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Abstract

Alzheimer’s disease is the most prevalent form of dementia, which is a gradual condition

that begins with mild memory loss and progresses to difficulties communicating and

responding to the environment. Recent advancements in neuroimaging techniques have

resulted in large-scale multimodal neuroimaging data, leading to an increased interest in

using deep learning for the early diagnosis and automated classification of Alzheimer’s dis-

ease. This study uses machine learning (ML) methods to determine the severity level of Alz-

heimer’s disease using MRI images, where the dataset consists of four levels of severity. A

hybrid of 12 feature extraction methods is used to diagnose Alzheimer’s disease severity,

and six traditional machine learning methods are applied, including decision tree, K-nearest

neighbor, linear discrimination analysis, Naïve Bayes, support vector machine, and ensem-

ble learning methods. During training, optimization is performed to obtain the best solution

for each classifier. Additionally, a CNN model is trained using a machine learning system

algorithm to identify specific patterns. The accuracy of the Naïve Bayes, Support Vector

Machines, K-nearest neighbor, Linear discrimination classifier, Decision tree, Ensembled

learning, and presented CNN architecture are 67.5%, 72.3%, 74.5%, 65.6%, 62.4%, 73.8%

and, 95.3%, respectively. Based on the results, the presented CNN approach outperforms

other traditional machine learning methods to find Alzheimer severity.

1 Introduction

Alzheimer’s disease is a type of dementia that affects the elderly. The onset of symptoms is esti-

mated to occur 15–-20 years prior to the onset of the disease. Neurons important in memory,

reasoning, and learning function are destroyed, resulting in syndromes [1]. The disease’s spe-

cific aetiology and treatment are yet unclear. Researchers have used a variety of neuroimaging
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methods, including single-photon emission computed tomography, magnetic resonance imag-

ing (MRI), and positron emission tomography, to study AD [2]. In 2017, there were 121,404

deaths associated with AD, making it the sixth leading cause of death in the United States. It is

estimated that 60 million individuals will be affected by Alzheimer’s disease over the next 20

years. The World Alzheimer’s Report estimates that there will be 152 million Alzheimer’s

patients by 2050 [3]. A scientist examines the thickness of the cortex, the density of gray mat-

ter, as well as the enlargement of the ventricles and the shrinkage of the brain. The cerebrospi-

nal fluid (CSF), gray matter (GM), and white matter (WM) are the three primary tissues in

brain imaging. However, researchers found that GM atrophy is more closely related to cogni-

tive impairment in patients with MCI [4]. According to AD research, finding accurate bio-

markers for the automated diagnosis of AD or MCI has been a promising and hard endeavor

in recent years [5]. Many biomarker study initiatives have already begun and have shown sig-

nificant findings.

The Alzheimer’s Association and the National Institute on Aging in the United States sug-

gested a biomarker-based solely biological definition of Alzheimer’s disease. Even though

this framework was designed for study, it has sparked discussion and problems when it

comes to its use in clinical practice. Individuals with no cognitive impairment, for instance,

despite having biomarker proof of both amyloid and tau pathology, seldom develop clinical

symptoms over their lifetime. When AD pathology is present as comorbidity, biomarkers

with an AD pattern can also be discovered in other brain diseases [6]. AD might be regarded

as a purely biological illness with no clinical component or individual status based on ATN

status. Though neuropathologists declared in 2012 that “there is an agreement to separate

the clinicopathologic term ‘AD’ from neuropathologic alteration,” by isolating AD from a

clinical phenotype, the illness becomes identical with AD neuropathological adaptations [7].

As a result, the term Alzheimer’s disease encompasses a spectrum of symptoms ranging from

mild cognitive impairment to severe dementia. A model is a machine learning system that

has been taught to recognize particular sorts of patterns via the use of a method. That is, it

analyzes data and uncovers latent structures in a dataset [8]. The feature extraction and

known replies of a dataset create the formula that relies on the input and output functions

and applies it to new data to predict the response. As a consequence, the algorithm of the

model takes a set of data for training and then produces a technique for predicting the output

that can be preserved for later use [9]. In machine learning research, small datasets are fre-

quently seen as a flaw. Small datasets, for instance, may constrain the applicability of the

trained machine approach since they are less likely to capture all variation and ignore rare

data points [10]. Furthermore, if the trained machine model is trained on a smaller database,

it may get more data-dependent. When an ML model overfits the training dataset, this is

referred to as data reliance. And the categorization was dependent on remembering the data

or co-existing characteristics rather than on generic picture features. Disease categorization

using medical pictures gathered from several sites, when each site utilizes various scanners

with various image formats, is an excellent example. When certain research locations are

strongly linked to a certain illness, excellent classification accuracy can be attained by differ-

entiating picture format on the data collecting site rather than pathological features [10].

