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Abstract

Background

As a leading cause of mortality and long-term disability, acute ischemic stroke can produce

far-reaching pathophysiological consequences. Accumulating evidence has demonstrated

abnormalities in the lower motor system following stroke, while the existence of Transsynap-

tic degeneration of contralateral spinal cord ventral horn (VH) neurons is still debated.

Methods

Using a rat model of acute ischemic stroke, we analyzed spinal cord VH neuron counts con-

tralaterally and ipsilaterally after stroke with immunofluorescence staining. Furthermore, we

estimated the overall lower motor unit abnormalities after stroke by simultaneously measur-

ing the modified neurological severity score (mNSS), compound muscle action potential

(CMAP) amplitude, repetitive nerve stimulation (RNS), spinal cord VH neuron counts, and

the corresponding muscle fiber morphology. The activation status of microglia and extracel-

lular signal-regulated kinase 1/2 (ERK 1/2) in the spinal cord VH was also assessed.

Results

At 7 days after stroke, the contralateral CMAP amplitudes declined to a nadir indicating

lower motor function damage, and significant muscle disuse atrophy was observed on the

same side; meanwhile, the VH neurons remained intact. At 14 days after focal stroke, lower

motor function recovered with alleviated muscle disuse atrophy, while transsynaptic degen-

eration occurred on the contralateral side with elevated activation of ERK 1/2, along with the

occurrence of neurogenic muscle atrophy. No apparent decrement of CMAP amplitude was

observed with RNS during the whole experimental process.

Conclusions

This study offered an overview of changes in the lower motor system in experimental ische-

mic rats. We demonstrated that transsynaptic degeneration of contralateral VH neurons
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occurred when lower motor function significantly recovered, which indicated the minor role

of transsynaptic degeneration in lower motor dysfunction during the acute and subacute

phases of focal ischemic stroke.

Introduction

Acute ischemic stroke, a principal cause of mortality and long-term disability, produces

immense health and economic burdens globally [1]. In recent years, a growing number of

studies have focused on the far-reaching pathophysiological consequences of stroke, such as

impaired motor pathways, autonomic dysfunction and peripheral immunodepression [2].

Among these sequelae, motor pathway impairment is the major factor contributing to func-

tional disability. Therefore, a better understanding of the physiological and pathological

changes in the motor pathway after stroke is necessary, which is key to identifying suitable

neuromodulation therapies and rehabilitation strategies.

The term “transsynaptic degeneration” is used to describe the phenomenon that secondary

neurodegeneration could occur in remote regions from the primary site of damage, spreading

between directly anatomically connected neurons [3–8], or between not directly connected

neurons [9] in pathological conditions, including cerebral infarction, neurodegenerative dis-

eases and retinal diseases. The existence of transsynaptic degeneration of contralateral spinal

ventral horn (VH) neurons following an ischemic stroke is still in dispute [10–14], although

motor unit loss following stroke has been reported and confirmed by previous clinical studies

[13, 15–18] and animal experiments [19, 20].

The mechanisms driving transsynaptic degeneration have not yet been thoroughly eluci-

dated. Improper activation of the inflammatory response, neurotoxic factors, oxidative dam-

age and apoptosis were proposed to play a role in triggering this devastating progression [6,

21–24]. During inflammatory response in the central nervous system, microglia are important

innate immune cells, and are the first cell type to respond to insults. Wu and colleagues

observed recruitment and activation of microglia in both the contralateral dorsal and ventral

horns of the lumbar spinal cord in rats after permanent occlusion of the middle cerebral artery

(MCA) [22]. Work performed by Hosp and colleagues revealed a mild inflammatory response

in the exofocal area where dopaminergic neurodegeneration was detected following motor-

cortical stroke, suggesting inflammation was not driving neurodegeneration [9]. Hence, more

work is required to determine the role of microglia in transsynaptic degeneration. Moreover,

increasing evidence has indicated a deleterious effect of extracellular signal-regulated kinase

(ERK) pathway activation in pathological conditions such as neurodegenerative diseases and

spinal cord injury [25–28], while little is known about the role of ERK pathway activation in

transsynaptic degeneration.

Herein, using a rat model of acute ischemic stroke, we aimed to investigate the overall path-

ological and physiological changes in the lower motor unit over time after stroke by measuring

the modified neurological severity score (mNSS), compound muscle action potential (CMAP)

amplitude, repetitive nerve stimulation (RNS), spinal cord VH neuron counts, and the corre-

sponding muscle fiber morphology simultaneously, which was different from previous studies

where researchers usually focused on abnormalities in one anatomically isolated region. In

addition, the activation statuses of microglia and ERK1/2 were assessed to preliminarily eluci-

date the mechanism underlying neuronal transsynaptic degeneration.
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Materials and methods

Animals

Adult male Sprague-Dawley rats were obtained from the Animal Center of Peking Union

Medical College Hospital (PUMCH) (n = 49, 300–380 g). We abided by the NIH guidelines for

the care and use of laboratory animals (8th edition, NIH), and all animal experiments were

approved by the Ethics Committee of the PUMCH (license number: XHDW-2021-031).

