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Abstract

The impact of microbiome in animal physiology is well appreciated, but characterization of

animal-microbe symbiosis in marine environments remains a growing need. This study

characterizes the microbial communities associated with the moon jellyfish Aurelia coerulea,

first isolated from the East Pacific Ocean and has since been utilized as an experimental

system. We find that the microbiome of this Pacific Aurelia culture is dominated by two taxa,

a Mollicutes and Rickettsiales. The microbiome is stable across life stages, although compo-

sition varies. Mining the host sequencing data, we assembled the bacterial metagenome-

assembled genomes (MAGs). The bacterial MAGs are highly reduced, and predict a high

metabolic dependence on the host. Analysis using multiple metrics suggest that both bacte-

ria are likely new species. We therefore propose the names Ca. Mariplasma lunae (Molli-

cutes) and Ca. Marinirickettsia aquamalans (Rickettsiales). Finally, comparison with studies

of Aurelia from other geographical populations suggests the association with Ca. Mari-

plasma lunae occurs in Aurelia from multiple geographical locations. The low-diversity

microbiome of Aurelia provides a relatively simple system to study host-microbe

interactions.

Introduction

Jellyfish are increasingly recognized as an important player in ecosystem functions and biogeo-

chemical cycles [1–4]. A recent estimate suggests that gelatinous zooplanktons facilitate trans-

fer, annually, of 0.4–2.1 gigatons of carbon to the seafloor [5]––about 20% on average of the

total 5–6 gigatons of carbon deposited annually to the seafloor [6]. Carbon deposition to the

seafloor is an important mechanism for absorbing carbon from the world’s atmosphere, and

buffering the effects of the increasing carbon dioxide emission from human activities [7]. The

effects of jellyfish on the marine ecosystem and biogeochemical cycles are magnified during

bloom events. During a bloom, the jellyfish population rapidly increases within a short period

of time, in some instances by as much as 5000% [1]. The rapid increase in biomass impacts the
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food web dynamics [8] and alters carbon, phosphorus, and nitrogen cycles [9]. Nitrogen

release by jellyfish during a bloom can be as high as supporting more than 100% of nitrogen

required for daily primary production by phytoplankton [2, 10, 11]. Jellyfish blooms also have

an economic impact, having disrupted the fishery and tourism industries on multiple occa-

sions [12, 13]. There is evidence that jellyfish blooms may increase in frequency and amplitude

in the future because of anthropogenic processes [14, 15], highlighting the need to better

understand the biology of jellyfish.

Jellyfish from the genus Aurelia (Cnidaria: Scyphozoa) are highly abundant and widely dis-

tributed across the world [16]. Aurelia can thrive in wide-ranging environments, from tropical

seas to subarctic regions, from open oceans to brackish estuaries [17, 18]. In addition to its

prevalence, Aurelia is also increasingly utilized as a laboratory model for studying multiple

biological processes [19], including metamorphosis [20], biomechanics [21], regeneration

[22], and neuroscience [23]. As an early branching metazoan, Aurelia provides an evolutionary

lens with which to probe the early forms of biological processes in animals. The genome of

Aurelia coerulea was recently sequenced [24], further empowering the use of Aurelia as a com-

parative model. Finally, being one of the most energetically efficient propulsors on the planet

[25], Aurelia is a biological model for engineering muscular pumps [26], robotic swimmers

[26] and biohybrid ocean sensors [27].

In this study, we characterize the microbiome of Aurelia coerulea, originally collected from

the Eastern Pacific Ocean, and has been cultured in the lab for ten years. Microbiome impacts

many aspects of animal biology, including traits previously thought to be solely dependent on

the host genotype, such as development and behavior [28]. Indeed, in Aurelia polyps, modula-

tion of microbiome impacts asexual reproduction, feeding rate, and growth [29]. There have

been several studies sequencing the microbiome of Aurelia from different geographical loca-

tions [30–36]. These studies revealed that although the microbial communities of Aurelia are

regionally different, there are interesting overlaps in the bacterial taxa, which motivate the

need for more comparative studies of microbiomes from different geographical populations.

In this study, we analyzed the microbial communities of Aurelia originating from the Pacific

population, the origin of the strain whose genome has recently been sequenced [24]. Our

study contributes to the existing literature by expanding the comparative analysis of Aurelia
across geographical populations as well as characterizing an Aurelia strain that is increasingly

being used as a laboratory model.

Materials and methods

Jellyfish culture

Polyp cultures were established from polyps originally collected by the Cabrillo Marine Aquar-

ium (San Pedro, CA) from Long Beach (33˚46004.200N 118˚07044.200W, GPS: 33.7678376–

118.1289559). We refer to this population of Aurelia coerulea as Aurelia AcGM. Polyps were

maintained in artificial sea water (ASW) at 22˚C on a 12:12 light-dark cycle and fed 48 hr old

Artemia brine shrimp enriched with RGComplete (Reed Mariculture, USA) every two days.

