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Abstract

Non-thermal atmospheric-pressure plasma (NTAPP) is attracting widespread interest for

use in medical applications. The tissue repair capacity of NTAPP has been reported in vari-

ous fields; however, little is known about its effect on fracture healing. Non-union or delayed

union after a fracture is a clinical challenge. In this study, we aimed to investigate how

NTAPP irradiation promotes fracture healing in a non-union fracture model and its underly-

ing mechanism, in vitro and in vivo. For the in vivo study, we created normal and non-union

fracture models in LEW/SsNSlc rats to investigate the effects of NTAPP. To create a frac-

ture, a transverse osteotomy was performed in the middle of the femoral shaft. To induce

the non-union fracture model, the periosteum surrounding the fracture site was cauterized

after a normal fracture model was created. The normal fracture model showed no significant

difference in bone healing between the control and NTAPP-treated groups. The non-union

fracture model demonstrated that the NTAPP-treated group showed consistent improve-

ment in fracture healing. Histological and biomechanical assessments confirmed the frac-

ture healing. The in vitro study using pre-osteoblastic MC3T3-E1 cells demonstrated that

NTAPP irradiation under specific conditions did not reduce cell proliferation but did enhance

osteoblastic differentiation. Overall, these results suggest that NTAPP is a novel approach

to the treatment of bone fractures.

Introduction

Although most bone fractures heal, approximately 5–10% of fractures experience incomplete

healing, leading to delayed union or non-union [1, 2]. Delayed unions and non-unions can result

in significant clinical complications, persistent pain, and psychological burdens, thereby affecting

the quality of life in the long term [3]. Treating these conditions is challenging and poses a consid-

erable economic burden owing to indirect costs such as decreased productivity [4].
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Several bone healing strategies have emerged in surgery, such as dynamization, masquelet

technique, and bone transport [5–7]. Additionally, low-intensity pulsed ultrasound (LIPUS)

and extracorporeal shock wave therapy (ESWT) have been explored as potential adjunctive

therapies for accelerating fresh fracture healing [8, 9]. The transplantation of autogenous bone

is regarded as the gold standard, but its limitations include low volume and donor site morbid-

ity. Therefore, the use of growth factors such as bone morphogenetic proteins (BMPs), epider-

mal growth factor (EGF), platelet-rich plasma (PRP), stromal vascular fraction, and peptides

show promise in bone healing [10–15]. PRP recruits mesenchymal stem cells, promotes angio-

genesis, and has the potential to aid in fracture response [16]. Stromal vascular fraction, rich in

stem cells and growth factors, has shown positive results in combination with PRP for bone

healing [14]. Although PRP research holds promise, it currently lacks standardization. Fur-

thermore, it remains unclear which specific PRP types can yield superior outcomes in terms of

vital new bone formation [17, 18]. BMPs stimulate osteoblasts, and bone tissue engineering

techniques using suitable scaffolds combined with BMP become new options in reconstructive

bone surgery. However, their clinical use faces limitations such as soft-tissue swelling, ectopic

bone formation, and high costs [13, 19, 20]. While EGF has been shown to promote cell prolif-

eration, migration, angiogenesis, and osteogenesis [15], conflicting reports on its role in bone

formation may be attributed to inconsistencies in concentration and administration [21, 22].

Parathyroid hormone peptide (PTHP) is an anabolic bone therapeutic medicine used to treat

osteoporosis. Studies have shown that PTH could improve fracture healing at different skeletal

sites [23–28]. The paradigm shift from transplantation of autogenous bone to bone tissue engi-

neering seems promising, and the search for better and more consistent treatment options

continues. Recently, non-thermal atmospheric-pressure plasma (NTAPP) has attracted tre-

mendous interest in the biomedical field. NTAPP generates various reactive oxygen and nitro-

gen species (RONS), charged particles, and UV photons [29, 30]. The effects of NTAPP on

biological tissues have been demonstrated at various levels, including sterilization [31–34],

wound healing [35, 36], increased cell migration [37], and cancer therapy [38]. Among the bio-

medical applications mentioned above, we focused on regenerative medicine using NTAPP,

such as wound healing, skin regeneration, and bone regeneration. Our previous study by Shi-

matani et al. reported how NTAPP affected bone regeneration using a rabbit model with a crit-

ical-sized ulnar bone defect was used [39].

