and all the

methods were performed in accordance with the relevant guidelines and regulations.

Imaging protocols of CT and MRI

CT images acquired from the CT scanners (Somatom Definition AS, Siemens Medical Solu-

tions, Erlangen, Germany and Brilliance Big Bore, Philips Healthcare, The Netherlands) used

for radiotherapy treatment planning simulations were collected. The scanning parameters

were as follows: 120 kVp, 325 mAs, FOV 600x600 mm, and slice thickness of 2 and 3 mm.

Image acquisition was performed 59 seconds after injecting 75 ml of nonionic iodinated con-

trast medium (iohexol 300mgI/mL; Omnipaque 300, GE Healthcare). Magnetic resonance

(MR) images were acquired on a 1.5 T MRI simulator (Signa HDxt, GE Medical systems, Chi-

cago, United states) at Division of Radiation Oncology. The standard protocol for the naso-

pharyngeal study was used, including axial T1-weighted images (repetition time (TR): 740 ms;

echo time (TE): 8.3ms) and axial T2-weighted images (repetition time (TR): 5395 ms; echo

time (TE): 68.6 ms), with FOV 24 cm and slice thickness of 4 mm.

Tumor segmentation

Gross tumor volume (GTV) was contoured on CT images using Eclipse software (Varian Med-

ical Systems, Palo Alto, CA, USA) by one of three board-certified radiation oncologists,
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specializing in head-and-neck cancer, with varying levels of experience (19, 8, and 4 years post

board certification). To facilitate the CT-MR image alignment, the region of interest (ROI)

encompassing the GTV on CT was mapped to the corresponding MR images using 3D-slicer

software version 4.11. The mapping process involved identifying anatomical landmarks on

both the CT and MR images, as well as utilizing the registration location produced during the

radiation oncologist’s treatment planning process to ensure accurate registration. The result-

ing MR images with the mapped ROI were then used for further analysis.

To assess for interobserver variability, we randomly sampled 22 patients out of the total

sample size. For each of these 22 patients, the GTV was independently contoured by the other

two board-certified radiation oncologists who were blinded to each other and the original

GTV contours. These additional radiation oncologists utilized the same imaging software and

datasets as the primary radiation oncologist who initially contoured the GTV.

Model development and assessment

(A) Construction of the radiomic model. The features were extracted via PyRadiomics

version 2.0.0 [34] using the data from CT and MR images along with their corresponding

ROIs. Prior to radiomic feature extraction, the original CT and MR images were resampled to

a voxel size of 0.5 cm3 to ensure spatial consistency. A total of 842 radiomic features were

obtained from the GTV contour of each imaging modality, including first-order features (18),

shape features (14), texture features (74), and wavelet features (736). This resulted in 2526

radiomic features from three images (contrast-enhanced CT, T1W-MRI, and T2W-MRI)

being extracted per patient. The process of extracting radiomic features was carried out using

the standard configurations in the software package.

To identify the most reliable and informative radiomic features for prediction, we imple-

mented a dual-step strategy; an interobserver variability test and a univariate analysis. Initially,

to assess the stability of the radiomic features, we carried out an interobserver variability exam-

ination on a subset of the dataset. To do this, we randomly selected 22 patients and tasked

three distinct radiation oncologists with the manual delineation of the ROI. Following this, we

extracted radiomic features from the three ROI sets (contrast-enhanced CT, T1W-MRI,

T2W-MRI) and computed the intraclass correlation coefficient (ICC) for each feature to mea-

sure the level of agreement among observers. Features with poor interobserver agreement

(ICC < 0.50) were excluded from further analysis [35].

Subsequently, we performed a univariate Cox proportional hazards regression analysis on

the remaining radiomic features to evaluate their association with the clinical outcomes, which

was OS, PFS, and DMFS. For this analysis, the CoxPHSurvivalAnalysis function from the sci-

kit-survival library in Python was utilized. Features that ranked in the top 20% in terms of the

C-index were retained for additional analysis.