Polyps were induced to strobilate using 5-methoxy-2-methyl-indole (Sigma-Aldrich, USA) at

25 mM in sea water [37]. Polyps were exposed to the inducer overnight, and rinsed three times

with ASW prior to transfer to 1 liter Imhoff cones (Nalgene, USA) with aeration. Induced ani-

mals were fed with Artemia every 48 hrs leading up to strobilation. To obtain the medusa

stages, ephyrae were grown in an Imhoff cone and fed rotifers every day until animals were

approximately 1 cm in diameter.

Amplicon sequencing. Individual animals were collected and rinsed three times with

0.22 μM sterilized artificial sea water. To minimize contamination from their diet, animals
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were starved for 24 hrs prior to sampling. For ephyrae, animals that were less than 4 days old

post-strobilation were collected. For medusae, 1 cm diameter animals were collected. Excess

water was removed by blotting animals on parafilm using forceps. For each sample, 3–5 indi-

viduals were pooled. For each stage (polyp, ephyra, and medusa), 5–6 total samples were

prepped. Animals were flash frozen in liquid nitrogen and stored at -80˚C until further pro-

cessing. Four sea water controls were prepared by filtering 500 ml of ASW through a 4.7 mm

diameter 0.45 μM cellulose nitrate membrane filter (Whatman, United Kingdom). Half of the

membrane was cut from the disc and used for the DNA extraction. DNA from flash frozen ani-

mals and controls were extracted using the Qiagen DNeasy Powersoil kit (Qiagen, Germany)

following the manufacturer’s protocol. Four kit controls were prepared by performing the

extraction procedure with a set of blank extraction columns. Amplification of the V4 region of

the 16S rRNA gene was performed using a modified 515F–806R primer set [38]. We chose to

target the V4 region because it has been shown to be effective in studies of cnidarian-associated

microbiomes [39, 40]. We find the modified primer sets performed better than the standard

515F-806R set in reducing amplification of host mitochondrial DNA. PCR amplification was

performed with the NEB Q5 High-fidelity master mix (New England Biolabs, USA). Amplifi-

cation was performed in triplicate for each sample. Replicate reactions were combined and

amplification was confirmed on a 1% agarose gel. Samples were purified using the Qiagen

QIAquick PCR Purification kit (Qiagen, Germany). Purified amplicons concentrations were

quantified using the Qubit dsDNA HS Assay kit (cat. Q32851). Purified samples were submit-

ted to Genewiz or the Georgia Genomics and Bioinformatics Core for 300-bp and 250-bp

paired-end sequencing, respectively, on the Illumina MiSeq. 16S rRNA gene amplicon

sequencing data have been submitted to NCBI under BioProject PRJNA975886.

Amplicon sequencing analysis. Quality of sequenced reads were checked with FastQC

(ver. 0.11.9; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were ana-

lyzed with the DADA2 function of Qiime2 (ver. 2022.2) [41]. Reads were trimmed for quality

and chimeric reads were removed with the denoise-paired function of dada2 with the following

parameters:—p-trunc-len-f 177—p-trunc-len-r 170—p-trim-left-f 5—p-trim-left-r 10. Trim-

ming parameters were selected using Figaro [42]. Taxonomic assignment of denoised, paired

reads was performed using the Qiime2-formatted classifier (http://docs.qiime2.org/2023.9/

data-resources/) pre-trained with V4 region sequences (515–806 bp) extracted from the Silva

16S rRNA database (version 138_99) [43]. Reads were then filtered using the filter-samples and

the filter-features function of qiime2 to remove low-count sequences and singletons. Only sam-

ples with a minimum of 3500 reads were retained. Of the remaining samples, features were

minimally required to be present in 2 samples and totaling 100 reads. Features that did not

meet these requirements were removed prior to downstream analysis. Rarefaction curves were

generated with the diversity alpha-rarefaction function of Qiime2 to ensure adequate coverage

and depth of sequencing. 12,000 reads were sub-sampled, which is approximate to the lowest

read depth of all jellyfish samples (S1 Fig in S9 File). To further determine whether we have

identified genuine microbiome members of Aurelia AcGM, we used the R package decontam

[44]. Decontam compares control and real samples and employs statistical methods to identify

likely DNA contamination. Phylogenetic analysis of the retained features was performed with

the align-to-tree-mafft-fasttree function of qiime2 using standard settings.