Research staff were trained by Beijing Association on Laboratory Animal Care. All animals

were taken good care of, housed in cages with a 12/12-h light/dark cycle at room temperature,

and had access to food and water ad libitum. Before surgery and electrophysiological examina-

tions, rats were deeply anesthetized with 2% isoflurane. During the operation, the respiration

rate was monitored, and the body temperature was maintained at 37˚C using a heated pad.

After surgery, animals received a subcutaneous injection of buprenorphine for analgesia (0.02

mg/kg). The overall health and incision healing status of each rat were closely observed daily.

All efforts were made to minimize suffering.

Rats were randomly assigned to two groups: (1) 44 rats were subjected to the MCA occlu-

sion (MCAO) method of ischemic stroke. Seven rats died during the perioperative period,

because of severe brain edema or subarachnoid hemorrhage (the autopsy confirmed). Twelve

rats were excluded for severe functional deficits (mNSS� 7) at 1 day post stroke because they

had problems eating and drinking and a minority of these rats survived 14 days post stroke.

Fifteen rats were excluded for minor functional deficits (mNSS� 2). Ultimately, 10 rats were

included in the MCAO groups, 5 of which were sacrificed on day 7 after stroke (MCAO-7d

group, n = 5), and the other 5 rats were sacrificed on day 14 after stroke (MCAO-14d group,

n = 5). (2) Five rats were subjected to sham surgery (control group, n = 5).

In total, 27 rats were euthanized by isoflurane overdose according to mNSS score (men-

tioned above) immediately after the first assessment of post-stroke deficits (1 day after

MCAO). The other 15 rats used for experiments were sacrificed on day 7 post stroke, on day

14 post stroke, or on day 14 post sham surgery by isoflurane overdose.

Investigators performing experimental assessments were blinded to the group assignment.

Induction of permanent focal ischemic stroke

Permanent focal cerebral ischemia was induced as described previously [29]. Briefly, anesthe-

tized animals were laid on a warm operation table, and the right common carotid artery

(CCA), the internal carotid artery (ICA), and the external carotid artery (ECA) were exposed.

Then, the ECA was ligated, and the CCA and the ICA were temporarily clipped with a vessel

clip. A monofilament nylon suture (diameter = 0.40 mm; Beijing CinonTech, China) was then

inserted into the ICA, the vessel clip on the ICA was removed, and then the suture was gently

advanced until resistance was felt, indicating that the tip of the suture had reached the proxi-

mal segment of the anterior cerebral artery (ACA). This nylon suture was left in place until sac-

rifice. Rats in the control group received sham surgeries in which only the CCA, ICA, and

ECA were exposed.

As we noted, nylon sutures without any coating materials obtained from Beijing CinonTech

were used for MCAO model establishment, which had a round tip and a thick wire (diameter

ratio: 1.5/1). The manufacturer recommended this kind of suture to induce a permanent

MCAO model. After surgery, the blood flow from the ACA was entirely blocked, while a small

stream of blood flow might run through the remaining lumen of the ICA into the MCA. The

features of the nylon sutures used in this study might lead to variability in the neurological
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deficit scale, while enabling most of the MCAO rats to exhibit a mild to moderate neurological

deficit and survive longer.

Assessment of post-stroke deficits

We employed the widely used and accurate scale, the modified neurologic severity score

(mNSS) [32], to evaluate the post-stroke neurological functional deficits of animals. This scale

was composed of tests on motor, sensory, reflex, balance and abnormal movements with scores

ranging from 0 to 18 (normal score, 0; maximal deficit score, 18) (details of how mNSS scoring

was performed were shown in S1 Table, referring to the work of Chen et al. [30]).

In vivo longitudinal evaluations were carried out at baseline, and were repeated at 1 day, 7

days, and 14 days after stroke. Rats with severe functional deficits (mNSS� 7) at 1 day post

stroke were excluded because they had problem eating and drinking, and a minority of these

rats survived 14 days post stroke. Rats with very slight deficits (mNSS� 2) were excluded as

well.

Electrophysiological assessment

CMAP amplitudes were recorded from the bilateral gastrocnemius after stimulation of the sci-

atic nerve using a portable electromyography (EMG) machine (10CH Medelec Synergy, Natus

Europe GmbH, Germany) as previously reported by Lin [19] with surface stimulating and

recording electrodes (to avoid muscle injury). Briefly, under anesthesia (2% isoflurane), the

sciatic nerve was stimulated at the root of the hindlimb, and the surface stimulating electrode

was placed at the anterior superior iliac spine. CMAPs were recorded by surface electrodes on

the gastrocnemius, and CMAP amplitudes were measured from onset to the negative peak.