According to research, the situation may increase if individuals can diagnose AD early and

begin treatment [11]. It is imperative that they anticipate the progression of the disease from

a mild state to dementia in order to do so. The use of machine learning technologies can aid

in the accurate prediction of early Alzheimer’s disease, as it can in many other fields.

Although there are many machine learning systems available, their predictions are unreliable

and inaccurate [12]. It is also difficult for them to find the local and global optimal solution

to overfitting and underfitting [13].
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The study utilizes machine learning (ML) techniques to determine the severity of Alzhei-

mer’s disease. The dataset used in the study comprises MRI images with four different levels of

severity. We used a hybrid of 12 feature extraction methods to diagnose Alzheimer’s disease

severity using MRI images. Six traditional machine learning methods are used to diagnose Alz-

heimer’s disease. The techniques include decision tree (DT), K-nearest neighbor (KNN), Lin-

ear Discrimination Analysis (LDA), Naïve Bayes (NB), Support Vector Machine (SVM), and

ensembled learning, including Bag, Adaboost, and RUSBoost methods. In the training process,

optimization is done to find the best solution for each classifier. Moreover, a CNN model is

taught to recognize patterns using a machine learning technique. The remainder of the paper

is organized as follows: Section 2 presents the related work, while Section 3 describes the meth-

ods and materials used in the study. Section 4 presents the results of the experiments and a dis-

cussion of the findings. Finally, Section 5 provides the conclusion and future work.

2 Literature review

Deep learning (DL), a state-of-the-art ML technique, has outperformed standard ML algo-

rithms in identifying complicated structures in high-dimensional data. Using multimodal neu-

roimaging data is a potential diagnostic classification technique for AD. Furthermore, when

neuroimaging data is scarce, hybrid methods based on DL for feature extraction might

improve AD classification [14]. Karaglani et al. used AutoML technology to evaluate a high-

throughput dataset from AD blood tests to create reliable prediction approaches for applica-

tion as diagnostic biosignatures. The findings suggested less invasive blood-based diagnostic

diagnostics for AD, pending clinical confirmation depending on laboratory experiments. They

also emphasized the importance of AutoML in the identification of biomarkers [15]. Naik

et al. investigated the impact of multiple ML classifiers in MRI and the usage of SVM with vari-

ous multimodal scans for identifying patients with AD/MCI against healthy controls. Findings

were reached based on different classifier techniques and the presentation of the best multi-

modal paradigm for AD categorization [2]. Uysal and Ozturk used neuroimage analysis to

detect dementia early in AD. They believe that the hippocampus’s volumetric decrease is the

most crucial indication of AD. ITK-SNAP, a semi-automatic segmentation software, was used

to generate volume information, and a data set was constructed depending on age, gender,

diagnosis, and right and left hippocampus volume values. ML algorithms were used to make

the diagnosis based on hippocampus volume data. They find that brain MRIs may be utilized

to identify individuals with AD, Mild Cognitive Impairment (MCI), and Cognitive Normal

(CN) from one another, whereas most research could only differentiate AD from CN [16].

Gaudiuso et al. showed that using Laser-Induced Breakdown Spectroscopy (LIBS) and ML to

examine micro-drops of plasma samples from AD patients and healthy controls resulted in

accurate classification. After collecting LIBS spectra from 67 plasma samples from 31 Alzhei-

mer’s patients and 36 healthy controls (HC), the researchers examined the data. With an over-

all accuracy of 80%, a specificity of 75%, and a sensitivity of 85%, they accurately diagnosed

late-onset AD (beyond 65 years old) [17]. Rzhikova et al. proposed a novel technique for diag-

nosing AD depending on CSF using near-infrared (NIR) Raman spectroscopy and ML analy-

sis. Raman spectroscopy can examine a biological fluid’s complete biochemical makeup at

once. It offers much promise for detecting tiny changes unique to AD, even at the initial stages

of the disease [18]. Artificial neural networks (ANNs) and support vector machine discrimi-

nant analysis (SVM-DA) statistical methods were employed to achieve 84% sensitivity and

specificity for the discrimination of AD and HC patients. The Raman spectroscopic examina-

tion of CSF described in this study can enhance existing clinical testing, enabling rapid, accu-

rate, and low-cost detection of AD in the early stages. While the results of this study were
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promising with limited sample size, further technique validation on a larger scale will be

required to determine the approach’s true potential [18].