In this study, we focused on quality of life to improve the completeness of bone healing.

Here, we use rats with fracture models such as normal fracture models or non-union fracture

models. Also, we investigate the potential of NTAPP in fracture healing using in vivo and in

vitro studies to simulate clinically relevant conditions.

Materials and methods

Helium microplasma jet treatment

The plasma jet apparatus used in this study was manufactured in-house, as described in the

previous studies [39]. The plasma jet consists of a 150 mm long glass tube tapering to 0.65 mm

at the nozzle tip. A sinusoidal high voltage with an amplitude of approximately 10 kV and a

frequency of 33 kHz was applied to a single external ring copper electrode positioned 50 mm

away from the nozzle outlet. In this configuration, known as a capillary dielectric barrier dis-

charge plasma jet, both positive and negative discharges are alternately generated. Helium

(He) gas was utilized as the primary discharge gas because it produces a stable glow discharge

in the ambient air. The flow rate of He through the nozzle was set to 1.5 standard liters in the

in vivo study and 1.0 standard liter per minute in the in vitro study.
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In vivo study

Animal models. 8-week-old male LEW/SsNSlc in-bred rats (Japan SLC Inc., Hamamatsu,

Japan) were used for this animal experiment. All rodents were maintained in a 24-hour light

and dark cycle, with ad libitum access to food and water. All experimental procedures were

approved by the Osaka City University, currently Osaka Metropolitan University, Graduate

School of Medicine Committee on Animal Research (approval number: 21092). We created a

normal fracture model for a preliminary experiment, followed by a non-union fracture model.

The rodents were monitored daily for indications of dehydration, malnutrition, pain, infec-

tion, and abnormal behavior. The rats were eventually sacrificed by CO2 asphyxiation.

Twenty-four rats were assigned to the normal fracture model, 20 rats to radiological and histo-

logical evaluation of the non-union fracture model, and 14 rats to biomechanical evaluation.

No rats were excluded due to adverse events or unexpected deaths during the study period.

The normal fracture model. The rats were anesthetized by subcutaneous injection of

ketamine (50 mg/mL) (Daiichi Sankyo Healthcare Co. Ltd, Tokyo, Japan) and xylazine (0.2

mg/mL) (Bayer HealthCare, Leverkusen, Germany) at a 10:3 ratio at a dose of 1 mL/kg total

body weight. This model was developed by improving upon previously reported methods [40–

43]. To induce a fracture, a transverse osteotomy was performed in the middle of the right

femoral shaft using a bone saw, following a 30 mm incision made on the hind limb in the rats,

as shown in Fig 1A. A 1.2-mm Kirschner wire was retrogradely inserted from the fossa inter-

condylaris, penetrating through to the greater trochanter. The distal end of the wire was

embedded into the articular surface of the knee joint. In line with previous studies using a sim-

ilar model [41, 42], weight-bearing was allowed immediately after surgery without immobiliza-

tion. In this preliminary study, the rats were divided into three groups based on the duration

of NTAPP treatment: 0 min (control group), 5 min, and 15 min. All the NTAPP treatments

were conducted at around 10 mm away from the nozzle exit. NTAPP treatment was adminis-

tered only once during surgery, as shown in Fig 1B. Each group was comprised of eight rats.

The non-union fracture model. A non-union fracture model was developed by modify-

ing the technique proposed by Kokubu et al. [43]. The periosteum surrounding the fracture

site was cauterized with a 2 mm margin on either side after creating a normal fracture model,

as shown in Fig 1C. In this study, two groups were defined based on the period of treatment

received. The control group was exposed only to the helium gas around the fracture site for 5

min, whereas the NTAPP-treated group was exposed to NTAPP for the same 5 min duration

(Fig 1D). Each group consisted of ten rats. The distance from the nozzle and the treatment

duration were similar to that used for the normal fracture model. We positioned this as our

main experiment and evaluated the treatment effect.

X-ray analysis. Radiography was performed postoperatively and evaluated using a previ-

ously reported scoring system based on cortical re-bridging and healing acceleration (Table 1)

[44]. A radiographic scoring scale was used to evaluate the fracture union. Radiographic scor-

ing was conducted by two authors (K. N. and K. O.) in a blinded manner. Radiography was

performed at 2 and 4 weeks after the surgery in the normal fracture model and at 2, 4, and 8

weeks after the surgery in the non-union fracture model, respectively.

