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Abstract

In light of the exponential growth in information volume, the significance of graph data has

intensified. Graph clustering plays a pivotal role in graph data processing by jointly modeling

the graph structure and node attributes. Notably, the practical significance of multi-view

graph clustering is heightened due to the presence of diverse relationships within real-world

graph data. Nonetheless, prevailing graph clustering techniques, predominantly grounded

in deep learning neural networks, face challenges in effectively handling multi-view graph

data. These challenges include the incapability to concurrently explore the relationships

between multiple view structures and node attributes, as well as difficulties in processing

multi-view graph data with varying features. To tackle these issues, this research proposes

a straightforward yet effective multi-view graph clustering approach known as SLMGC. This

approach uses graph filtering to filter noise, reduces computational complexity by extracting

samples based on node importance, enhances clustering representations through graph

contrastive regularization, and achieves the final clustering outcomes using a self-training

clustering algorithm. Notably, unlike neural network algorithms, this approach avoids the

need for intricate parameter settings. Comprehensive experiments validate the supremacy

of the SLMGC approach in multi-view graph clustering endeavors when contrasted with pre-

vailing deep neural network techniques.

1 Introduction

Graph clustering involves partitioning a graph into several disjoint clusters of nodes [1].

Multi-view clustering, building upon graph clustering, leverages richer graph information by

seeking consistent clustering results through multiple view relationships. Graph data tech-

niques find widespread applications in various practical situations, such as group segmenta-

tion [2], social graphs [3], sentiment analysis [4–6] and the traffic classification [7, 8].

Multi-view graph clustering has evolved from single-view clustering, with LINE [9] and

GAE [10] being two representative algorithms in this context. LINE aims to map nodes in a

graph to a low-dimensional space, making adjacent nodes closer in the embedding space. It
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achieves this by maximizing the similarity of positive samples and minimizing the similarity of

negative samples. GAE employs the idea of autoencoders to learn node embeddings while pre-

serving the structural information of the graph. The encoder part of the autoencoder maps

nodes to a low-dimensional space, and the decoder attempts to reconstruct the original graph

from this low-dimensional representation. However, real-world graph data often involves

more relationships, and single-view clustering may not leverage these additional connections

to explore deeper information.

Early multi-view clustering techniques can be broadly categorized into two types. One

approach involves obtaining a consensus graph from multiple views and applying a single-

view algorithm to it, such as RMSC, PwMC, and SwMC [11–13]. Another approach utilizes

graph embedding to obtain compact representations of nodes from multi-view data and then

applies classical clustering algorithms, such as PMNE, mvn2vec, and SMNE [14–16]. However,

these algorithms fail to simultaneously leverage both node attributes and graph relationships.

In recent years, inspired by Graph Convolutional Networks (GCN) [17], two types of

multi-view attribute graph clustering algorithms have emerged. One2Multi (O2MA) [18] pos-

its that there exists one view containing the most information among multiple views. There-

fore, O2MA employs a graph autoencoder based on one view to embed nodes and reconstruct

multiple views. However, this approach fails to fully leverage the structural relationships

between different views. MAGCN [19] primarily deals with the clustering of multiple node

attribute graphs under a single structural relationship. Clearly, they are not effective in han-

dling graph data with multiple node attributes and multiple view structures.

The graph learning module can effectively address the issue of simultaneously leveraging node

attributes and structural relationships. MAGC [20], MCGC [21], and HMvC [22] employ graph

learning modules to address the computationally complex nature of neural network parameters.

However, their computational efficiency still needs improvement for large datasets, and the use

of traditional clustering methods during final clustering results in insufficient stability.

Existing multi-view clustering algorithms have the following shortcomings:

1. Real-world graph data often contains noise or missing values. Deep neural networks heavily

rely on the quality of raw graph data, and they lack interpretability.

2. Using neural network methods for multi-view clustering with large samples is computa-

tionally complex, time-consuming, and memory-intensive.

3. In the final clustering stage, many existing multi-view clustering methods utilize traditional

clustering methods such as k-means. However, these clustering methods exhibit high ran-

domness, leading to significant variations in results with each computation.