To construct our radiomic model, we first applied recursive feature elimination with cross-

validation (RFECV), utilizing a single iteration of five-fold cross-validation to discern the most

significant features from the univariate analysis. This process aimed to identify a feature set

that maximized the Concordance Index (C-index), selecting the minimal number of features

necessary for the highest prognostic accuracy. After RFECV, L2 regularization (ridge regres-

sion) with a regularization strength of C = 1 was employed to fine-tune the feature coefficients

and prevent overfitting. To assure the reproducibility and stability of our model, we further

subjected it to a rigorous validation using a five-fold cross-validation procedure, which was

repeated 20 times with a variety of random seeds. The predictive performance of the model

was consistently evaluated using the C-index. The models were independently constructed,

resulting in CT-based radiomic, MRI-based radiomic, and CT+MRI-based radiomic models.
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(B) Construction of the clinical model. We also created a clinical model, which was a

based-line model, for predicting survival outcomes to compare with the radiomic model. Clin-

ical variables including age, sex, T stage, N stage, overall stage, and Epstein-Barr virus (EBV)

value were included. A binary sequence encoding was adopted for the T stage, N stage, and

overall stage to effectively capture the ordinal nature of disease progression. Each stage was

represented by a binary sequence reflecting its hierarchical position (e.g., T-stage 1 as 0 0 0,

and T-stage 4 as 1 1 1). The EBV value was transformed into a binary feature using a threshold

value of 2300 copies/ml [13]. The similar strategy to the radiomic model to identify the most

relevant clinical features was used. Specifically, ridge (L2) regularization with five-fold cross

validation strategy with 20 iterations was used to evaluate the performance and generalizabil-

ity. The model that initially excluded EBV value was also constructed.

(C) Construction of combined model. Three more comprehensive models—clinical

+CT-based radiomic, clinical+MRI-based radiomic, and clinical+CT+MRI-based radiomic—

were created by combining the chosen clinical and radiomic features. The similar strategy,

which was L2 Cox proportional hazards regression with 20 iterations of five-fold cross-valida-

tion procedure, was used.

Performance assessment of constructed models

To evaluate the models’ performance, we used Harrell’s C-index, a commonly used statistical

measure for assessing the discriminative power of survival models. The C-index was calculated

for each model on the training and test set of each fold throughout the cross-validation pro-

cess. A sign test, which assesses the statistical significance of the difference in C-index values

between two models, was also used to assess the performance of the radiomic, clinical, and

combination models. Multiple comparison correction was carried out using the Benjamini-

Hochberg method. All statistical calculations were performed in Python, and a p-value of 0.05

was considered statistically significant.

Results

Patient demographics

The study cohort was composed of 183 patients diagnosed with NPC. The majority of the par-

ticipants were male (78.14%). The median age was 50 years with an interquartile range (IQR)

of 42.5 to 57.5 years (Table 1). A significant portion of the patients were in stage III (50.82%)

or IV (33.88%) of the disease. Each participant received definitive radiation therapy in combi-

nation with chemotherapy. The median follow-up duration was 54.5 months with an IQR of

41.9 to 65.3 months. At 3 years after starting treatment, 29 patients had died (from any cause),

45 patients had experienced disease progression or recurrence, and 42 patients had developed

distant metastases.

Inter-observer variability effect over radiomics

The accuracy and reliability of radiomics features depend on the quality and consistency of the

tumor delineation process. Therefore, we examined the influence of interobserver variability

on the radiomic features by measuring their intraclass correlation coefficient (ICC) calculated

from the GTV contours drawn by three independent radiation oncologists. We varied the ICC

cutoff threshold to assess the impact of different levels of interobserver variability on the num-

ber of radiomic features that passed the criterion and the final prognosis prediction perfor-

mance. Specifically, we used cutoff values of 0.9, 0.75, and 0.5, which correspond to high,

moderate and low levels of agreement [35], respectively. At these cutoffs, there were 235, 516,
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and 739 radiomic features that passed the thresholds. The steep drop in the number of features

highlights the importance of careful tumor delineation and the need to consider robustness

metrics such as interobserver variability when selecting radiomic features for use in prognostic

models.