Assembly of bacterial MAGs from host genome sequencing data. Sequences generated

for the assembly of the A. coerulea genome were retrieved from the National Center for Bio-

technology Information (NCBI) [45] (Accession PRJNA490123). Initially, barcodes were

removed from the reads and quality filtered using Trimmomatic-0.39 with standard parame-

ters [46]. The trimmed reads were assembled with MegaHit (ver. 1.2.9), which incorporates

DNA composition and abundance of unique sequences of DNA (k-mers) to group reads
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during the assembly process [47]. The assembly was performed with the following settings:—

k-min 25—k-max 115—k-step 10—min-contig-len 300 -m 0.4. Assembled contigs were

binned into MAGs using MetaBAT (version 2.12.1) [48], Vamb (ver. 4.1.3) [49], and Rosella

(ver. 0.4.2) (https://rhysnewell.github.io/rosella/). We chose to include Rosella because it

incorporates long read information into the binning process. Consensus bins were generated

using DAS Tool (ver. 1.1.6) (S1 Table in S10 File) [50]. We performed a BLAST search of the

five longest sequences against the NCBI nt database to determine whether the binned MAGs

were comprised of host or bacterial sequences. Binned contigs were then scaffolded using

sspace-standard (ver. 3) or sspace-longread [51, 52]. Paired-end read libraries (SRR7889280,

SRR7866920) and mate-paired libraries (4000 bp; SRR7834587, 8000 bp; SRR7866321) were

used as input for sspace-standard. Pacbio reads (SRR7866923) were used as input for sspace-

longread. Resulting scaffolded genomes with greater length and fewer contigs were chosen for

subsequent processing and analysis. Gaps were closed with LR_Gapcloser [53]. Polishing of

the scaffolded MAGs was performed using Pilon [54]. Briefly, paired-end libraries were

aligned to the scaffolded genomes using BWA (ver. 0.7.12-r1039) [55] to generate bam format

files and sorted using Samtools (ver. 1.15.1) [56]. Host sequences were identified from the

MAGs using BLASTx against the nr database. Gene prediction was performed with the Rapid

Annotation using Subsystem Technology tool kit (RASTtk) pipeline [57, 58]. The MAGs have

been submitted to NCBI under BioProject PRJNA975886.

Quality of the MAGs was assessed using multiple metrics. Genome completeness and con-

tamination was quantified using CheckM, as part of the Protologger galaxy web application

(ver. 0.99) [59, 60]. A homology based method employed in the MiGA Online web server was

additionally used to confirm the CheckM results [61]. CheckM performs the quality assess-

ment using a taxonomically relevant set of marker genes. MiGA utilizes a set of essential genes

defined in Dupont et al. [62] for a homology search performed by HMMER [63]. Taxonomic

identification of the binned contigs was performed by comparing the 16S rRNA gene and the

whole genome to existing databases. Full length 16S rRNA gene sequences were retrieved

using Bedtools (ver. 2.26.0) [64] for Aurelia Mollicutes and Aurelia Rickettsiales to perform a

homology search against the NCBI rRNA/ITS database with BLASTn, with uncultured/envi-

ronmental sample sequences excluded [65, 66]. Relatedness to existing bacterial genomes was

computed with average nucleotide identity (ANI) values using GTDB-Tk [67] as part of the

Protologger pipeline [59], MiGA Online [61], as well as using the Type Strain Genome Server

(TYGS) [68]. In addition to the Mollicutes and Rickettsiales MAGs, a third bacterial bin of

roughly 4 Mb was recovered. However, the third bin is of low quality, possibly coming from

lower-abundance symbionts. Further analysis of this third MAG therefore needs more

directed sequencing.

Comparative analysis of the assembled MAGs. To assess the degree of genome reduc-

tion, we compared protein coding sequence content and genome length of the Aurelia Molli-

cutes MAG and Aurelia Rickettsiales MAG with those of existing genomes. Representative

genomes, defined by the NBCI according to a set of predefined criteria (www.ncbi.nlm.nih.

gov/refseq/about/prokaryotes/#representativegenome) were retrieved from NCBI RefSeq. A

total of 128 representative genomes were retrieved for the Mollicutes (See S7 File for RefSeq

accessions). An additional genome of Ca. Spiroplasma holothuricola was included

(GCA_002135175.2) [69] in the analysis. A total of 82 representative Rickettsiales genomes

were retrieved from NCBI (See S8 File for RefSeq accession). Ca. Aquarickettsia rohweri was

also included in the analysis (GCF_003953955.1) [70]. Coding sequence and genome size were

plotted with ggplot2 (ver. 3.4.0) in R (ver. 4.1.0).