Tian et al. decided to look at the retina, specifically the retinal vasculature, instead of under-

taking AD-related dementia assessments. All through the process, highly modular ML

approaches were used. They also incorporated a saliency analysis to improve the interpretabil-

ity of this process. According to the saliency analysis, tiny vessels in retinal pictures convey

more data for detecting AD, consistent with previous research [10]. A traditional SVM and a

deep CNN method were used by Bron et al. [19]. based on structural MRI images pre-pro-

cessed into modulated gray matter (GM) maps with either a minimum or substantial amount

of preprocessing. In the study, both deep and conventional classifiers performed similarly well

for the classification of AD, and their performance only marginally deteriorated when used

with an external cohort. By combining information-gain-based feature selection with an Ada-

Boost classifier, Mienye et al. [20] highlighted the effectiveness of ML in early Chronic Kidney

Disease (CKD) identification. Earlier, Mienye et al. [21] used an improved sparse autoencoder

with Softmax regression to address unbalanced medical datasets, resulting in superior disease

prediction outcomes for CKD, cervical cancer, and heart disease. While employing ML models

in conjunction with SHapley Additive exPlanations (SHAP) for greater interpretability,

Obaido et al. [22] improved hepatitis B diagnosis, underlining the value of certain characteris-

tics like bilirubin in predicting outcomes.

Bari Antor et al. reported the results and analyses of several ML models for diagnosing

dementia. The system was created using the Open Access Series of Imaging Studies (OASIS)

dataset. The data was examined and used in a variety of ML models. SVM, logistic regression,

decision trees, and random forests were utilized for prediction. The system was running with-

out fine-tuning for the first time and then with fine-tuning for the second time. When the find-

ings were compared, it was discovered that the support vector machine produced the best

outcomes of the models [12].

Dogan et al. [23] developed a model of primate brain patterns based on EEG signals for the

detection of AD. Using a directed graph to extract features from the primate brain’s connec-

tome, this method demonstrated high accuracy in identifying AD patients from healthy con-

trols. In order to enhance the accuracy of AD detection, the model is able to generate a set of

features from EEG signals. Using brain images, Kaplan et al. [24] developed a feed-forward

Local Phase Quantization Network (LPQNet) for AD detection. Based on feature generation

and selection through multilevel processing, their model demonstrated remarkable classifica-

tion accuracy across several datasets. LPQNet stands out for its combination of high accuracy

and low computational complexity, which makes it a valuable tool for diagnosing Alzheimer’s

disease. Kaplan et al. [25] developed the ExHiF model for the detection of AD using CT and

MR images. They combined exemplar histogram-based features with neighborhood compo-

nent analysis to achieve 100% classification accuracy. In terms of medical image classification

for AD, this model is innovative in its feature extraction process inspired by vision transform-

ers. Table 1 provides a detailed comparison of related works that have leveraged ML to diag-

nose AD.

3 Methods and materials

3.1 Feature extraction

The Gray Level Co-occurrence Matrix (GLCM) and related texture feature calculations are

used in image analysis. The GLCM is a tally of how often different gray level combinations co-

occur in an image or segment, resulting in a picture of pixels with different intensities (a spe-

cific gray level). In texture feature calculations, the components of the GLCM are utilized to
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produce a measure of intensity variation (a.k.a. image texture) at the pixel of interest [30]. For

obtaining texture features, the LBP is a helpful tool. Face detection and pattern recognition

algorithms typically use this strategy. The LBP operator converts an image into an array or an

image of integer labels that describe how the picture looks on a small scale. The operator may

be tweaked to work with different community sizes. Any neighborhood radius and the number

of pixels may be achieved by employing circular neighborhoods and bilinearly interpolating

the pixel values [31]. Furthermore, rather than utilizing angular neighbor points, the primary

technique of RLBP is to determine the mean of points across each radial (over a circle). Local

ternary patterns (LTP), unlike LBP, do not utilize a threshold constant to divide pixels into 0

and 1 but instead use a threshold constant to divide pixels into three values [32]. Statistical

Table 1. A comparison of the findings of the ML approaches used to diagnose AD.

Authors Year Aim Disease Method Results

Ryzhikova

et al. [18]

2021 Analysis of cerebrospinal fluid AD Raman spectroscopy, ANN,

SVM-DA

CSF’s described Raman spectroscopic analysis can

supplement current clinical testing, allowing for

quick, accurate, and low-cost early AD diagnosis.

Tian et al.

[10]

2021 Analysis of retinal vasculature AD Highly modular machine

learning

The saliency study revealed that tiny vessels in

retinal pictures convey more information for

detecting AD, consistent with previous research.

Bron et al.

[19]

2021 MRI image processing AD SVM, CNN Deep and conventional classifiers performed equally

well in the categorization of AD, and their function

only marginally deteriorated when deployed to the

external population

Chang et al.

[26]

2021 Imaging and cerebrospinal fluid (CSF) levels

of amyloid-β1-42 (Aβ42), total tau protein,

and hyperphosphorylated tau (p-tau)

AD SVM, logistic regression, random

forest, and naïve Bayes

The findings showed that ML combined with new

biomarkers and numerous factors might improve

the sensitivity and specificity of AD diagnosis.