For the RNS test, at least 10 stimuli with a low frequency of 5 HZ were performed. Decrements

of the amplitudes from the first to fifth CMAPs were recorded, and a decline proportion of at

least 15% was regarded as abnormal. To evaluate the overall motor function of the spinal cord

and peripheral nervous system, CMAP amplitudes and RNS were recorded at baseline and

were repeated at 1 day, 7 days, and 14 days after stroke.

Tissue preparation

Rats were sacrificed on day 7 post stroke, on day 14 post stroke, or on day 14 post sham surgery

by isoflurane overdose. Animals were perfused transcardially with 4% paraformaldehyde

(PFA). Then the brain, L4-L5 spinal cord, and gastrocnemius muscles were removed quickly.

These tissues were kept in 4% PFA for 24 h before being embedded in paraffin, and then cut

into slices coronally (the brain) or transversely (the spinal cord and gastrocnemius muscles).

Hematoxylin and eosin (H&E) staining

The 10-μm-thick sections of the brain, the L4-L5 spinal cord, and the gastrocnemius muscle

were used for H&E staining. Briefly, sections were deparaffinized, rehydrated, and stained

with hematoxylin for 3 min. Then sections were washed with running water for 15 min, and

stained in eosin for 15 min followed by washing in a 70, 80, 90, 95, and 100% EtOH series.

Finally, the sections were washed twice in xylene and then examined by light microscopy

(Nikon Eclipse E100). Muscle fiber diameters were measured in photomicrographs of H&E-

stained muscle tissue sections with ImageJ software. Fifty myofibers per condition were

counted (muscle fibers with possible neurogenic atrophy, shrinkage in size and angular

appearance were excluded).
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Immunofluorescent labeling

The 3-μm-thick sections of the lower lumbar spinal cord were utilized for immunofluorescent

labeling. Briefly, sections were deparaffinized through a standard procedure and blocked with

1% BSA in phosphate-buffered saline with 3% Triton-X-100. Sections were then incubated

with primary antibody solution at 4˚C overnight and then incubated with secondary antibod-

ies for 2 h at room temperature. Sections were mounted and examined under a fluorescence

microscope (Nikon Eclipse C1). The primary antibodies included rabbit polyclonal anti-neu-

rofilament-200 (anti-NF-200) (1:200; 18934-1-AP, ProteinTech, China), mouse monoclonal

anti-phospho-ERK1/2 (1:50; 5726S, CST, USA), and rabbit monoclonal anti-Iba-1 (1:100;

ab178846, Abcam, MA). The secondary antibodies included CoraLite488-conjugated Affini-

pure Goat anti-rabbit IgG (H+L) (1:100; SA00013-2, ProteinTech, China) and CoraLite594--

conjugated goat anti-mouse IgG(H+L) (1:200; SA00013-3, ProteinTech, China).

The VH area was defined as the area ventral to the horizontal line passing through the cen-

tral canal. VH motor neurons can be identified based on staining of neuron-specific markers

(such as Nissl substance, NeuN, SMI-32, or NF-200) along with morphological criteria of large

size, multipolar and obvious nuclei [8, 12, 31–35]. In this study, only NF-200-positive VH

horn cells with a distinct nucleus and a soma diameter of� 25 μm were counted as lower

motor neurons. Microglia were defined as iba-1-positive cells with DAPI-positive nuclei, and

were counted bilaterally. NF-200-positive VH cells coexpressing p-ERK1/2 were also counted.

Statistical analysis

The software IBM SPSS Statistics, version 22, was employed for statistical analysis. All data

were processed to verify the normality test for variables. If the normality test failed, the data

were analyzed with non-parametric test. If the normality test passed, we conducted statistical

analysis with one-way analysis of variance (one-way ANOVA) followed by the Student-New-

man-Keuls test (homogeneity of variance) or Dunnett’s T3 test (heterogeneity of variance) to

compare independent variables (the pathological findings on the paretic side among various

groups). The mNSS progression between different time points was compared using the Wil-

coxon matched-pair signed ranks test. The electrophysiological results at different time points,

as well as the pathologic results between bilateral sides at one time point, were compared using

paired t-tests. Throughout the results section, data is listed as mean ± standard deviation.

p< 0.05 was employed to delineate significance for analysis of all results.

Ethical publication statement

We confirm that we have read the Journal’s position on issues involved in ethical publication

and affirm that this report is consistent with those guidelines.