Histological analysis. The femoral bone fractures in each group were harvested for histo-

logical evaluation after sacrifice. The soft tissues surrounding the fracture site were dissected

without excising the callus, and the Kirschner wire was carefully removed without any destruc-

tion of the callus. Each specimen was decalcified using 10% Ethylenediaminetetraacetic acid

(Muto Pure Chemicals Co. Ltd., Tokyo, Japan), dehydrated using an alcohol series, and

embedded in paraffin. Sections were cut at a thickness of 4 mm and stained using Masson’s tri-

chrome stain and Safranin-O/fast green (Safranin-O). Staining was performed based on the
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standard protocol. The sections were observed under a microscope (BX53F; Olympus, Tokyo,

Japan), and all images were captured by a digital camera (DP74, Olympus, Tokyo, Japan). His-

tological evaluation was performed at 2 and 4 weeks after the surgery for the normal fracture

model in the preliminary study and at 2, 4, and 8 weeks after the surgery for the non-union

fracture model in the main study, respectively.

Fig 1. A shows a plasma treatment on the rat model with either the normal or non-union fracture model during the surgery. B shows the fracture site of a

normal fracture model during the plasma treatment. C shows a non-union fracture model which was thermally damaged on the periosteum. D shows a plasma

treatment on the non-union fracture model during the surgery.

https://doi.org/10.1371/journal.pone.0298086.g001

Table 1. Radiographic scoring scale.

Points

No bridging, no callus formation 0

No bridging, initiation of a small amount callus 1

No bridging, obvious initial callus formation near fracture 2

No bridging, marked callus formation near and around fracture site 3

Rebridging of at least one of the cortices, marked callus formation near and around fracture site 4

Rebridging of at least one of the cortices, marked and complete callus formation around fracture site 5

Rebridging of both cortices, and/or some resolution of the callus 6

Clear rebridging of both cortices and resolution of the callus 7

https://doi.org/10.1371/journal.pone.0298086.t001
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Micro-computed tomography analysis. Rats in each group of the non-union fracture

model were sacrificed 8 weeks after the surgery, and the Kirschner wire was carefully

removed without disrupting the callus. The extracted rat femoral bones were subjected to

micro-computed tomography (μ-CT) (SMX-90CT Plus inspeXio; Shimadzu Co., Kyoto,

Japan) after the neutral buffered solution fixation process at room temperature. As

described previously, the reconstructed scanning data were used to quantify the new bone

volume using a 3D image processing software (ExFact VR; Nihon Visual Science Inc.,

Tokyo, Japan) [39, 45].

Biomechanical assessment. Seven rats in each group of the non-union fracture model

were sacrificed 8 weeks after the surgery. A standardized 3-point bending test was performed

on each group using a bending tester (EZ Graph, Shimadzu, Kyoto, Japan) [46, 47]. Two

parameters, the maximum load (N) and failure energy (mJ), were used to assess the strength at

the fracture site.

XPS. To identify surface chemistry changes in the rat femoral bone cortex, X-ray photoelec-

tron spectroscopy (XPS) was performed. XPS analysis was conducted in a laboratory using

small femoral bone tips (approximately 3 mm × 3 mm). XPS measurement for the same sam-

ple was performed twice. First, the femoral bone sample without NTAPP irradiation was ana-

lyzed using XPS (ESCA-3400, Shimadzu, Kyoto, Japan). Subsequently, the same bone sample

was re-analyzed by XPS after irradiation with NTAPP for 5 min on site.

Surface wettability. The water contact angle (WCA) was measured by a contact angle

analyzer (DMe-211, Kyowa Interface Sci. Co., Ltd., Tokyo, Japan) to investigate the surface

energy change after the exposure of NTAPP. Deionized water (1 mL) was dropped onto a

mid-shaft area of the femoral bone. The bone surface was either left untreated or treated with

NTAPP for 5 min.