Metabolic analysis with NetCooperate. The degree of metabolic reliance by the assem-

bled genomes on the jellyfish host was quantified using NetCooperate [71]. Genome-scale
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metabolic modeling of A. coerulea as well as the Aurelia Mollicutes and Aurelia Rickettsiales

MAGs was performed with PRIAM using the predicted coding sequences as input [72]. The

resulting sbml file was converted to a network format with a custom perl script prior to the

analysis with NetCooperate. Draft metabolic models generated from the MAGs for each bacte-

rial taxon were paired with a draft metabolic reconstruction of the Aurelia genome to calculate

the biosynthetic support scores (BSS). Enzymatic reaction equations were parsed for its con-

stituent metabolites, with products and substrates connected by edges. Completeness of meta-

bolic pathways were manually confirmed against the KEGG database using KofamKoala [73].

Genomic data for Aurelia associated bacteria and the script used for NetCooperate data pro-

cessing have been uploaded to the open repository CaltechDATA (https://doi.org/10.22002/

371wp-5nb51).

Phylogenetic tree construction. Reconstruction of the Aurelia Mollicutes and Aurelia
Rickettsiales phylogeny was performed using both a concatenated set of single-copy orthologs

and the ribosomal 16S rRNA gene. Single-copy orthologs were identified using OrthoFinder

(ver. 2.5.4) [74]. A subset of genomes for each taxa were used as input for the orthogroup anal-

ysis due to computational constraints. Identified single-copy orthologs were retrieved from the

protein predictions and manually confirmed to be single copy for all genomes included in the

analysis. A total of 11 single-copy orthologs were identified for the Mollicutes and 56 single-

copy orthologs for Rickettsiales. Mafft (ver. 7.4.29) [75] was used for alignment of both single-

copy ortholog sequences and 16S rRNA gene sequences with the accuracy-oriented method

(L-INS-i) with 1000 cycles of iterative refinement. Aligned sequences were trimmed with

BMGE (ver. 1.12) [76] with default parameters. For the single-copy ortholog tree, aligned

sequences were concatenated using catsequences (ver. 1.4) (https://zenodo.org/record/

7956648). Maximum-likelihood phylogenetic reconstruction with ultrafast bootstrapping was

performed with IQ-TREE (ver. 2.03) [77, 78] with the following parameters: -alrt 1000 -bb

2000 -bnni -m MFP. Model selection and partition finding was performed with ModelFinder

[79] and PartitionFinder. The resulting tree was visualized and modified in iTOL [80].

Results

The microbiome of Aurelia coerulea AcGM is dominated by two taxa

Our lab population of Aurelia coerulea, which we refer to as Aurelia AcGM, was originally col-

lected from the East Pacific Ocean (the GPS coordinates given in Methods). It was classified as

Aurelia aurita sp. 1, and recently revised to Aurelia coerulea [81]. To determine the bacterial

composition of the Aurelia microbiome, we performed 16S amplicon sequencing (Fig 1A; S2

Table in S10 File provides the complete sequencing results). We recovered a total of 197 ampli-

con sequence variants, 95% of which could be identified to at least the phylum level and 78%

of which to the genus level. To verify that the bacterial sequences represent animal-associated

microbes and not a carryover from the environmental microbiome, we sequenced and verified

that the ambient artificial sea water and the kit reagents contain distinct bacterial compositions

(S2 Fig in S9 File, S3 Table in S10 File), confirming that the bacterial sequences obtained from

Aurelia are genuine members of the Aurelia microbiome.

We grouped the bacterial amplicon sequences by their lowest taxonomic classification (Fig

1A). We found that the Aurelia AcGM microbiome is dominated by a bacterium from the

class Mollicutes (phylum Firmicutes, recently renamed as Mycoplasmatota) and a bacterium

from the order Rickettsiales (phylum Proteobacteria, also called Pseudomonadota). Mollicutes

and Rickettsiales make up on average 89% of the amplicon reads across the life stages (Fig 1B).

The next five most abundant taxa each comprises 1.5% or less of the total bacterial abundance
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(Fig 1B). We conclude that the microbiome of Aurelia AcGM in our population is dominated

by Mollicutes and Rickettsiales.

The relative composition of Mollicutes and Rickettsiales varies across life stages. Like other

jellyfish, Aurelia’s life cycle consists of two post-larval forms, the sessile polyps and free-swim-

ming medusae (Fig 1A). In Aurelia and many scyphozoans, the transition from polyps to

medusae involves an ephyra stage, a hardy stage that facilitates dispersal. In Aurelia AcGM pol-

yps and ephyrae, Mollicutes and Rickettsiales are found at approximately equal ratios (1.4:1 in

polyp and 1:1 in ephyra; Fig 1A and 1B). Strikingly, the medusa stage is characterized by a dra-

matic increase in Mollicutes, at 15-fold greater abundance than Rickettsiales (Fig 1A and 1B).