Results

MCAO rats exhibited neurologic deficits that recovered with time

To roughly display the successful establishment of MCAO models, H&E staining of coronal

brain sections were conducted for pathological assessment. As shown in Fig 1A, the brain tis-

sue ipsilateral to MCAO appeared loose and lightly stained, with enlarged interstitial spaces,

compared to the contralateral half of the brain. At 7 days after MCAO, the ipsilateral cortex

was infarcted with obvious edema, and the ipsilateral lateral ventricle disappeared in this sec-

tion, while at 14 days after surgery, brain edema was significantly relieved. The neurological

functional deficits were estimated using the mNSS at 1 day, 7 days, and 14 days after MCAO

or sham surgery, as shown in Fig 1B. The mNSS peaked at 1 day after surgery in MCAO rats
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(n = 10, 4.0 ± 0.9) and was significantly reduced by 45% at 7 days (n = 10, 2.2 ± 0.6) (p< 0.01),

indicating a distinct functional recovery. At 14 days post-MCAO, neurological deficits were

recovering but the mNSS scores were still trending increased compared to controls (n = 5,

1.0 ± 0.5). The deficits related to hindlimb function could be estimated by flexion of the hin-

dlimb and the walking test in the mNSS assessment, and at least 1 point was awarded in

MCAO rats at 1 day after surgery. The function of the hindlimb partially recovered as esti-

mated by the motor section of the mNSS (scored 0–1 in flexion of the hindlimb and the walk-

ing test at 14 days after surgery). Additionally, flexion of the forelimb was the most common

deficit observed at 14 days post MCAO. No changes were observed in the scores of rats in the

sham group at different time points (0 points).

CMAP amplitudes decreased in the contralateral hindlimb after focal

cerebral ischemic stroke

The abnormalities in CMAPs could reflect integral impairments in the lower motor unit,

including impairments in VH neurons, the motor fibers of peripheral nerves, neuromuscular

junctions and skeletal muscles. Hence, we carried out motor nerve conduction studies to

record CMAPs at baseline, and repeated them at 1 day, 7 days, and 14 days after MCAO or

sham surgeries. As exhibited in Figs 1 and 2, MCAO rats experienced the most severe neuro-

logical functional disability at 1 day post stroke, and recovered with time. In contrast, CMAP

amplitudes of the paretic limbs were significantly reduced and reached a minimum at 7 days

after stroke (n = 10, at baseline = 44.4 ± 3.7 mV, day-1 = 44.3 ± 4.7 mV, day-7 = 34.0 ± 3.3 mV;

Fig 1. Evaluation of neurological deficits in control and MCAO rats. Panel A: Images indicating the extent of a focal

ischemic lesion in the brain. Panel B: Neurological deficits evaluated by the mNSS attenuated with time after surgery.

At baseline, day 1 and day 7, n = 5 in the MCAO-7d group, n = 5 in the MCAO-14d group, n = 5 in the control group;

on day 14, n = 5 in the MCAO group, n = 5 in the control group. Bar graphs with error bars represent the mean ± SD.

The Wilcoxon matched-pair signed rank test was used. In the MCAO group, day-1 vs. day-7, **p< 0.01; day-7 vs. day-

14, p = 0.059.

https://doi.org/10.1371/journal.pone.0298006.g001
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n = 5, day-14 = 39.5 ± 4.7 mV; day-1 vs. day-7, p< 0.001). The CMAP amplitudes of the unaf-

fected limbs exhibited a slight reduction on day 7 in MCAO rats, compared with the day-1 val-

ues, but the difference was not significant (n = 10, at baseline = 45.0 ± 4.25 mV, day-

1 = 44.9 ± 4.9 mV, day-7 = 42.8 ± 4.1 mV; n = 5, day-14 = 43.5 ± 4.0 mV; day-1 vs. day-7,

p = 0.146). In the control group, CMAP amplitudes at different time points were not signifi-

cantly different.

Transsynaptic degeneration in the contralateral VH occurred in the

subacute phase of ischemic stroke

To evaluate whether transsynaptic degeneration of VH neurons existed, we recorded the

motor neuron number in the contralesional VH, and compared it with that in the ipsilesional

Fig 2. Detection of CMAP amplitudes in control and MCAO rats. Panel A: Representative images of CMAPs in one

MCAO rat in the MCAO-14 group. The numbers “1”, “2” and “3” indicate the onset, the negative peak and the end of

the negative wave of the CMAP, respectively. CMAP amplitude was measured from onset to the negative peak. Panel

B: Data represent variables of CMAP amplitudes quantified from the contralateral and ipsilateral hindlimbs after focal

ischemic injury or sham surgery. At baseline, day-1 and day-7, n = 10 in the MCAO group, n = 5 in the control group;

on day 14, n = 5 in the MCAO group, n = 5 in the control group. Bar graphs with error bars represent the mean ± SD.