Performance of constructed models

(A) Radiomic model. For OS, the combined model incorporating both CT and MRI-based

radiomics achieved a higher C-index in the test set compared to models using radiomic fea-

tures from just one data type. In the case of PFS, adding MRI features to the CT-based radio-

mics did not alter the performance; however, there was a statistically significant difference

when compared to the MRI-only radiomic model (p<0.05). For DMFS, the combined model

presented the highest predictive value, showing a statistically significant improvement

(p<0.05) (Table 2).

(B) Clinical model. The clinical model was formulated utilizing 15 input features, with its

optimization contingent upon the selection of the optimal feature set. For OS prediction, a

model derived from 8 clinical features was established. Likewise, PFS was modeled using 6

clinical features, while DMFS was based on four clinical features. Notably, recurring predictors

Table 1. Patient demographics.

Characteristics n = 183 (%) p-value

Median age (years) (IQR) 50 (42.5 to 57.5)

Sex <0.001

Male 143 (78.14)

Female 40 (21.86)

T classification 0.01

T1 51 (27.87)

T2 59 (32.24)

T3 45 (24.59)

T4 28 (15.30)

N classification <0.001

N0 10 (5.46)

N1 42 (22.95)

N2 90 (49.18)

N3 41 (22.40)

Stage group <0.001

I 3 (1.64)

II 25 (13.66)

III 93 (50.82)

IVA 62 (33.88)

Pretreatment plasma EBV DNA level 0.71

undetectable or� 2300 copies/ml 94 (51.37)

> 2300 copies/ml 89 (48.63)

median value (copies/ml) (IQR) 9720 (5160 to 23400)

Pathological classification <0.001

undifferentiated non keratinizing carcinoma 148 (80.87)

differentiated non keratinizing carcinoma 28 (15.30)

keratinizing squamous cell carcinoma 3 (1.64)

undifferentiated carcinoma and other 4 (2.19)

https://doi.org/10.1371/journal.pone.0298111.t001
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across all three models included sex, T-stage 2 and above, N-stage 3, and EBV status, under-

scoring their potential prognostic significance for NPC (S1 Fig).

When the EBV value was initially excluded, there was a statistically significant decrease in

the performance of the models for OS and PFS compared to the model with EBV value

(p< 0.05) (Tables 2 and 3). Traditional clinical features such as sex, T-stage 2 and above were

common predictors for NPC patients with undetectable EBV values. (S4 Fig).

(C) Combined model. Integrating selected radiomic features from both CT and MRI

with clinical features showed enhanced predictive performance. For OS prediction, the

Table 2. C-indices of clinical, radiomic, and combined models with Epstein-Barr Virus (EBV) value in overall survival (OS), progression-free survival (PFS), and

distant metastasis-free survival (DMFS).