Association with Mollicutes recurs in several geographical populations

Next, we surveyed existing reports to assess how the microbiome of Aurelia AcGM compares

to those of other Aurelia populations. Microbiome composition varies across Aurelia from dif-

ferent parts of the world (S4 Table in S10 File lists the taxa found across Aurelia populations)

[30–36]. However, we notice recurring patterns. First, across the geographical populations

analyzed so far, the Aurelia microbiome tends to be of a low-diversity, consisting of 2–5 domi-

nant taxa. There are no clear differences between microbiome characterized from lab vs wild

specimens, i.e., microbiome of lab specimens is not necessarily less complex or show distinct

bacterial communities. Second, several bacterial families recur, as summarized in Fig 2B.

Highest in frequency, although ranging in abundance, is an association with a Mollicutes,

found in six out of the twelve populations analyzed so far (Table 1). Third, most of the Molli-

cutes, remarkably, appear to be closely related (S4 Table in S10 File). Aurelia from the Atlantic,

Baltic, China, and Pacific, each associate with a Mollicutes that shows >97% sequence similar-

ity to the Mollicutes found in Aurelia AcGM, as analyzed by BLAST analysis of the 16S ampli-

con sequences, suggesting that the Mollicutes found in these different geographical

populations are likely the same species.

Metagenome-assembled genomes of Aurelia AcGM-associated microbes

To characterize the Aurelia Mollicutes and Rickettsiales, we mined the publicly available host

genome sequencing data [24] to assemble draft bacterial genomes. For Rickettsiales, we

Fig 1. The bacterial microbiome of Aurelia AcGM is dominated by two taxa. (A) To characterize the jellyfish-associated microbiome associated

with Aurelia ACGM, we performed next-generation amplicon sequencing of the V4 region of the 16S rRNA gene. Each biological replicate comes

from 3–5 animals. The top ten taxa, color-coded, are listed in Fig 1B. (B) The top ten most abundant taxa present in Aurelia AcGM across life

stages. Percent abundance shown is the average across biological replicates. The last column shows average (‘Ave’) across life stages. In the last row,

the ratios of Mollicutes and Rickettsiales abundance are computed across life stages.

https://doi.org/10.1371/journal.pone.0298002.g001
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recovered a 1 Mb uncircularized metagenome-assembled genome (MAG; Fig 3A and 3B). The

Rickettsiales MAG was 95.5% complete with 0.2% contamination. The Rickettsiales MAG con-

tains 91.5% of essential bacterial genes. Finally, the assembled Rickettsiales MAG is within the

expected size for the Rickettsiales group (Fig 3D), containing 926 protein coding genes. The

genome contains 38 tRNA cognates for all 20 essential amino acids. These metrics suggest that

the draft Rickettsiales MAG, although uncircularized, provides a good coverage.

For Mollicutes, we successfully assembled a complete, circularized genome of 0.4 Mb in size

(Fig 3A and 3B), with a 2.6% contamination. The Mollicutes MAG was assembled with a read

depth of 2800X, giving us confidence that we have recovered the full genome. Mollicutes are

known for having small genome sizes, having undergone genome reduction. The Aurelia Mol-

licutes MAG consists of 391 protein coding genes—and is one of the smallest genomes

described to date (Fig 3C and 3E). Gene completeness analysis shows that the Aurelia

Fig 2. Microbiome composition of Aurelia varies across geographical populations. (A) Geographic locations of Aurelia populations that have been

analyzed so far for their microbiome composition. (B) Bacterial families found to associate with Aurelia studied so far. Families included in this pie

chart make up at least 5% of the relative abundance. We plotted the family level because this is the lowest common taxonomic classification reported in

all of the studies. The numbers in parentheses indicate the number of geographical locations in which the families were found to associate with an

Aurelia species. The colors simply group the families based on the number of geographical occurrences. See S4 Table in S10 File for the detailed survey

of the existing Aurelia microbiome studies.

https://doi.org/10.1371/journal.pone.0298002.g002
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Mollicutes MAG contains only 80% of known Mollicutes marker genes and 72% of essential

bacterial genes, suggesting that it is a reduced genome. Of the representative Mollicutes

genomes available in the NCBI database (Fig 3C), the most closely related to Aurelia Molli-

cutes is the one associated with sea cucumber, Ca. Spiroplasma holothuricola (the phylogenetic

relationship will be analyzed in Fig 4), which has a similar genome size to the Aurelia Molli-

cutes (Fig 3C, [69]).