HPLC for biomarkers and ML algorithms may aid

clinicians in identifying Alzheimer’s disease in

outpatient clinics

Rodriguez

et al. [27]

2021 Identifying repurposing drug AD logistic regression, SVM, boosted

random forest models, and two-

layer fully connected neural

networks

The DRIAD technique may be utilized to identify

medicines that might be quickly assessed in a

clinical trial following additional verification and

identifying of relevant pharmacodynamic

biomarker(s).

Ficiarà et al.

[28]

2021 Analysis of cerebrospinal fluid AD ANOVA, Kruskal-Wallis test,

Post-hoc tests, Linear SVM, LR

model

The findings indicate the role of iron dysregulation

in the etiology and development of dementia, as

well as its possible interaction with biomarkers (Tau

protein and Amyloid-beta)

Karaglani

et al. [15]

2020 Analysis of Blood-Based Diagnostic

Biosignatures

AD AutoML, Ridge Logistic

Regression, Support Vector

Machines, Random Forests

These findings suggested less invasive blood-based

diagnostic diagnostics for AD, which were still

awaiting clinical confirmation obtained from

laboratory assays

Naik et al.

[2]

2020 Multimodal diagnostic classification AD KNN, SVM Multimodal methods provide more important

information concealed when a single modality is

investigated, and they can reveal unique and distinct

data characteristics by identifying multiple

correlations between the data.

Gaudiuso

et al. [17]

2020 Laser-Induced Breakdown Spectroscopy AD Quadratic Discriminant Analysis,

linear discriminant analysis

These findings were acquired by selecting features

from the difference spectra manually (i.e. all the

features that appeared as positive or negative peaks

in difference spectra)

Nanni et al.

[29]

2020 MRI image processing AD Transfer Learning, 3D-CNN These findings offer up new possibilities for using

transfer learning in conjunction with neuroimages

for the automated early identification and prognosis

of Alzheimer’s disease, even if the system is pre-

trained on generic images

https://doi.org/10.1371/journal.pone.0297996.t001
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geometrical metrics include area, centroid, convex area, convex hull, equivalent diameter,

Euler number, extent, extrema, bounding box, filled size, major axis length, eccentricity,

minor axis length, orientation, perimeter, and solidity. The boundary intersection-based signa-

ture (BIBS) examines the contents of a shape’s border, particularly those with concave con-

tours. The design of this technique relies heavily on the intersection locations of any linked

line from the form center to its outline [33]. A shape signature is a one-dimensional represen-

tation of a shape border and cannot describe open borders with many intersecting locations.

As a result, BIBS examines the boundary contents of forms, particularly those with concave

contours [34]. The PCA filter feature is the mean of the input image’s PCA coefficient. Inde-

pendent component analysis (ICA) is a method for obtaining additive subcomponents from a

multivariate signal using a computer program. This is done by assuming that the subcompo-

nents are statistically independent non-Gaussian signals. Blind source separation is a particular

instance of ICA [35]. The list of the feature extraction approaches is depicted in Fig 1.

A series of Gabor filters with varying frequencies and orientations may be beneficial for

extracting relevant information from a picture. Two-dimensional Gabor filters are defined as

follows in the discrete domain:

Gc i; jð � ¼ Bexp �
i2 þ j2

2s

� �

cosð2p f ðicosyþ jsiny ÞÞ

ð1Þ

Gs i; jð � ¼ Cexp �
i2 þ j2

2s

� �

sinð2pf ðicosyþ jsiny ÞÞ

ð2Þ

where B and C are to be identified, normalizing factors 2-D Gabor filters have several uses in

image processing, mainly feature extraction for texture analysis and segmentation. The fre-

quency searched for in the texture is defined by f. We may seek texture oriented in a specific

direction by changing. We can alter the size of the picture region being examined or the sup-

port of the basis by changing [36]. The following technique calculates long energy using a dis-

crete wavelet spectrum, shown in Table 2. The logarithm of the absolute Shift zero-frequency

component of the discrete Fourier transform to the center of the spectrum is LE.

The Model-Based Feature returns the Hausdorff fractal dimension of an item described by

a binary picture. An item has nonzero pixels, while the backdrop has zero pixels. Ultimately,

the width and heights of the binary sub-border of the images are returned by Conventional

Shape Signature.

3.2 Feature reduction

In ML, it is commonly assumed that the more characteristics we have, the better our predic-

tion. However, this is not always the case. If we keep raising the number of features, the effi-

ciency of our ML algorithm will eventually deteriorate. If we maintain the number of training

samples constant while expanding the number of dimensions, the predictive power of our ML

model rises at first but subsequently begins to decline. As the number of dimensions grows,

each feature may take on a wider range of values; therefore, as the dimensions grow, we must

raise the number of data samples to guarantee that there are numerous samples with each

value combination. The number of samples required for successful prediction often grows log-

arithmically as the dimensions increase [37]. The Principal Component Analysis (PCA) is a

technique for reducing dimensionality through the transformation of correlated features in
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high-dimensional spaces into uncorrelated features in low-dimensional spaces. The term

“principal components” refers to these uncorrelated features. PCA is an orthogonal linear

transformation, meaning all principal components are perpendicular to another one. It modi-

fies the data so that the first component seeks to explain as much variation as possible from the

Fig 1. The diagram of all feature extraction methods.

https://doi.org/10.1371/journal.pone.0297996.g001
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original data. It’s an unsupervised algorithm that doesn’t take the class labels into account.