In vitro study

Cell culture. The MC3T3-E1 murine pre-osteoblast cell line was purchased from the

RIKEN Cell Bank. MC3T3-E1 cells were grown at 37˚C in a moist atmosphere of 5% CO2 in

α-minimal essential medium (α-MEM, Wako Pure Chemical Co., Osaka, Japan) supple-

mented with 10%(v/v) fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, USA) and 1%(v/v)

penicillin-streptomycin (Wako Pure Chemical, Osaka, Japan).

NTAPP irradiation. The plasma jet apparatus was the same as in the animal study above.

The distance between the nozzle and the surface of the cell culture medium was fixed at 15

mm. NTAPP was directly irradiated into each solution in each well of a 24-well plate for each

experiment. Each experiment was conducted in the presence of 500 μL of medium to avoid cel-

lular desiccation in 24-well plates.

Cell proliferation. To assess the effect of direct irradiation with NTAPP on the prolifera-

tion of MC3T3-E1 cells, an MTT assay was conducted for each experimental condition using

an MTT Cell Proliferation/Viability Assay kit (R&D Systems, Minneapolis, USA) following

the manufacturer’s specifications. Briefly, 1.8 ×105 cells from cell culture passage five were

seeded onto a 24-well plate with-MEM containing 10% FBS. After cultivation for 24 h to allow

for sufficient cell attachment, the medium was replaced, and NTAPP was irradiated to the

fresh medium surface. NTAPP irradiation was conducted once, and irradiation duration was

relatively shorter at 5, 10, and 15 s, compared to the animal study, which was 5 min and 15

min. Two control groups were defined: untreated and irradiated with helium gas for 5 s. After

incubating for 24 h and 48 h, the MTT assay was performed. The absorbance was measured at

a fixed wavelength of 570 nm using a microplate reader (U-3000 spectrophotometer; Hitachi,

Tokyo, Japan). Each group was assessed in triplicates.
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Alkaline phosphatase (ALP) activity assay. An ALP activity assay was conducted to

assess the effect of direct irradiation with NTAPP on the osteoblastic differentiation of

MC3T3-E1 cells. Briefly, 1.0 ×105 cells from cell culture passage five were seeded onto a

24-well plate with MEM containing 10% FBS. After cultivating for 24 h to acquire sufficient

cell attachment, the medium was changed to α-MEM containing 10% FBS and osteoblast-

inducer reagents (OIR; Takara Bio Inc., Otsu, Japan), including L-ascorbic acid, hydrocorti-

sone, and β-glycerophosphate. The medium was refreshed every two days, and an ALP activity

assay was performed on the 6th day after the initial NTAPP irradiation. A negative control

group was defined as the group cultured in MEM, and a positive control group was defined as

the group cultured in OIR. None of the control groups received NTAPP irradiation. The Pierce

BCA Protein Assay Kit (Thermo Scientific, Rockford, USA) was used to measure the protein

concentration in each well. ALP activity was calculated based on the instructions of the Lab-

Assay ALP (Wako Pure Chemical Inc., Osaka, Japan), and the absorbance was measured at the

wavelength of 405 nm using a microplate reader. Each group was assessed in triplicates.

Statistical analysis

All data represent the mean ± standard deviation (SD). In the in vivo study, the Kruskal-Wallis

test was used for multiple comparisons of radiographic scores, and the Mann–Whitney U test

was used to compare the biomechanical assessment and new bone volume in the control and

NTAPP-irradiated groups. Radiographic scores were assessed using intraclass correlation coef-

ficients (ICC) interpreted as very good if 0.81–1.00, good if 0.61–0.80, moderate if 0.41–0.60,

fair if 0.21–0.40, and poor if< 0.20 [48]. One-way analysis of variance with a post hoc t-test

was used to compare differences in cell viability and ALP activity assays. Statistical significance

was set at P< 0.05. All analyses were performed using the EZR software (version 2.7–2; Sai-

tama Medical Center, Jichi Medical University, Shimotsuke, Japan).

Results

Radiological analysis of the normal fracture model

All rats having a normal fracture model demonstrated progressive recovery of the fracture site

over time, as evidenced by X-ray imaging (Fig 2A and 2B). The X-ray scores obtained at 2 and

4 weeks after surgery did not show any significant difference between the 5-minute irradiation

group (3.3 ± 2.0, 4.9 ± 1.0), the 15-minute irradiation group (4.5 ± 1.9, 4.6 ± 0.9), and the con-

trol group (3.0 ± 1.8, 4.7 ± 0.9) (Fig 2C). The ICC of the radiographic scores was 0.833, which

is considered to be reliable.