In an effort to overcome the mentioned constraints, we introduce a novel approach for

multi-view clustering, referred to as SLMGC. The complete structure of SLMGC is illustrated

in Fig 1. In this paper, we provide a comprehensive algorithmic explanation of the clustering

Fig 1. Structure of SLMGC.

https://doi.org/10.1371/journal.pone.0297989.g001
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algorithm and conduct a thorough analysis of its individual modules. The primary contribu-

tions of this investigation can be outlined as follows:

1. Graph filtering is employed as a replacement for Graph Convolutional Neural Networks

(GCN) to obtain node embeddings from the feature matrix. This approach mitigates the

impact of noise in the initial data on the eventual clustering outcomes.

2. A sampling algorithm is utilized to select a batch of nodes, which effectively reduces

computational costs and diminishes the impact of outliers on the clustering outcomes.

3. A contrastive loss is used as a regularization term, enabling the utilization of both structural

information and features from various views to construct the consensus graph. Moreover, a

self-training clustering algorithm is designed to enhance the stability of the final clustering

results and reduce clustering bias commonly observed in traditional approaches.

2 Relevant concepts and definitions

Multi-view data refers to data composed of multiple relationships represented in multiple

views, where each node in the graph corresponds to a sample point. The edges between node

pairs in each view represent the relationships between those nodes in that specific view. The

relationships in each view are represented by adjacency matrices, and each node is associated

with its own attributes or features, represented by vectors. The feature vectors of all nodes col-

lectively form the feature matrix for that particular view.

2.1 Multi-view graph data

Let G ¼ fV;E1; . . . ;EV ;X1; . . . ;XVg denote the multi-view data, where the set of N nodes is

denoted as V, eij 2 Ev indicates the presence of an edge among node i and node j in the v-th

view and belongs to the set Ev:Xv ¼ fxv
1
; . . . ; xv

Ng
T
2 RN�dv represents the feature matrix of the

v-th view, comprising N attribute vectors of length dv.

2.2 Laplacian matrix

The relationship structure of each view, i.e., the presence of edges, can be represented using

the adjacency matrix ffAvg
V
v¼1

, wherefAv ¼ f eav
ijg 2 RN�N . If there exists an edge between node

i and node j, eav
lj ¼ 1, otherwise, eav

lj ¼ 0. Dv is the degree matrix of the adjacency matrixfAv .

Considering the self-expressive property of nodes in the graph, where a node can be linearly

represented by its neighboring nodes, we introduce the normalized adjacency matrix denoted

as Av ¼ Dv
� 1

2ðfAv þ IÞDv
� 1

2, its associated graph Laplacian matrix represented as Lv = I − Av,

where I is the identity matrix.

3 Algorithm

3.1 Graph filtering

In real-world graph data, neighboring nodes often exhibit certain similarities in their features.

Therefore, we introduce the concept of graph filtering [23]. To facilitate the subsequent discus-

sions, we first focus on the single-view scenario. The feature matrix X 2 RN×d can be viewed as

a collection of N graph signal vectors, denoted as f. The Laplacian matrix can be decomposed

as L = UΛU−1, where Λ = diag(λ1, � � �, λN) represents the increasing eigenvalues, and U = [u1,

� � �, uN] corresponds to the related orthogonal eigenvectors. The graph filter can be expressed
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as Gf = Up(Λ)U−1 2 RN×N, where p(Λ) = diag(p(λ1), � � �, p(λN)) denotes the frequency-response

function [24]. The graph filtering operation can be defined as the multiplication between the

graph signal and the graph filter:

�f ¼ Gf f ; ð1Þ

The filtered graph signal is denoted as �f .

To facilitate clustering, we desire nodes within the same cluster to possess similar feature

values across all dimensions. Based on this assumption about clusters, we consider that nodes

closer in distance are more likely to belong to the same cluster. However, directly applying

graph filters to the feature matrix may not fully exploit the graph’s structural information, as

first-order graph filters only smooth the neighboring nodes within one hop. Therefore, we

consider the use of k-th order graph filtering to capture longer-distance graph structural infor-

mation. We specify the k-th order graph filtering as follows:

�X ¼ I �
1

2
L

� �k

X; ð2Þ

Where �X represents the feature matrix after filtering.

3.2 Graph learning

Considering that real-world graph data often contain noise and missing values, directly apply-

ing spectral clustering to �X may not yield satisfactory clustering results. Utilizing the self-

expressive characteristic of graph data [25], where each node can be expressed as a linear com-

bination of other nodes, we learn a similarity graph Z from �X . The coefficients of node combi-

nations represent the relationships between nodes, which can also be viewed as distances in

classical clustering tasks. The objective function for single-view is as follows:

mink�XT � �XTZk2

F þ akZk
2

F; ð3Þ

Where α> 0is a weight parameter, Z 2 RN×N is the consensus graph matrix. The primary com-

ponent represents the reconstruction loss, and the secondary component represents the regu-

larization term.