When we apply PCA to reduce dimensionality, we create a d×k–dimensional transformation

matrix. This matrix may be used to map a sample vector x onto a new k–dimensional feature

space with fewer dimensions than the original d–dimensional feature space [38]:

x ¼ ðx1; x2; . . . ; xd�;

x 2 Rd ! z ¼ ðz1; z2; . . . ; zd�;

z 2 Rk; d” k

ð3Þ

The original d-dimensional data was changed into this new k-dimensional subspace due to

this transformation (typically k”d). The most variation will be seen in the first primary compo-

nent since consecutive principal components must be uncorrelated (orthogonal) to the pri-

mary principal components, even if the input characteristics are connected. And the most

considerable variance will be found in all subsequent significant features. The key factors that

emerge will be unrelated (mutually orthogonal) [39].

3.3 Machine learning (ML)

ML is the study of computer systems that learn through inference and patterns through algo-

rithms and statistical models without being explicitly programmed. In recent years, machine

learning algorithms have been developed independently for a variety of purposes, including

health, finance, and agriculture [40]. In supervised machine learning, SVMs are used to apply

classification techniques to problems involving two groups [41]. SVMs are reliable and fast

classification techniques that are excellent for handling sparse data. SVMs are a group of

supervised learning algorithms that are used to solve regression and classification problems.

The decision tree approach is used to categorize data in ML systems. Based on the training

data, the goal of a decision tree is to construct the smallest tree possible [42].

A split test is conducted in the decision tree’s core node and a target class example is

expected in the leaf node of this supervised classification method. KNN is a nonparametric fea-

ture similarity-based algorithm. It is a successful algorithm for pattern recognition. Data points

are classified according to their closest neighbors using a straightforward classifier. KNN is

likely to be a good fit for studies involving large databases. As a result of the enormous amount

Table 2. Logic-energy pseudo-code.

Algorithm: Log-Energy (LE)

F: features; Im: input image; level: level of wavelet transformation

for i = 1:level [a1, a2, a3, a4] = DWT(Im); Discrete wavelet transformation subbands do

A(i) = mean (log(abs(fftshift(fft2(a1)))));

H(i) = mean (log(abs(fftshift(fft2(a2)))));

V(i) = mean (log(abs(fftshift(fft2(a3)))));

D(i) = mean (log(abs(fftshift(fft2(a4)))));

end for

RA = sum(diff((A(:))));

RH = sum(diff((H(:))));

RV = sum(diff((V(:))));

RD = sum(diff((D(:))));

F = [RA, RH, RV, RD];

https://doi.org/10.1371/journal.pone.0297996.t002
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of data available in medical databases, KNN is capable of accurately predicting a new sample

point class. KNN classification algorithms based on dimensionality reduction outperform

existing probabilistic neural network schemes in terms of average accuracy, specificity, sensi-

tivity, recall, precision, Jaccard and Dice coefficients, reduced data dimensionality, and

computational complexity, according to the research results [43].

3.4 Convolutional Neural Network (CNN)

As discussed in the chapter before, CNNs consist of neurons with trainable weights and biases.

In each neuron, some inputs are received, a dot product is calculated, and a non-linearity is

applied if necessary [44]. The complete network delivers a single differentiable score that

ranges from raw image pixels on one end to class scores on the other. All of the methods and

techniques we described for conventional neural networks still apply to the last (completely

connected) layer, which still has a loss function (such as SVM/Softmax). The CNN is particu-

larly adept at identifying objects, people, and scenery in images by searching for patterns in

them. Medical image processing has increasingly used CNNs to detect malignancies in the

breast, brain, and teeth [45]. As well as classifying image data, these algorithms are also useful

for classifying other types of data, such as audio, time series, and signals [45]. Advanced

machine learning and optimization approaches have demonstrated intriguing uses in recent

medical research. As an illustration, consider an ensemble strategy that uses LSTM neural net-

works and hybrid data resampling to optimize fraud detection [46] or medical imaging that

uses genetic algorithms to improve picture accuracy before utilizing DenseNet for classifica-

tions [47].

3.5 Classification performance metrics

The confusion matrix is a specific tool that accurately measures categorization performance.