Outcome Model name Training set Test set Number of features

OS Clinical 0.808 (±0.023) 0.750 (±0.110) 8

CT 0.849 (±0.016) 0.822 (±0.070) 9

MRI 0.825 (±0.017) 0.796 (±0.080) 9

CT+MRI 0.879 (±0.014) 0.827 (±0.067) 18

Clinical +CT 0.893 (±0.016) 0.827 (±0.084) 17

Clinical +MRI 0.894 (±0.016) 0.828 (±0.085) 17

Clinical +CT+MRI 0.919 (±0.014) 0.848 (±0.079) 26

PFS Clinical 0.788 (±0.020) 0.766 (±0.083) 6

CT 0.721 (±0.016) 0.722 (±0.072) 2

MRI 0.704 (±0.017) 0.708 (±0.075) 1

CT+MRI 0.721 (±0.016) 0.722 (±0.071) 3

Clinical +CT 0.825 (±0.016) 0.801 (±0.068) 8

Clinical +MRI 0.819 (±0.017) 0.796 (±0.069) 7

Clinical +CT+MRI 0.826 (±0.016) 0.802 (±0.066) 9

DMFS Clinical 0.765 (±0.019) 0.745 (±0.082) 4

CT 0.710 (±0.017) 0.711 (±0.076) 2

MRI 0.784 (±0.018) 0.766 (±0.067) 10

CT+MRI 0.802 (±0.016) 0.779 (±0.064) 12

Clinical +CT 0.805 (±0.016) 0.788 (±0.066) 6

Clinical +MRI 0.844 (±0.016) 0.802 (±0.062) 14

Clinical +CT+MRI 0.855 (±0.015) 0.811 (±0.062) 16

https://doi.org/10.1371/journal.pone.0298111.t002

Table 3. C-indices of clinical, radiomic, and combined models without Epstein-Barr Virus (EBV) value in overall survival (OS), progression-free survival (PFS),

and distant metastasis-free survival (DMFS).

Outcome Model name Training set Test set Number of features

OS Clinical 0.779 (±0.026) 0.729 (±0.125) 7

Clinical +CT 0.878 (±0.018) 0.820 (±0.080) 16

Clinical +MRI 0.875 (±0.017) 0.808 (±0.084) 16

Clinical +CT+MRI 0.906 (±0.015) 0.831 (±0.083) 25

PFS Clinical 0.762 (±0.019) 0.727 (±0.084) 8

Clinical +CT 0.807 (±0.015) 0.775 (±0.069) 10

Clinical +MRI 0.801 (±0.016) 0.770 (±0.070) 9

Clinical +CT+MRI 0.808 (±0.015) 0.775 (±0.068) 11

DMFS Clinical 0.769 (±0.019) 0.734 (±0.088) 8

Clinical +CT 0.811 (±0.016) 0.777 (±0.072) 10

Clinical +MRI 0.844 (±0.014) 0.796 (±0.063) 18

Clinical +CT+MRI 0.855 (±0.013) 0.801 (±0.061) 20

https://doi.org/10.1371/journal.pone.0298111.t003
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combined CT and MRI model with clinical features significantly outperformed the models

using only CT or MRI radiomics with clinical variables (p < 0.05). Similarly, for DMFS, the

integrated radiomics model displayed significant superiority over single-modality models

(p< 0.05). For PFS, however, adding just one MRI-based radiomic feature didn’t result in a

significant performance change. Further details, including the number of features used, was

presented in Table 2.

When excluding the EBV value, combining both CT and MRI radiomics with clinical fea-

tures still showed statistically improved predictive performance for OS and DMFS (p< 0.05)

compared to single-modality models. All specifics can be found in Table 3.

Model comparison

The comparison of the three model types—Radiomic, Clinical, and Combined models—shows

that the performances of the constructed models vary considerably across different prediction

tasks. For instance, in OS prediction, the radiomic model demonstrated superior predictive

power compared to using traditional clinical features, with significantly higher C-index values

ranging from 0.827 (±0.084) to 0.848 (±0.079) in the test set. In contrast, the clinical model

achieved a C-index of only 0.750 (±0.110) in the test set.

The predictive power was further pronounced when clinical features were combined with

CT and MRI radiomic features in the combined model, which yielded a C-index of 0.848

(±0.079) in the test set when. Similarly, in DMFS prediction, the combination of CT and MRI

radiomic features in the test set achieved a significantly higher C-index of 0.779 (±0.064) than

the clinical model, which yielded a C-index of 0.745 (±0.082) (p< 0.05). Moreover, the perfor-

mance improved even further when radiomics was combined with clinical features. The per-

formance of the combined model ranged from 0.805 (±0.016) to 0.855 (±0.015) in the training

set and 0.788 (±0.066) to 0.811 (±0.062) in the test set. In PFS, the radiomic models did not

show superior performance compared to using only clinical features. However, the combina-

tion of radiomics with clinical features achieved the highest C-index, up to 0.826 (±0.016) in

the training set and 0.802 (±0.066) in the test set, compared to the clinical model, which

achieved a C-index of only 0.788 (±0.020) and 0.766 (±0.083) in the training and test sets,

respectively. Overall, the integration of multimodal radiomic information improved model

performance. As shown in Fig 1, the incorporation of radiomics with conventional clinical fea-

tures provided more predictive information. In both the training and test sets, all models

showed statistically significant differences (p< 0.05), except for the C-indices of PFS as com-

pared to clinical+CT and clinical+CT+MRI in the test set.