A paired t-test was employed in the statistical analysis. Day-1 vs. day-7 in the contralateral side of MCAO rats,

***p< 0.001. Day-7 vs. day-14 in the contralateral side of MCAO rats, **p< 0.01. Contralateral vs. ipsilateral on day-7

in MCAO rats, **p< 0.01. Contralateral vs. ipsilateral on day-14 in the same rat, *p< 0.05.

https://doi.org/10.1371/journal.pone.0298006.g002
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VH in MCAO rats, or compared it with that in the contralateral VH in the sham surgery

group. The contralesional VH neuron number in the MCAO-7d group was not significantly

different from that in the control group, while there was a significant difference in contrale-

sional VH neuron numbers between the MCAO-14d group and the control group (n = 5 in

each group, in the contralateral VH, control = 12.8 ± 1.3, MCAO-7d = 13.2 ± 3.7, MCAO-

14d = 8.2 ± 1.6. Control vs. MCAO-14d, p< 0.01.). Comparisons between the ipsi- and con-

tralesional regions in the lower lumbar spinal cord revealed a selective loss of NF-200-positive

neurons on the contralateral side at 14 days post-stroke (n = 5, ipsilesional = 12.6 ± 2.9, con-

tralesional = 8.2 ± 2.7, p< 0.01), as shown in Fig 3A and 3B. Moreover, at 14 days post-

MCAO, upregulated activation of ERK1/2 occurred in the bilateral VH, and positive p-ERK

immunoreactivity was mainly located in the cytoplasm of the VH motor neurons (n = 5, the

number of p-ERK-positive neurons in the ipsilesional VH = 6.4 ± 2.8, the number of p-ERK-

positive neurons in the contralesional VH = 7.2 ± 0.8, p = 0.512) (Fig 3A and 3C). The propor-

tion of p-ERK-positive VH neurons significantly increased in the contralateral side (n = 5,

88.7 ± 11.6%), compared to that in the ipsilateral side in the same MCAO rat (n = 5,

51.4 ± 18.7%, p< 0.05), or compared to that in the contralateral side in the control group

(n = 5, 18.0 ± 13.4%, p< 0.001) (Fig 3A and 3D).

Microglial recruitment and activation in the contralateral VH appeared at

the early time post stroke

To estimate the status of neuroinflammation, and to superficially evaluate its role in the occur-

rence of transsynaptic degeneration, we labelled spinal cord microglial cells with an anti-iba-1

antibody, counted the number of iba-1-positive cells and observed their morphology. On day

7 post MCAO, microglial cells recruited to the contralateral VH, leaving the ipsilateral VH

almost intact ((n = 5, ipsilesional = 26.4 ± 5.0, contralesional = 47.6 ± 12.8, p< 0.05) (Fig 4).

The recruited microglial cells exhibited a long-rod morphology with reduced branching, indi-

cating an activated status of these cells. On day 14 post MCAO, the upregulated inflammatory

response was partially relieved spontaneously with attenuated microglia recruitment (n = 5 in

each group, in the contralateral VH, control = 24.8 ± 3.0, MCAO-7d = 47.6 ± 12.8, MCAO-

14d = 27.2 ± 5.4. Control vs. MCAO-7d, p< 0.01; MCAO-7d vs. MCAO-14d, p< 0.01).

Gastrocnemius muscle disuse atrophy peaked on day 7 post stroke, while

neurogenic muscle atrophy appeared on day 14 post stroke

We explored the muscle fiber morphology bilaterally in each group with H&E staining to

assess muscle abnormalities post stroke. To our surprise, the muscle fiber diameters of both

hindlimbs decreased to a minimum at 7 days post stroke (n = 5 in each group). In the contra-

lateral gastrocnemius muscle, control = 49.7 ± 6.2 μm, MCAO-7d = 26.4 ± 2.8 μm, MCAO-

14d = 35.7 ± 2.9 μm. Control vs. MCAO-7d, p< 0.001. In the ipsilateral gastrocnemius muscle,

control = 50.3 ± 7.4 μm, MCAO-7d = 36.3 ± 2.3 μm, MCAO-14d = 40.7 ± 3.9 μm. Control vs.

MCAO-7d, p< 0.01 (Fig 5). On day 7 post stroke, the muscle fibers of the paretic gastrocne-

mius muscles were significantly smaller than those of the ipsilateral muscles (p< 0.01), while

no neurogenic muscle atrophy was observed. From 7 days post stroke to 14 days post stroke,

the muscle fiber diameters of the contralesional gastrocnemius muscle significantly increased

(p< 0.01) concurrent with the improved mNSS and increased CMAP amplitudes. The muscle

fiber diameters of the ipsilateral gastrocnemius muscle slightly increased, but the difference

was not statistically significant (p = 0.191). On day 14 post-stroke, muscle fibers with a signifi-

cantly reduced size and an angular shape (indicating neurogenic muscle atrophy) were

observed sporadically in the contralesional gastrocnemius muscle, concurrent with motor
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neuron loss in the contralesional VH, which might provide additional clear and convincing

evidence for transsynaptic degeneration. During the whole subacute phase after stroke, no leu-

kocyte infiltration was observed.