Learning a few definitions are required to understand the confusion matrix [48]. But before

we get into the theories, let’s look at a fundamental confusion matrix for binary or binomial

classification with two classes (say, Y or N). The potential of a classifier to select all of the

examples that must be chosen is referred to as sensitivity. A perfect classifier will determine all

true Ys and exclude any true Ys. There will be no false negatives to express it in a different

way. In the absence of a classifier, true Ys will be missed, resulting in false negatives. A classi-

fier is defined as being accurate if it is able to select all instances that need to be picked and to

reject all instances that need to be denied [49]. Fig 2 illustrates the workflow and conceptual

diagram in our proposed approach.

4 Results and discussion

4.1 Data collection

There are 426 individuals in the clinical medical dataset, comprising 1229 records of prospec-

tive patients. The pictures MRI segmentation AD dataset contains four classes of images in

both the training and testing sets, totaling about 5000 images, each separated by Alzheimer’s

severity, indicated in Fig 3:

i. Moderate Demented

ii. Mild Demented

iii. Very Mild Demented

iv. Non-Demented
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4.2 Pre-processing results

This paper used a hybrid of 12 feature extraction methods to diagnose the AD severity using

MRI images. These feature extraction methods consisted of GLCM, LBP, RLBP, LTP, SGM,

BIBIS, PCA Filter, ICA Filter, Gabor Filter, Log-Energy, Model-based Feature, and conven-

tional shape signature, as demonstrated in Fig 1. The total number of features is 90 image fea-

tures. After rescaling and transforming the image to double and grayscale images and

normalization, the feature extraction is done. To reduce the computation time and optimize

the training process’s computation, the PCA feature reduction method was used. Fig 4 shows

the scree plot and normalized cumulative sum of eigenvalues (NCSE). Based on the results, 33

first eigenvalues illustrate 100 of all feature effects of the classification. Furthermore, the output

labels are divided into four categories: 1) Non-Demented, 2) Very Mild Demented, 3) Mild

Demented, and 4) Moderately Demented.

Fig 2. Conceptual diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0297996.g002

PLOS ONE Adaptable CNN for Alzheimer’s diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0297996 March 26, 2024 10 / 20

https://doi.org/10.1371/journal.pone.0297996.g002
https://doi.org/10.1371/journal.pone.0297996


Fig 3. Dataset outcome of different dementia stages.

https://doi.org/10.1371/journal.pone.0297996.g003
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4.3 Classification results

In this work, six traditional ML methods were employed to diagnose AD. The techniques

include DT, KNN, LDA, NB, SVM, and ensembled learning includes Bag, Adaboost, and RUS-

Boost methods. In the training process, optimization is carried out to find the best solution for

each classifier. DT is the first classifier used in the training process. Based on the optimization

results in Fig 5 (middle column).

Regarding the results, 138 slits of the DT method with Towing rule reached minimum

error in the training process. The classification confusion matrix is illustrated in Fig 5 (left col-

umn). The total number of images for classification is 4000 MRI images, such that each class

includes 1000 images. The training process performed used 33 reduced features with four

labels. Based on the confusion matrix, the diameter of the matrix illustrates the actual values or

number of images that were diagnosed correctly in each class.

Based on the results from normal images (1- Non-Demented), 589 images were diagnosed

correctly. It includes 58.9% of non-demented images. Also, 23.8%, 15.9%, and 1.4% are misdi-

agnosed on 2-Very Mild Demented, 3- Mild Demented, and 4- Moderate Demented, respec-

tively. Moreover, between 1000 Very Mild images, 530(53%) were diagnosed correctly. The

sensitivity of the DT method for the diagnosis of AD is 58.9%, 53%, 52.1%, and 85.4% for the

diagnosis of classes 1, 2, 3, and 4. To better illustrate the classification results, the false-positive

rate versus the true positive rate is the ROC curve represented in Fig 5 (right column). The

Fig 4. Results of PCA for feature reduction. The first 33 features include 100% variance of all 99 features.

https://doi.org/10.1371/journal.pone.0297996.g004

Fig 5. Results of classification using DT: Confusion matrix, middle: Optimization results, Right: ROC curve.

https://doi.org/10.1371/journal.pone.0297996.g005
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positive class is determined based on normal images. If the curve tends to left-up or minimum

false positive rate and maximum true positive rate, it would be desirable for AD classification.

Therefore, if the area under the curve (AUC) is high, it is better than other classifiers. The

AUC value for the DT method is 82%.

The presented optimized ensemble learning (En) includes three classifiers, AdaBoost, Bag,

and RUSBoost. The learner type is the DT method, and 288 learners are engaged to classify the

features. The learning rate is also 0.001. The maximum number of splits is 2221. These hyper-

parameters are optimized to decrease the maximum classification error. Based on the confu-

sion matrix of the En method, it can diagnose 87.7% of Moderate Demented images. The AUC

value of the En method is also 93%. The results are reported in Fig 6

Moreover, the KNN method is optimized with k = 12 neighbors with correlation distance

metrics. It results in minimum classification error. This classifier’s maximum sensitivity

belongs to the fourth class with 90.0% sensitivity. 6.6%, 2.3%, and 1.1% of images are misdiag-

nosed in this class to 3,2 and 1. The outcomes as demonstrated in Fig 7.