Histological analysis of the normal fracture model

Callus formation was observed around the fracture site at 2 weeks after the surgery in all three

groups, with irradiation times ranging from 0–15 mins. Safranin-O staining illustrated the

process of endochondral ossification (Fig 2D–2G). Endochondral ossification is a bone forma-

tion process in which the cartilage scaffold is gradually replaced by bone. Delayed fracture

healing due to NTAPP irradiation was not observed in any sample.

Surface chemistry and energy of rat femur

Fig 3 shows the typical XPS spectra of plasma-treated and untreated rat femurs. The XPS

results showed a significant: relatively higher intensity of the O1s peak at 533 eV and a smaller

intensity of C1s peak at 286 eV after 5 min of NTAPP irradiation (Fig 3A) compared to the

untreated surface. It is clearly shown that the O1s/C1s ratio increased after NTAPP treatment

PLOS ONE Fracture healing promoted by gas discharge plasma

PLOS ONE | https://doi.org/10.1371/journal.pone.0298086 April 16, 2024 6 / 20

https://doi.org/10.1371/journal.pone.0298086


(pristine; 44.6 ± 10, NTAPP treated; 120.9 ± 110.2) (Fig 3B). It seems that the O1s/C1s increase

may be due to the oxidization by the reactive oxygen species which was generated by an inter-

action between the plasma species (ionized gas) and ambient air. The bone surface was oxi-

dized after plasma treatment for 5 min.

Fig 2. A shows X-ray images of normal fracture models with and without plasma treatment after 2 weeks of the surgery. B shows X-ray images of normal

fracture models with and without plasma treatment after 4 weeks of the surgery. C shows the summary of the radiographic scores of the X-ray images; the

5-minute irradiation group (3.3 ± 2.0, 4.9 ± 1.0), the 15-minute irradiation group (4.5 ± 1.9, 4.6 ± 0.9), and the control group (3.0 ± 1.8, 4.7 ± 0.9). Tissue

sections of normal fracture models D shows Masson’s trichrome staining, and E shows Safranin-O staining at 2 weeks after the surgery. Tissue sections of

normal fracture models F show Masson’s trichrome staining and G shows Safranin-O staining at 4 weeks after the surgery. The scale bar indicates 500 μm.

https://doi.org/10.1371/journal.pone.0298086.g002
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Fig 3. A shows a comprehensive XPS spectrum scan conducted on-site, comparing plasma-treated samples with untreated controls (pristine). Following

plasma treatment, O1s levels significantly increased, accompanied by a reduction in C1s levels. Furthermore, basic elements of phosphorus and calcium

appeared following the plasma treatment. B shows the O1s/C1s ratio of pristine and plasma treatment. C shows water contact angles of pristine and plasma

treatment, indicating the bone surface to be hydrophilic after the plasma treatment.

https://doi.org/10.1371/journal.pone.0298086.g003
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The WCA of 17.8˚ ± 3.5 for the NTAPP-treated femur bone surface was measured. It is

much lower than that of the untreated femoral bone surface, which was 67.4˚ ± 9.9 (Fig 3C).

Together, NTAPP irradiation for 5 min affected the surface chemistry of the bone surface and

surface energy.

X-ray imaging analysis of the non-union fracture model

The X-ray examination results for the non-union fracture model are shown in Fig 4. The

NTAPP-treated group showed considerable callus formation around the fracture site at 4

weeks after the surgery. The calluses connect both ends of the fracture gap and fill the cortical

gaps on both sides. The callus was consolidated 8 weeks postoperatively, and the remodeling

process commenced. In contrast, the control group showed no obvious callus around the frac-

ture sites during the observation period of up to 8 weeks. At 8 weeks, the edges of the fracture

site appeared atrophic, resulting in a non-union appearance.