No obvious abnormalities in neuromuscular junction (NMJ) function were

found by RNS after focal stroke

Low frequency RNS tests (5 Hz) were performed at baseline and repeated at 1 day, 7 days and

14 days after stroke induction or after sham surgeries (Fig 6). Because moderate-frequency

and high-frequency electrical stimuli were reported to exert harmful or beneficial effects on

motor axon stability [36], corticospinal plasticity [37, 38] and muscle atrophy [39], high fre-

quency RNS tests were not performed to minimize variables affecting the motor pathways. No

Fig 3. Labeling the spinal cord with anti-NF-200 and anti-p-ERK antibodies. Panel A: Representative images of 5 independent experiments taken

from the L5 spinal cord. For the overview figures, scale bar = 100 μm. For the insight figures, scale bar = 20 μm. Panel B: Quantifying VH neuron

numbers contralaterally and ipsilaterally. n = 5 for each group. Bar graphs with error bars represent the mean ± SD. On the contralesional side, control

group vs. day-14, **p< 0.01; control group vs. day-7, p = 0.993; day-7 vs. day-14, p = 0.092. On day-14 post-MCAO, contralateral vs. ipsilateral,

**p< 0.01. Panel C: Quantifying p-ERK-positive VH neuron numbers contralaterally and ipsilaterally. n = 5 for each group. Bar graphs with error bars

represent the mean ± SD. On the contralesional side, control group vs. day-14, ***p< 0.001; day-7 vs. day-14, ***p< 0.001. On the ipsilesional side,

control group vs. day-14, *p< 0.05; day-7 vs. day-14, *p< 0.05. On day 14 post-MCAO, contralateral vs. ipsilateral, p = 0.512. Panel D: Quantification of

the proportion of p-ERK-positive VH neurons contralaterally and ipsilaterally. On the contralesional side, control group vs. day-14, ***p< 0.001; day-7

vs. day-14, ***p< 0.001. On the ipsilesional side, control group vs. day-14, **p< 0.01; day-7 vs. day-14, **p< 0.01. On day 14 post-MCAO, contralateral

vs. ipsilateral, *p< 0.05. In this section, one-way ANOVA was used to compare between groups, while a paired t-test was used to compare between the

contralateral side and the ipsilateral side.

https://doi.org/10.1371/journal.pone.0298006.g003

PLOS ONE Transsynaptic degeneration of VH neurons in acute ischemic rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0298006 April 26, 2024 9 / 18

https://doi.org/10.1371/journal.pone.0298006.g003
https://doi.org/10.1371/journal.pone.0298006


apparent decreases in CMAP amplitudes were observed with repetitive electrical stimuli in the

bilateral gastrocnemius muscles of rats in all groups.

Discussion

Motor pathway impairment is common post stroke, and is the leading cause of physical dis-

ability [40, 41]. Researchers have made achievements in explaining the underlying mecha-

nisms of impaired lower motor unit function, and transsynaptic degeneration, myofiber

atrophy, functional motor unit inactivity, and neuromuscular junction disturbance are

thought to play a role in motor function abnormalities [13–15, 19, 20, 42, 43]. Previous reports

usually focused on a single component of the lower motor unit, while in this study, we

observed the evolution of parameters reflecting several components simultaneously.

In this study, the neurological functional deficiency peaked at 1 day post MCAO surgery,

reflected by the rapidly increased mNSS, while at the same time, no obvious lower motor unit

deficits were observed (indicated by normal CMAP amplitudes), which indicated that motor

Fig 4. Labeling the spinal cord with anti-iba-1. Panel A: Representative images taken from the L5 spinal cord. For the

overview figures, scale bar = 100 μm. For the insight figures exhibiting iba-1 immunoreactivity in the contralateral VH,

scale bar = 20 μm. For the insight figures showing the morphology of microglial cells, scale bar = 5 μm. Panel B:

Quantifying iba-1-positive microglial cell numbers contralaterally and ipsilaterally in the VH. n = 5 for each group. Bar

graphs with error bars represent the mean ± SD. One-way ANOVA was used to compare between groups, while a

paired t-test was used to compare the contralateral side and the ipsilateral side. On the contralesional side, control vs.

MCAO-7d, **p< 0.01; MCAO-7d vs. MCAO-14d, **p< 0.01. On day-7 post-MCAO, contralateral vs. ipsilateral,

*p< 0.05.

https://doi.org/10.1371/journal.pone.0298006.g004
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abnormalities in the hyperacute phase of ischemic stroke were more likely to be attributed to

the upper motor neuron dysfunction.