Aurelia AcGM-associated microbes rely on host for nutrients

The small genomes suggest that Rickettsiales and Mollicutes rely on the Aurelia host for nutri-

ents. To assess the degree of metabolic coupling, we performed a pairwise NetCooperate analy-

sis between the draft metabolic reconstructions of each bacterium and the host Aurelia [71].

NetCooperate calculates a Biosynthetic Support Scores (BSS), which reflects the degree to

which genome 1 relies on genome 2 for metabolites. A BSS score of 1 reflects a complete reli-

ance. The BSS score of Aurelia Rickettsiales is 0.84, and the BSS score of Aurelia Mollicutes is

0.91—suggesting a high degree of metabolic reliance on the host.

Indeed, directly assessing the genomes for absence/presence of metabolic pathways suggest

reduced metabolic capacities (S6 and S7 Tables in S10 File). Aurelia Rickettsiales has a com-

plete TCA pathway, but lacks the glycolysis pathway that supports the input to the TCA path-

way, as well as most of the pentose phosphate pathway (PPP). The lack of glycolysis appears to

be prevalent in Rickettsiales, as analysis of Rickettsiales genomes from the NCBI database con-

firms widespread loss of glycolytic enzymes (S6 Table in S10 File). Lacking glycolysis to gener-

ate pyruvate, Rickettsiales likely employ alternative methods to fuel the TCA and anabolic

pathways. Pyruvate can be synthesized from intermediates of the PPP, intermediates of

Entner-Doudoroff pathway, or from lactate and alanine. However, Aurelia Rickettsiales does

not have the necessary enzymes to do so. Therefore, it is likely that Aurelia Rickettsiales uptake

pyruvate from the host. Finally, Aurelia Rickettsiales are missing about half of the amino acid

biosynthesis pathways, and therefore likely acquire multiple amino acids from the host, as evi-

denced by amino acid transporters in the genome (S7 Table in S10 File). Other species of Rick-

ettsiales are also known to uptake amino acids [82–84]. Amino acids can also fuel the TCA

Table 1. Aurelia from several parts of the world associate with a Mollicutes likely of the same species. We surveyed existing studies that characterize bacteria that asso-

ciate with Aurelia for Mollicutes association. S4 Table in S10 File provides the detailed taxa composition recovered from each study.

Geographical

origin

Specimen Mollicutes abundance Life stage analyzed References Similarity to AcGM

Mollicutes

1 Atlantic Ocean, US Wild 20% Medusa 30 97%

2 Pacific Ocean, US Lab culture 45–82% Polyp, ephyra, medusa This study 100%

3 Pacific Ocean, US Lab culture (San Diego

strain)

Abundant in host

sequencing data

Polyp, ephyra, medusa This study; mining data

from ref. 24

100%

4 Roscoff, France Lab culture Absent Polyp, strobila, ephyra,

medusa

31 N/A

5 Baltic Sea Lab culture Absent Polyp 31 N/A

6 Baltic Sea Wild 42–90% Medusa 31 75%

7 Baltic Sea Wild 9% Medusa 32 98%

8 North Sea Lab culture Absent Polyp 31 N/A

9 Adriatic Sea Wild Absent Medusa 33 N/A

10 Shanghai, China Aquafarm Absent Medusa 34 N/A

11 Shanghai, China Aquafarm 9–17% Medusa 35 97%

12 Northern Yellow

Sea,

Wild 1% Medusa 36 97%

https://doi.org/10.1371/journal.pone.0298002.t001
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cycle. Aurelia Rickettsiales has the genes that facilitate conversion of glutamine to glutamate

and ultimately to alpha-ketoglutarate, a TCA intermediate. Aurelia Rickettsiales also has the

enzymes for converting proline to glutamate and aspartate to oxaloacetate, another TCA inter-

mediate. Finally, Rickettsiales are known to acquire vitamins and cofactors from their host

[85]. Indeed, Aurelia Rickettsiales appears incapable of synthesizing vitamins, therefore likely

acquiring them from the host. Aurelia Rickettsiales is capable of synthesizing heme A, but

likely acquire other cofactors from the host.