Fig 4C shows the radiographic fracture scores for each period. 2 weeks after the surgery,

there were no significant differences between the control (0.5 ± 0.67) and NTAPP-treated

groups (1.0 ± 0.77), respectively. Of course, the scores are much smaller than those of the nor-

mal fracture models, as shown in Fig 2C. These scores do not increase much even after 8

weeks in the case of control. This reflects well the severe conditions of the non-union fracture

model. At 4–8 weeks after the surgery, consistent with the imaging results, the NTAPP group

showed significantly improved scores of 3.6±0.66, P< 0.01 at 4 weeks and 5.5±1.6, P< 0.01 at

8 weeks, compared to the control group 0.8 ± 0.6 at 4 weeks and 1.2 ± 1.0 at 8 weeks, respec-

tively. The ICC of the radiographic scores was 0.823, which was considered reliable.

Histological analysis of the non-union fracture model

In the control group, Masson’s trichrome staining revealed that the fracture gap was filled with

fibrous tissue. The border between the fractured bone and fibrous tissue was clearly observed

in any cases 2, 4, and 8 weeks after the surgery (Fig 5A). Conversely, in the NTAPP-treated

group (Fig 5C), bridging callus around the fracture site was observed 4 weeks after the surgery.

Furthermore, the fracture gap was nearly bridged by abundant calluses at 8 weeks after the

surgery.

Histological examination with Safranin-O staining was also demonstrated. In the control

group, very few chondrogenic lesions were observed around the fracture site within 8 weeks.

The presence of only a small number of chondrogenic lesions in the non-union fracture model

clearly indicates its distinctiveness from the normal fracture model in Fig 5B. This indicates

that the process of healing the fracture has not made significant progress. The NTAPP-treated

group showed improved endochondral ossification 4 weeks after the operation (Fig 5D). At 8

weeks, it is significant that the cartilage-forming area began to disappear slightly, and the carti-

lage-forming area was replaced by newly formed bone. This is clear evidence that the bone

union has progressed in the non-union fracture model after the single plasma treatment with

NTAPP irradiation for 5 min at the surgery. Taken together, endochondral ossification clearly

started at 4 weeks, and bone healing progressed through 8 weeks in the NTAPP group, whereas

bone formation was not observed in the control group.

Micro-CT and biomechanical analysis

Fig 6 shows the representative 3D-reconstructed CT images of the femoral bone and the vol-

ume of new bone at the fracture site. The NTAPP-treated group contained significantly more

volume of new bone (98.2 ± 30.3 mm3, P< 0.01) than the control group (38.7 ± 11.4 mm3,

P< 0.01), respectively, in Fig 6D).
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Moreover, the maximum load in Fig 6E and failure energy in Fig 6F were significantly

higher in the NTAPP-treated group compared to the control group. These results reflect well

the strong correlation between the mechanical property and the fracture healing progress.

Effect of NTAPP on MC3T3-E1 cell proliferation

MC3T3-E1 cell viability was determined after incubation for 24 and 48 h (n = 6 for each

group). The viability of cells treated with NTAPP irradiation for 5, 10, and 15 s and with 5 s of

irradiation with He gas or no treatment was not significantly different (Fig 7A). We confirmed

that NTAPP irradiation for 5–15 s did not have any harmful effects on the cells compared to

the controls. Based on these findings, we investigated the effect of this dose on osteoblast

differentiation.

Osteoblastic differentiation after irradiation of NTAPP

The ALP activity in NTAPP-treated MC3T3-E1 cells was measured after incubating for 6 days,

as shown in Fig 7B. ALP activity in MC3T3-E1 cells is increased in all cases of NTAPP irradia-

tion. The activity was significantly higher after irradiation compared to the positive control

(OIR). Regarding the effect of NTAPP irradiation, ALP activity did not differ significantly in

response to the differing duration of NTAPP irradiation.

Discussion

Non-thermal atmospheric-pressure plasma (NTAPP) has been used in medical treatments,

and its effect on wound healing [35, 36], hemostasis [49], sterilization [31–34, 50], and cancer

treatment [51–53] have been previously reported. Shimatani et al. reported the effects of

NTAPP on bone regeneration in a rabbit model of an ulnar bone critical-size defect [39]. In

this study, we investigated the effects of NTAPP using a clinically relevant rat model of normal

and non-union fracture models, and an in vitro study of MC3T3-E1 cells, which are known to

continuously express osteoblastic factors similar to those of bone formation in vivo [54].