At 7 days after stroke, the functional deficit partially recovered, as indicated by decreased

mNSS, while the CMAP amplitude declined to a nadir, indicating severely injured lower

motor unit function. Meanwhile, microglia recruitment and activation were detected on the

paretic side (contralateral to the side of the brain lesion) of the spinal cord VH, while there

were no significant changes in the structure or the number of VH neurons, which was consis-

tent with the work of Wu [44]. Wu and colleagues reported that 5 days after MCAO, structur-

ally unaltered VH motor neurons were surrounded by microglial cells, while selectively dying

dorsal horn neurons were phagocytosed by vigorous microglia cells. Since there was a discrep-

ancy between VH neuron loss and microglia recruitment and activation, we speculated that

the activation and recruitment of microglial cells were not the triggers of transsynaptic degen-

eration and might exert a neuroprotective effect on VH motor neurons. Recent literature sup-

ports our viewpoints: (1) Emerging evidence indicates that microglia respond to neuronal

Fig 5. Labeling the gastrocnemius muscle with H&E staining. Panel A: Representative images taken from the

bilateral gastrocnemius muscles. The red arrowhead indicates muscle fibers with neurogenic atrophy. Scale

bar = 50 μm. Panel B: Quantification of muscle fiber diameters contralaterally and ipsilaterally. n = 5 for each group.

Bar graphs with error bars represent the mean ± SD. One-way ANOVA was used to compare between groups, while a

paired t-test was used to compare the contralateral side and the ipsilateral side. In the contralateral gastrocnemius

muscle, control vs. MCAO-7d, ***p< 0.001; MCAO-7d vs. MCAO-14d, **p< 0.01. On day-7 post-MCAO,

contralateral vs. ipsilateral, **p< 0.01.

https://doi.org/10.1371/journal.pone.0298006.g005
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hyperactivity by suppressing neuronal activity and promoting homeostasis, and then dampen-

ing seizures, while ablation of microglia amplifies the activity of neurons, leading to seizures

[45–47]. Moreover, glutamate, the excitatory transmitter of sensorimotor cortex neurons,

could induce microglial responses independent of overt neuronal injury [47]. Hence, from our

point of view, the release of a large amount of glutamate from the degenerating glutaminergic

corticospinal fibers induced microglial responses in the contralateral spinal cord. Then, the

activity of postsynaptic VH motor neurons was suppressed, and motor neurons were pro-

tected. The suppressed VH neuron activity might partially contribute to the injured lower

motor unit function (indicated by decreased CMAP amplitude detected in the contralesional

hindlimb) on day 7 post stroke. The resolution of the microglial response from day 7 to day 14

post-stroke might contribute to the increased CMAP amplitude and possibly to the improved

overall neurological deficits (reflected by the mNSS). (2) Researchers have demonstrated that

microglia can protect neurons in pathological conditions other than epilepsy. Cserép et al.

found that the infarct volume was increased alongside a worse neurological outcome after

microglia inhibition [48]. Dong Y and colleagues demonstrated that microglial cells could neu-

tralize oxidized phosphatidylcholines (OxPCs) induced neurodegeneration (OxPCs are potent

drivers of neurodegeneration found in brain sections of multiple sclerosis patients) [49]. (3)

Methylxanthines including pentoxifylline, propentofylline and pentifylline, which attenuated

microglial reactions after stroke [50, 51], failed to exert protective effects on patients with

acute ischemic stroke [52].

On day 7 after stroke, the muscle fiber diameters of the bilateral gastrocnemius muscles

were significantly decreased to the nadir, and the decrement was greater in the paretic hin-

dlimb, which was consistent with previous studies conducted in humans and summarized by

English et al. [53]. In previous studies, immobilization, impaired feeding, sympathetic activa-

tion, inflammation and denervation were suggested to be mechanisms underlying post-stroke

sarcopenia [43, 54, 55]. However, in this study, no leukocyte infiltration was observed at any

Fig 6. Conducting low frequency RNS examinations bilaterally in control and MCAO rats. Representative images

of consecutive low frequency RNS tests (5 Hz) in one MCAO rat at different time points are shown. No obvious

decreases in CMAP amplitudes in response to repetitive electrical stimuli were observed at any time point.

https://doi.org/10.1371/journal.pone.0298006.g006
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time point, and only sporadic neurogenic muscle atrophy was detected at 14 days post-

MCAO, which indicated that inflammation and denervation might not be the principal trig-

gers of post-stroke sarcopenia. On account that Wall and colleagues demonstrated that rapid

reduction in limb strength and muscle mass could occur during only 5 days of disuse [56] and

that the diameters of bilateral gastrocnemius muscles in MCAO rats gradually increased when

the neurological deficits were partially relieved and the mobility of rats increased, we suggested

that post-stroke sarcopenia could be partially explained by disuse atrophy caused by hypokine-

sia of the limbs (hypokinesia of the paretic limb led to decreased motility of the rats, leading to

disuse atrophy in the ipsilesional limb). In addition, the reduced muscle mass might partially

contribute to the decreased CMAP amplitudes at 7/14 days post-MCAO. Hence, rehabilitation

exercises were recommended for stroke patients as early as possible.