The LDA method is also prosperous in diagnosing 85.7% of 4 (Moderate Alzheimer). More-

over, in the NB method, the sensitivity of classes 1, 2, 3, and 4 are 70.5%, 49.9%, 61.1%, and

81.3%, respectively. It is trained with a Gaussian kernel to minimize classification error.

Finally, SVM is trained with a linear kernel. The AUC of SVM is also 89%. The results for

LDA, NB, and SVM are indicated in Figs 8–10, respectively.

In this section of the study, a CNN design is introduced for determining the severity of Alz-

heimer’s disease It includes 20 layers consisting of four convolutional layers, four

Fig 6. Results of classification using En: Confusion matrix, middle: Optimization results, Right: ROC curve.

https://doi.org/10.1371/journal.pone.0297996.g006

Fig 7. Results of classification using KNN: Confusion matrix, middle: Optimization results, Right: ROC curve.

https://doi.org/10.1371/journal.pone.0297996.g007
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normalization layers, four activation layers, and 3 Maxpooling layers. It begins with the image

dataset input layer and is evaluated with a 4-label output layer. Two Softmax and fully con-

nected layers are also necessary for classification architecture, and a 50% dropout layer is

added to increase the accuracy. Fig 11 illustrates the architecture of the proposed CNN

method.

The dataset consists of 4000 PNG images of brain MRI results classified into four categories:

Non-Demented (Normal), Very Mild Demented, Mild Demented, and Moderately Demented.

Fig 8. Results of classification using LDA: Confusion matrix, middle: Optimization results, Right: ROC curve.

https://doi.org/10.1371/journal.pone.0297996.g008

Fig 9. Results of classification using NB: Confusion matrix, middle: Optimization results, Right: ROC curve.

https://doi.org/10.1371/journal.pone.0297996.g009

Fig 10. Results of classification using NB: Confusion matrix, Right: ROC curve.

https://doi.org/10.1371/journal.pone.0297996.g010
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70% of all data is used for training in the training process, and 30% is allocated for testing the

output network. The training process is done with 13 epochs and 3500 iterations with a gradi-

ent descent algorithm. The accuracy and loss of the training process are shown in Fig 12.

The classification results are offered in a confusion matrix, as represented in Fig 13. The

green cell (diameter of the matrix) illustrates the true values, and the red cells are false results.

To test the network’s fitness, the results of the confusion matrix of test samples can be seen in

Fig 13(a). Based on the results of the classification, the training process results in 100% accu-

racy for the classification of input images, as shown in Fig 13(b). From 300 mild images, 288

(96.0%) of them are diagnosed correctly. In other words, 4 (1.2%) of the mild class is misdiag-

nosed in the normal category and 8 (2.8%) is located in the very mild subset. Therefore, the

sensitivity of the CNN for diagnosing mild AD is 96%. The presented CNN method diagnosed

moderate AD accurately with 100 sensitivity. Moreover, 95.3% of normal images are

Fig 11. An overview of the architecture of the CNN method presented in this paper.

https://doi.org/10.1371/journal.pone.0297996.g011

Fig 12. The training process in the proposed CNN model.

https://doi.org/10.1371/journal.pone.0297996.g012
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recognized. The similarity of the very mild and normal images causes small errors in the net-

works. Hence, (4) 1.2% of normal images are allocated in a very mild class, and (19) 6.4% of

very mild images are misdiagnosed in normal classes. Moreover, the mild and very mild

images are sometimes similar, so that, 11 (3.6%) of the very mild image are in the mild class

and 8 (2.8%) of the very mild image are in the mild class.

Consequently, the sensitivity of the very mild images is 90%. The precision of the network

is the other criterion of classification shown in the vertical gray cells. For instance, the accuracy

of the CNN network for diagnosing normal images is 92.6%. It means that 92.6% of all ana-

lyzed images as normal are normal. In other words, 19 very mild images and 4 mild images are

allocated in the normal classes, decreasing the network’s precision. As a result, the precision of

the network for diagnosis of mild, moderate, normal, and very mild class are 93.2%, 100%,

92.6%, and 95.7%, respectively. Finally, the accuracy of the CNN network is presented in the

right lower corner of the confusion matrix in Fig 13(a). The accuracy is the rate of all true diag-

nosed images. For our presented CNN architecture, the accuracy is 95.3%. The discrepancy of

accuracy value between test and training samples is very low; therefore, the presented network

lacks the overfitting problem.