In the model that did not include the Epstein-Barr virus (EBV) value, the integration of

radiomic features from multimodality imaging with traditional clinical features also showed

consistency with the model that included EBV. The combined model’s performance achieved

higher C-indices in the test set, which was statistically higher than the clinical model (0.831

(±0.083) to 0.770 (±0.070) vs 0.734 (±0.088) to 0.727 (±0.084); p< 0.05, respectively).

When comparing models with and without the EBV value, the model that included EBV

showed a higher predictive value than the model without EBV, with a statistically significant

difference in OS and PFS prediction. Interestingly, for DMFS prediction, the clinical model

and combined models newly constructed from features excluding the EBV value did not show

a statistically significant difference when compared to the model constructed with the EBV

value (p< 0.05) (Fig 2). In further analysis, we computed the Pearson correlation of predicted

risk score between the combined models, incorporating clinical, CT, and MRI data, both with

and without the inclusion of EBV. These models, noted for their superior prognostic perfor-

mance, exhibited a very strong positive linear relationship, signified by a correlation coefficient
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exceeding 0.97 for all the outcomes (Fig 3), including OS, PFS, and DMFS. The robust correla-

tion suggests that the model excluding the EBV value aligns closely with the model that

includes EBV, indicating a comparable level of prediction between the two. The list of the

selected features and their coefficient is shown in S1–S6 Figs.

Discussion

Radiomics is an emerging field that has gained popularity due to its potential in various appli-

cations, such as diagnosis, prediction of treatment response, and prognosis. Although several

studies have demonstrated the effectiveness of radiomics in predicting outcomes using a single

modality, limited research has been conducted to investigate the predictive value of radiomics

Fig 1. Boxplots of C-indices. (A) overall survival (OS), (B) progression-free survival (PFS), (C) distant metastasis-free survival (DMFS) in training set and (D)

OS, (E) PFS, (F) DMFS in test set of the clinical, combination of clinical and CT-based radiomic, and combination of clinical and CT- and MRI-based

radiomics models.

https://doi.org/10.1371/journal.pone.0298111.g001

Fig 2. Line plots of C-indices of models with and without Epstein-Barr Virus (EBV) value. (A) overall survival (OS), (B) progression-free survival (PFS),

and (C) distant metastasis-free survival (DMFS).

https://doi.org/10.1371/journal.pone.0298111.g002
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in multimodality, such as using PET/CT, PET/MRI, CT and MRI [36–38]. Specifically, to our

knowledge, there was no study exploring the use of both CT and MR images for nasopharyn-

geal carcinoma (NPC). In this study, we reported the first and largest dataset used to build a

predictive model for NPC using radiomics based on both pretreatment CT and MRI simula-

tion. Our study aimed to investigate the potential of radiomic features extracted from CT and

MRI images, in combination with traditional clinical features, to predict overall survival (OS),

progression-free survival (PFS), and distant metastasis-free survival (DMFS) in patients diag-

nosed with NPC.

Our findings demonstrated that integrating both radiomic and clinical data together con-

siderably increased the predictability when compared to using only radiomic or clinical fea-

tures alone. In particular, the model’s performance increased when clinical variables and

multimodal radiomics (CT and MRI) were included. This could be explained by the ability of

radiomic features from CT and MRI, which provide details on structural and soft tissue char-

acteristics, respectively, to capture hidden phenotypic information that might be neglected by

the naked eyes alone. As a result, the predictive performance was improved as compared to

using only conventional clinical features. Despite differences in the technique of model con-

struction and the chosen radiomic features, our previous study, which concentrated solely at

CT-based radiomics, showed that a radiomic signature had additional predictive gain when

combined with conventional clinical features [32].