For the in vivo study, we irradiated a normal fracture model with NTAPP. In this model,

every group showed bone healing after 4 weeks, and we could not detect a treatment-specific

effect of NTAPP. However, this also demonstrated that NTAPP irradiation for 5–15 min was

not harmful and did not hinder the process of bone-union. Next, we investigated whether irra-

diation for a short-term affected the extracellular matrix, using XPS and WCA. It was revealed

that a 5 min irradiation changes both the surface chemistry and surface wettability of the bone

surface. Based on these results, a 5 min irradiation that affects the bone surface within a safe

range was adopted for studying the non-union fracture model. The results showed that

NTAPP irradiation of the non-union fracture model promoted bone healing and improved

the biomechanical properties. In addition, the histological evaluation showed that Masson’s

trichrome staining had very few calluses in the control group. In contrast, rich calluses were

observed in the NTAPP-treated group, indicating continued progression of normal bone heal-

ing. Safranin-O staining revealed endochondral ossification around the fracture site.

Fracture healing occurs when mesenchymal stem cells (MSCs) differentiate into osteoblasts

and chondrocytes. Further, stem cells are recruited from the periosteum, muscle tissue, and

bone marrow. Because the periosteum is cauterized in the non-union model, stem cells neces-

sary for fracture healing are recruited primarily from the environment surrounding the

Fig 4. A shows X-ray images of the non-union fracture model, which are untreated controls 2, 4, and 8 weeks after the surgery. B shows X-ray images of the

non-union fracture model with plasma treatment after 2, 4, and 8 weeks of the surgery. C shows the summary of the radiographic scores of the X-ray images.

https://doi.org/10.1371/journal.pone.0298086.g004
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fracture site, including the muscle tissue and bone marrow. The control group did not show

adequate bone healing. However, the NTAPP-treated group initiated endochondral ossifica-

tion, which eventually progressed to bone healing. This could be because the control group did

not achieve bone healing as they did not have enough stem cells recruited. In contrast, the

NTAPP-treated group effectively recruited and proliferated stem cells from the muscle tissue

and bone marrow near the fracture site affected by NTAPP. This process may have contributed

to the successful maintenance of bone union. Moriguchi et al. reported that NTAPP improves

the wettability of artificial bone consisting of hydroxyapatite (HA) and increases osteoconduc-

tivity [55]. As we applied NTAPP only during the initial operation for 5 min, this effect of

NTAPP on bone material to improve osteoconductivity may be advantageous in the early

phase of the recruitment of undifferentiated mesenchymal cells.

Furthermore, fracture healing proceeds in five sequential temporal phases: (i) hematoma

formation, (ii) inflammation, (iii) angiogenesis, (iv) cartilage formation, and (v) bone remod-

eling [56, 57]. Several studies have shown that NTAPP affects angiogenesis [58–60] and modu-

lates inflammation [60–63]. Duchesne et al. found that NTAPP modulates endothelial nitric

oxide synthase (eNOS) signaling and promotes angiogenesis [59]. In another study by Tan

et al., NTAPP promoted the angiogenesis of the rat cutaneous wound model by upregulating

proangiogenic markers CD31, VEGF, and TGF-β [60]. Regarding modulating inflammation,

Liu et al. reported that NTAPP activated nuclear transcription factor κB (NF-κB), which regu-

late, immune response, and inflammation [62]. Paola et al., further found that the PPAR-c

anti-inflammatory molecular pathway was activated by NTAPP [63]. Because angiogenesis

and inflammatory control are important factors in bone healing, they should be further inves-

tigated in the future, using in vivo fracture models. NTAPP may affect some of the bone-heal-

ing processes.

We conducted an in vitro study to test the effect of NTAPP on the cell viability and differen-

tiation of MC3T3-E1 cells treated with the same device used in animal experiments to investi-

gate the influence of NTAPP on osteoblasts. Regarding cell viability, no significant difference

was observed in the 24 h and 48 groups after NTAPP irradiating for 5–15 s.

These non-toxic doses were then used for the cell differentiation assays. To evaluate the

effect of NTAPP on cell differentiation, we measured the activity of ALP, a marker of osteo-

blast differentiation, in MC3T3-E1 cells. In this protocol, since medium exchange is necessary,

NTAPP was irradiated every two days simultaneously with medium exchange to maintain the

culture environment in the medium treated with NTAPP. The results showed that irradiation

for 5–15 s significantly increased ALP activity compared to the positive control. There was no

significant difference in the ALP activity between the groups treated with differing durations

of NTAPP irradiation, suggesting that even a short irradiation duration of 5 s may stimulate

cell differentiation. Regarding short-term irradiation, Tominami et al. demonstrated that even

5 s of irradiation could facilitate reactions between radicals and the culture medium [64]. In

their work, they argued that chemical species generated secondarily by the reaction between

the radicals and the culture medium stimulated osteoblastic differentiation of the cells.