In this study, at 14 days after stroke, the function of the lower motor unit significantly

improved, as indicated by the increased CMAP amplitudes and enlarged muscle fiber diame-

ters, alongside the attenuated overall neurological deficits. In contrast, transsynaptic degenera-

tion of neurons in the contralateral VH was observed, along with randomly distributed

neurogenic muscle atrophy in the corresponding gastrocnemius muscles. This discrepancy

implied that transsynaptic degeneration of VH neurons existed but played a minor role in

lower motor system dysfunction after stroke.

The loss of motor neurons in the contralateral VH after stroke was consistent with previous

papers [19, 57, 58], and the neurogenic muscle atrophy found in the corresponding hindlimb

muscle in our study further offered additional proof. Compared to the reports of Dang et al.

and FU et al., contralesional VH motor neuron loss occurred over a slower time course in both

this study and Lin’s work, which might be attributed to different types of animal models (rats

in the work of Dang et al. suffered from renovascular hypertension, which might exacerbate

the process of neuron damage) and different methods to count motor neurons. Transsynaptic

degeneration of contralesional VH motor neurons might partly explain the phenomena that

reduced functional coupling between cortical activity and muscle output appeared early and

lasted in the chronic phase where the motor function recovered greatly [59], and might also

explain the condition that signs of denervation could be observed in patients with chronic

stroke [13].

In this study, the proportion of p-ERK-positive motor neurons significantly increased in

the contralesional VH, which paralleled the loss of motor neurons on day 14 post-MCAO. The

MAPK/ERK signaling pathway, working at two different stages (throughout development and

in adulthood), has pleiotropic effects in the central nervous system [26, 60–62]. During adult-

hood, improper activation of the ERK signaling pathway was demonstrated to exacerbate the

damage in acute pathological conditions, such as ischemic stroke [63–65], traumatic brain

injury [66] and spinal cord injury [67–69], to be involved in the pathogenesis of neurodegener-

ative diseases [26, 60, 70] and depression [71]. Hence, ERK activation might exert a detrimen-

tal effect on the transsynaptic degeneration of neurons. Moreover, the process triggered by

MAPK/ERK activation partially depends on subcellular locations, as reviewed by Albert-Gascó

et al. [60], and cytoplasmic p-ERK anchored by death-associated protein kinase1 (DAPK) is

involved in apoptosis and neurodegeneration [64]. Indeed, the immunoreactivity of p-ERK

was mainly located in the cytoplasm of motor neurons at 14 days after stroke in this study,

which further suggested the harmful effect of ERK activation. In recent years, some scientists

have focused on therapeutics targeting the ERK pathway in neurodegenerative diseases.

NE3107, a novel small molecule targeting the ERK pathway, increased the number of surviving

dopaminergic neurons in animal models of Parkinson’s disease [72], and there are currently

phase III clinical trials of this drug being conducted in patients with Alzheimer’s disease [73].

We hope that the above therapeutics work well in patients with neurodegenerative diseases. In
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addition, we suggest that disrupting the improper activation of the ERK pathway might be a

promising therapeutic target against stroke-related transsynaptic degeneration.

Although Balch and colleagues discovered convincing pathological changes following ische-

mic stroke in which pre- and postsynaptic maladaptation occurred at NMJs, including polyax-

onal innervation [20], apparent functional abnormalities of the NMJs were not detected in this

study, which indicates that maladaptation of NMJ morphology post stroke might play a minor

role in the triggering and progression of lower motor functional abnormalities.

There were some limitations in the present study. First, because we aimed to explore the

overall changes in the lower motor neuron system after focal ischemic stroke, in-depth explo-

ration focusing on specific abnormalities was lacking. Moreover, this study was based on

electrophysiological and pathological examinations, and further evaluation might be carried

out at the transcription, translation, and conformation levels to further reveal the underlying

mechanism of transsynaptic degeneration.

Conclusions

Taken together, in this study, we demonstrated that transsynaptic degeneration of contralat-

eral VH neurons existed during the subacute phase of focal ischemic stroke, and suggested

that upregulated activation of ERK 1/2 might be involved in the initiation and progression of

this pathological process. Moreover, this study offered an overview of changes in the lower

motor system in MCAO rats, and we hope it will provide new information for interpreting the

lower motor abnormalities post stroke to future researchers.
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