To compare the presented CNN method with other machine learning approaches, the AUC

values and accuracy of the methods are presented in Table 3. Based on the results, the accuracy

and the AUC value for the presented CNN methods are higher than other machine learning

classifiers. Moreover, the KNN method with 74.5% accuracy and 92% AUC is the second clas-

sification priority. Furthermore, the ensembled learning of Bag, Adaboost, and RUSBoost

Fig 13. The confusion matrix of the presented CNN method.

https://doi.org/10.1371/journal.pone.0297996.g013

Table 3. The comparison of the machine learning methods.

Method Accuracy AUC

Naïve Bayes 67.5% 87%

SVM 72.3% 89%

KNN 74.5% 92%

LDA 65.6% 87%

DT 62.4% 82%

Ensemble Learning 73.8% 93%

Presented CNN 95.3% 99%

https://doi.org/10.1371/journal.pone.0297996.t003
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methods raises the accuracy to 73.8% and 93% AUC. To conclude. It can be seen that the pre-

sented CNN method has higher accuracy in diagnosing Alzheimer’s severity. Diagnosis of Alz-

heimer’s patients from normal people is simpler than finding the severity of the disease. This is

because of the close similarity between each class image. Therefore, the traditional machine

learning methods with many feature extraction methods could not reach higher accuracy.

However, the presented CNN solved this problem with 95.3% and 100% testing and training

accuracy.

5 Conclusion

We utilized a hybrid of 12 feature extraction methods to diagnose the severity of AD using

MRI data. In this article, GLCM, LBP, RLBP, LTP, SGM, BIBIS, PCA Filter, ICA Filter, Gabor

Filter, Log-Energy, Model-based Feature, and conventional shape signature were employed as

the feature extraction methods. The PCA feature reduction approach was utilized to minimize

calculation time and optimize the training process computation. For diagnosing AD, six stan-

dard ML approaches were used, DT, KNN, LDA, NB, SVM, and ensemble learning methods

such as Bag, Adaboost, and RUSBoost. Optimization was carried out during the training phase

to identify the optimum solution for each classifier. In terms of the findings, 138 slits of the DT

technique using the Towing rule achieved the lowest possible error throughout the training

phase. According to the results, 589 pictures from normal images (1- non-demented) were

accurately diagnosed. Non-demented pictures account for 58.9% of the total. In addition,

23.8%, 15.9%, and 1.4% of people with 2-Very Mild Demented, 3- Mild Demented, and 4-

Moderate Demented, respectively, are misdiagnosed. Furthermore, 530 (53%) of 1000 Very

Mild images were identified correctly. For diagnosis of classes 1, 2, 3, and 4, the DT technique

has a sensitivity of 58.9%, 53%, 52.1%, and 85.4%, respectively. Three AdaBoost, Bag, and

RUSBoost classifiers are included in the given optimal ensembled learning (En). The En

approach could diagnose 87.7% of Moderate Demented pictures based on the confusion

matrix with an AUC value of about 93%. Furthermore, the KNN technique was optimized

using correlation distance metrics with k = 12 neighbors. The categorization inaccuracy was

kept to a minimum. The most excellent sensitivity in this classifier belongs to the fourth class,

which has a 90.0% sensitivity. 6.6%, 2.3%, and 1.1% of images in this class are diagnosed mis-

takenly as 3,2, and 1. The LDA technique also effectively diagnoses 85.7% of class 4 cases

(Moderate Alzheimer’s). Furthermore, the sensitivity of classes 1, 2, 3, and 4 in the NB

approach was 70.5%, 49.9%, 61.1%, and 81.3%, respectively. To reduce classification error, it

was trained with a Gaussian kernel. Lastly, a linear kernel was used to train the SVM. with an

AUC of 89%.

The training procedure achieved 100% accuracy for the categorization of input images

based on the findings of the proposed CNN technique. Nevertheless, out of 300 mild images in

the test samples, 288 (96.0%) were properly diagnosed. As a result, CNN’s sensitivity for

detecting mild AD is 96%. The proposed CNN technique correctly diagnosed mild AD with

100 sensitivity. Furthermore, normal images are identified in 95.3% of cases. Consequently,

the network’s precision for mild, moderate, normal, and very mild class diagnosis is 93.2%,

100%, 92.6%, and 95.7%, respectively. The accuracy of our provided CNN architecture was

95.3%. According to the findings, the accuracy and AUC value for the provided CNN tech-

niques were greater than other ML classifiers. Furthermore, the KNN technique was ranked

second in classification accuracy, with 74.5% accuracy and 92% AUC. Besides, combining the

Bag, Adaboost, and RUSBoost algorithms improved accuracy to 73.8% and 93% AUC, respec-

tively. To sum it up, the proposed CNN technique was more accurate in diagnosing Alzhei-

mer’s severity.
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