Compared to Rickettsiales, the even smaller Mollicutes genome suggests more reliance on

host (S7 Table in S10 File). Key energy-generation pathways—glycolysis, TCA, and pentose

phosphate pathways—are all missing from the Mollicutes genome. As an alternative energy-

generating pathway, the Mollicutes genome encodes the arginine deiminase (ADI) pathway,

which generates ATP by metabolizing arginine. The ADI pathway has indeed been utilized in

other Mollicutes species [86]. As Mollicutes lacks the ability to synthesize most essential amino

acids, Mollicutes likely acquire amino acids from the host. We verify the presence of an ABC

transporter that can transport multiple metabolites, as well as the arginine-ornithine antiporter

required for the ADI pathway (S7 Table in S10 File). Despite the uptake requirements of the

Fig 3. Metagenome-assembled genomes (MAGs) of the Aurelia AcGM-associated Mollicutes and Rickettsiales. The MAGs were recovered from the host

genomic sequencing reads [24]. (A) Circos plots of Aurelia Mollicutes and Aurelia Rickettsiales MAGs. (B) Assembly statistics for the Aurelia Mollicutes and

Aurelia Rickettsiales MAGs. More detailed statistics are described in S5 Table in S10 File. (C-E) Representative genomes of bacterial species were retrieved

from the NCBI RefSeq database. Genome size and number of protein coding sequences were plotted for Mollicutes (C), Rickettsiales (D) and representative

genomes of all accepted bacterial species (E). Genome size and number of protein coding sequences are log10 transformed for visualization.

https://doi.org/10.1371/journal.pone.0298002.g003
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Aurelia Mollicutes genome, only two genes were annotated as transporters. This suggests Aur-
elia Mollicutes transporters are capable of up-taking a broad set of metabolites, or unannotated

genes have unidentified transporter functions. Finally, genes responsible for vitamin and

Fig 4. Bacteria that associate with Aurelia AcGM are likely new species. A concatenated maximum-likelihood

phylogenetic tree was constructed using IQ-TREE with ultra-fast bootstrapping (n = 2000). Ultrafast bootstrap support

values are shown for each branch point. The number of species comprising collapsed branches are shown in

parentheses. (A) Phylogenetic reconstruction of the Aurelia Mollicutes. Eleven single-copy orthologs from 128

Mollicutes species were analyzed. (B) Phylogenetic reconstruction of the Aurelia Rickettsiales. Fifty-six single-copy

orthologs from 82 Rickettsiales species were analyzed.

https://doi.org/10.1371/journal.pone.0298002.g004
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cofactor biosynthesis are completely absent from the Aurelia Mollicutes genome, suggesting

the bacterium is totally reliant on the host for these molecules.

Aurelia Mollicutes and Rickettsiales are likely new species

Using the bacterial genomes, we performed taxonomic classification with the Genome Taxon-

omy Database toolkit (GTDB-Tk; [67]). Taxonomic classification is assigned by calculating a

relative evolutionary divergence (RED) value and the average nucleotide identity relative to

reference genomes in the GTDB database [67]. We failed to determine an average nucleotide

identity (ANI) values with high confidence for both genomes (S5 Table in S10 File), due to

their dissimilarities to known genomes within the respective lineages. The GTDB-Tk analysis

suggests the Aurelia Mollicutes and Rickettsiales likely belong to novel genera of bacteria: Mol-

licutes potentially in the family Spiroplasmataceae, and Rickettsiales in the family Anaplasma-

taceae. To further corroborate this finding, we performed a digital DNA-DNA hybridization

analysis (dDDH; S5 Table in S10 File). The dDDH analysis fails to find any genome similar to

the Mollicutes or Rickettsiales MAG with a score higher than 30%, verifying that the two bacte-

ria associated with Aurelia AcGM are likely novel taxa.

We next performed homology analysis using the 16S rRNA genes, whose full sequences

were recovered from the Mollicutes and Rickettsiales MAGs. We find that the Mollicutes 16S

rRNA gene is most similar to Spiroplasma platyhelix, with an 80% sequence similarity (S1

File). The Rickettsiales 16S rRNA gene is most similar to Ehrlichia chaffeensis, with a sequence

similarity of 85.2% (S2 File). Species-level matches typically fall in the range of>97% similar-

ity. The homology analysis to find good homologies for the 16S rRNA genes further supports

the findings from the average nucleotide identity and digital DNA-DNA hybridization analy-

ses that the Aurelia AcGM-associated microbes are likely new species.

In order to better resolve the phylogenetic position of Aurelia associated bacteria to known

Mollicutes and Rickettsiales, we built phylogenetic trees using single-copy orthologs (Fig 4, S3

File). The Aurelia Mollicutes is most closely related (sister) to another Mollicutes associated

with a marine invertebrate, Ca. Spiroplasma holothuricola, a Mollicutes associated with sea

cucumbers. It is also interesting that both Mollicutes also have similar genome sizes (both on

the small end; Fig 2). Although the two species group together relative to all other Mollicutes,

they themselves appear to have undergone some divergence, as indicated by the long branch

lengths from the split. Altogether, these results support the placement of Aurelia Mollicutes as

a unique genus within the Mollicutes, sister to the Entomoplasmatales. To further verify the

single-copy ortholog tree, we performed phylogenetic reconstruction with the 16S rRNA gene

(S3 Fig in S9 File, S4 File), and obtained a similar taxonomic placement of Aurelia Mollicutes.