In the present study, radiomic features that were derived from MR images were added to

the model to increase its performance. Our findings are consistent with a study by Li et al.

[36], which showed superior performance when CT and MRI radiomic features were com-

bined in determining therapy response in rectal cancer. The combination of both modalities

showed better performance than using either modality alone. Additionally, He et al. [38]

showed the potential of a multimodal (MRI/CT) radiomic model for prognostic prediction in

resected hepatocellular carcinoma patients, with an improvement in prediction compared to

using a single modality alone. Moreover, they investigated the potential of combining radiomic

signature with clinical data, resulting in a C-index of 0.738 (0.575–0.901) for OS prediction

and 0.704 (0.563–0.845) for disease-free survival (DFS) prediction in the validation cohort,

which was higher than using models from either radiomic or clinical features alone.

The exclusion of the Epstein-Barr virus (EBV) value from the models presented an interest-

ing scenario for discussion. The EBV value is a well-known biomarker for NPC, and its

absence from the models may have potentially impacted their predictive performance. How-

ever, the results indicate that even without the EBV value, the models still maintained a

Fig 3. Scatter plots representing the correlation between the risk scores of the combined model. (A) Overall Survival (OS), (B) Progression-Free Survival

(PFS), and (C) Distant Metastasis-Free Survival (DMFS) either with or without Epstein Barr Virus (EBV). The strong correlation in each plot underscores the

similar predictive performance of the two models across all three survival outcomes.

https://doi.org/10.1371/journal.pone.0298111.g003
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significant level of predictive accuracy, albeit with a slight decrease. The combination of clini-

cal and multimodality radiomics features continued to exhibit the strongest predictive perfor-

mance across all outcomes (OS, PFS, DMFS) in both training and test set in the absence of

EBV value. The Pearson correlation test of their predicted risk score was also carried out. This

approach allowed us to quantitatively measure the degree of linear association between the

two models, providing us a clear understanding of how closely the models align when predict-

ing survival outcomes. The substantial correlation coefficient, exceeding 0.97, suggests a strong

agreement between the models’ predictions, thereby reinforcing our finding that the absence

of EBV information as well as patients with undetectable EBV value can be compensated by

integrating clinical features with radiomics features derived from CT and MRI. The number of

features required to construct the predictive models for PFS and DMFS increased when the

EBV value was excluded. This could imply that the models needed to leverage more informa-

tion to maintain their predictive power in the absence of the EBV value. Interestingly, for

DMFS prediction, the combined model demonstrated no statistically significant difference

between the models with and without the EBV value. This suggests that the model without

EBV could potentially be used as a substitute for patients with undetectable EBV or for patients

in centers that EBV results are not available, maintaining a similar level of predictive accuracy.

This finding underscores the potential of radiomics in enhancing the precision of prognostic

evaluations, even in the absence of certain clinical biomarkers. Nevertheless, further research

is needed to validate these findings and to explore the potential of radiomics in improving the

management of NPC patients.

One of the findings of this study revealed how interobserver variability impacts radiomic

features, highlighting the importance of careful tumor delineation and the need to take this

into account when selecting radiomic features to be included in prognostic models. The study

showed that the accuracy and reliability of radiomic features depend on the quality and consis-

tency of the tumor delineation. Therefore, it is crucial to reduce interobserver variability by

training radiologists and using quality control procedures. The limitation of this study is that it

is a retrospective study design and use of a dataset from a single institution. Future studies

should explore the generalizability of these findings using external datasets.

Conclusions

Our study demonstrates the possibility of enhancing prognostic prediction for NPC patients

by combining radiomic features from both CT and MRI modalities with conventional clinical

variables. This approach could have important clinical implications for decision-making in the

management of nasopharyngeal cancer patients, particularly in the selection of appropriate

treatment strategies and the identification of high-risk patients who may require closer

monitoring.
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S1 Fig. Clinical features and their coefficients in the clinical model for prediction. (A) over-

all survival (OS), (B) progression-free survival (PFS), and (C) distant metastasis-free survival

(DMFS) in patients with nasopharyngeal carcinoma.
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