The diverse effects of NTAPP irradiation can be attributed to its complex chemical compo-

sition, which is influenced by various conditions under which it is produced. It has long been

reported that reactive oxygen and nitrogen species (RONS) generated by NTAPP play a key

role in cellular responses in vitro and in vivo [29]. Reactive oxygen and nitrogen species

Fig 5. Tissue sections of non-union fracture models without plasma treatment, A shows Masson’s trichrome staining,

and B shows Safranin-O staining at 2, 4, and 8 weeks after the surgery. Tissue sections of non-union fracture models

with plasma treatment, C shows Masson’s trichrome staining, and D shows Safranin-O staining at 2, 4, and 8 weeks after

the surgery. The scale bar indicates 500 μm.

https://doi.org/10.1371/journal.pone.0298086.g005
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Fig 6. A and B show representative images (left image of each pair) of 3D-reconstructed μ-CT and coronal plane views

(right image of each pair) for untreated control and plasma treated non-union fracture models, respectively, at 8 weeks

after the surgery. C shows new bone volume calculated using a 3D image processing software (ExFact VR; Nihon

Virtual Science). D shows the bar graph illustrating the new bone volume comparing the control with NTAPP-treated

group. E shows the maximum load, and F shows the failure energy of the femur of rats with and without NTAPP

treatment at 8 weeks after the surgery. Mechanical properties were improved after the NTAPP treatment.

https://doi.org/10.1371/journal.pone.0298086.g006
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(RONS) include superoxide anion (O2
−), hydroxyl radical (OH•), hydrogen peroxide (H2O2),

nitric oxide (NO), peroxynitrite (ONOO−), and other related compounds originating from cel-

lular metabolic processes and the external environment [62]. Normal levels of RONS play cru-

cial roles in signal transduction in organisms. Although a higher dose of RONS induces

apoptosis and necrosis [65]. However, we did not observe any impairment in the proliferation

of MC3T3-E1 cells. Liu et al. reported that the production of intracellular RONS increased

with prolonged NTAPP treatment time [62]. Therefore, the irradiation time used in this study

may have been appropriate, without affecting the cell viability. Furthermore, increased ALP

activity after multiple irradiations promotes early osteoblast differentiation.

This study had several limitations. First, we did not evaluate the potential long-term effects

of NTAPP in this study. However, to the best of our knowledge, no serious adverse effects of

prolonged irradiation have been reported in the literature. Several studies have evaluated the

effects of NTAPP on major organs in animal models and have reported no significant safety

concerns [66–68]. However, Najafzadehvarz et al. reported prolonged irradiation time and

shortened NTAPP distance in certain modes, resulted in epithelial tissue damage in animal

models [69]. The optimal conditions for NTAPP use and its long-term effects must, therefore,

be carefully investigated. Second, the basic mechanism by which NTAPP promotes bone heal-

ing in a non-union fracture model remains unknown. This study showed that callus formation

was triggered by endochondral ossification in vivo and promoted cell differentiation in vitro.

Further gene-level analyses may shed more light on this mechanism. Third, this study used

MC3T3-E1 cells, which are immortalized cells; MC3T3-E1 cells have been commonly used in

many studies for studying osteoblasts, but primary cells would be more relevant and a better

model for future use.

Finally, NTAPP is composed of multiple components, including electrically neutral RONS,

charged species, and high-energy photons [29, 70], and the key component that promotes

bone healing is unclear. However, these factors are expected to be comprehensively involved

in the environment where NTAPP is applied. Nevertheless, this study confirmed the bone-

regenerative potential of NTAPP irradiation both in vivo and in vitro. These results may con-

tribute to the development of fracture treatments, including fracture non-unions. In the future,

genetic analyses to elucidate the inherent mechanisms promoting bone healing and evaluation

of the effect of NTAPP on mesenchymal stem cells are needed.
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