We therefore propose the name Ca. Mariplasma lunae, to signify a new marine genus related

to Spiroplasma that dwells in moon jellyfish.

Phylogenetic reconstruction of the Rickettsiales order places the Aurelia Rickettsiales with

high confidence as a sister clade to the Wolbachia/Anaplasma/Ehrlichia group (Fig 4B, S5 File).

The support score at the branch point between Aurelia Rickettsiales and Neorickettsia, the posi-

tion of the Aurelia AcGM-associated bacteria is unclear. However, consistent with the single-

copy ortholog analysis, analysis with the 16S rRNA gene consistently places the Aurelia Rickett-

siales as sister to Neorickettsia, and with greater support (S4 Fig in S9 File, S6 File). Despite the

16S rRNA gene tree, greater taxonomic sampling is necessary within the Aurelia Rickettsiales-

Neorickettsia clade to fully resolve the relationship. Regardless of the precise placement, both

phylogenetic inference and genome similarity metrics strongly support the classification of the

Aurelia Rickettsiales as a new genus. We therefore propose the name Ca. Marinirickettsia aqua-

malans for a new genus and species of Rickettsiales that associates with jellyfish.

PLOS ONE The microbiome of a moon jellyfish

PLOS ONE | https://doi.org/10.1371/journal.pone.0298002 April 18, 2024 11 / 18

https://doi.org/10.1371/journal.pone.0298002


Discussion

In this study, we characterized the bacterial microbiome of the moon jellyfish Aurelia coerulea,

originally collected from the Eastern Pacific Ocean and has been cultured in the lab for ten

years, which we call Aurelia coerulea AcGM. We find that Aurelia coerulea AcGM has a low-

diversity bacterial microbiome, dominated by two taxa. A low-diversity microbiome appears

to be a stable feature of Aurelia, as the microbiome of Aurelia from other geographical loca-

tions, lab and wild specimens, consistently reveal 2–5 dominant taxa [30–36].

The Pacific Aurelia AcGM that we analyzed associates with bacteria from two taxa, a Molli-

cutes and a Rickettsiales. The diversity of the Aurelia microbiome is stable throughout its life

stages, but the relative abundance of the Mollicutes and Rickettsiales changes. In particular,

Mollicutes are significantly enriched in the medusa stage. Analysis using multiple metrics

(average nucleotide identity, 16S rRNA homology, multi-gene phylogenetic analysis, and 16S

rRNA taxonomy) suggests that Aurelia Mollicutes, as well as Aurelia Rickettsiales, are likely

new genera. We therefore propose the names Ca. Mariplasma lunae (Mollicutes) and Ca. Mar-

inirickettsia aquamalans (Rickettsiales).

Association with a Mollicutes appears to extend beyond our Pacific strains, as it has also

been found in Aurelia from multiple other geographical populations, both in lab or wild speci-

mens [30, 31, 34]. Remarkably, the 16S amplicon sequences of the Aurelia-associated Molli-

cutes from these previous studies show 97–100% sequence similarity to the Mollicutes we

identify in Aurelia AcGM (Table 1 and S4 Table in S10 File). This suggests that association of

Aurelia and Ca. Mariplasma lunae may be convergent across biogeographies and environmen-

tal conditions, potentially pointing to the existence of an Aurelia Mollicutes. On the other

hand, association with Rickettsiales has been observed in only one other study [30], suggesting

a more opportunistic relationship.

Mollicutes are known for having small genome sizes [86]. Mycoplasmoides genitalium with

0.58 Mb genome and 470 protein coding sequences [87] is among the smallest free-living

forms of life, and a model system in minimal genome research. The Aurelia Mollicutes has 0.4

Mb and almost 100 fewer coding sequences than M. genitalium. Together with the sea cucum-

ber associated Mollicutes, these are the smallest Mollicutes identified so far (Fig 3C) and

among the smallest known bacterial genomes known so far (Fig 3E). Marine Mollicutes are

much less studied than their land counterparts. Some of the most well-known Mollicutes are

parasites studied for their impact on crop plants (e.g., Spiroplasma citri) and human health

(e.g., Mycoplasma pneumoniae, Mycoplasma genitalium). The finding of a new marine species

of Mollicutes in an animal host that can be studied in the lab provides an opportunity to add

to our understanding of marine Mollicutes biology. At the same time, Aurelia is one of the

most widespread jellyfish with increasing ecological impact due to their population dynamics

and resilience in wide-ranging environments. It will be interesting to understand next how

association with Mollicutes impacts Aurelia biology, and why association with Mollicutes

appears to be recurrent across geographical populations of Aurelia.
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