To handle multi-view data, we apply graph filtering to each view’s feature matrix, resulting

in �Xv. Subsequently, we extend Eq 3 by introducing a weight parameter for each view to deter-

mine their respective importance. Ultimately, we obtain the consensus graph for all views as

follows:

min
Z;lv

XV

v¼1

l
v
ðk�XvT � �XvTZk2

F þ akZk
2

FÞ þ
XV

v¼1

ðl
v
Þ
o
; ð4Þ

λv represents the coefficient value for the v-th view, and ω< 0 is the smoothing factor.

3.3 Node sampling

In the case of large datasets with a considerable number of nodes, direct spectral clustering on

the obtained consensus graph Z could lead to long computation times and high memory

usage. Additionally, considering the impact of outliers may result in a decrease in clustering

accuracy. To address these issues, we refrain from using the previously filtered �X and instead

opt to extract m(m< N) key sample points that hold significance within the graph [26].

PLOS ONE Sampling clustering based on multi-view attribute structural relations

PLOS ONE | https://doi.org/10.1371/journal.pone.0297989 May 23, 2024 4 / 15

https://doi.org/10.1371/journal.pone.0297989


Classic sampling algorithms assume equal weights for each point, but in graph data, differ-

ent nodes hold varying levels of importance. Inspired by word sampling techniques in NLP

[27], we perform sampling based on node importance, where nodes with a higher number of

edges in each view are considered to be more important. We define qðiÞ ¼
PV

v¼1

P
j2V

~Av
ij as

the function for measuring importance. The likelihood of each node i being the first sample in

the sampling set M is given by:

pi ¼
qðiÞg

P
j2VðqðjÞ

g
Þ
; ð5Þ

Where γ> 0. Subsequently, we employ a non-replacement sampling algorithm to select the

remaining m-1 samples. Specifically, each remaining node i is selected as the next sample with

a probability of pi/Sj=2M pj, until m nodes have been sampled.

Now, we construct the feature matrix B = {b1, � � �, bm}T 2 Rm×d using the sampled node fea-

ture vectors, and B is a part of �X . Ultimately, we acquire a reduced consensus graph matrix S 2
Rm×N through the learning process, which represents the similarity between the m sampled

nodes and all N nodes. As a result, we can reformulate Eq 4 as follows:

min
S;lv

XV

v¼1

l
v
ðk�XvT � BvTSk2

F þ akSk
2

FÞ þ
XV

v¼1

ðl
v
Þ
o
; ð6Þ

3.4 Graph contrastive regularization

Contrastive learning has gained popularity in unsupervised tasks. The fundamental concept of

contrastive learning is to optimize the similarity between positive pairs while increasing the

distance between negative pairs. In this study, each node and its K-nearest neighbors (KNN)

are considered as positive pairs, and the contrastive regularization term is applied in Eq 6 for

learning, resulting in the final consensus graph S. It can be represented as follows:

x ¼
Xm

i¼1

X

j2Kv
i

� lg
expðSijÞ

PN
p6¼i expðSipÞ

; ð7Þ

WhereKv
i denotes the K-nearest neighbors of node i in the v-th view. This regularization term

is designed to enhance the similarity among positive pairs and diminish the similarity among

negative pairs. Ultimately, our algorithm can be represented as follows:

min
S;lv

XV

v¼1

l
v
ðk�XvT � BvTSk2

F þ axÞ þ
XV

v¼1

ðl
v
Þ
o
; ð8Þ

3.5 Self-training clustering

Existing multi-view graph clustering algorithms mostly directly apply k-means or spectral

clustering to the obtained consensus graph to acquire the final clustering labels. However,

these algorithms suffer from significant randomness. Inspired by the DEC algorithm [28], we

adopt self-training clustering to obtain the final labels, significantly improving the clustering

stability.

We first define the normalized consensus graph Ŝ ¼W � 1=2S, and matrix W is the diagonal

matrix composed of the sums of each row in S. We conduct Singular Value Decomposition
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(SVD) on the matrix ŜŜT to acquire the largest p singular values and their corresponding left

and right singular vectors, denoted as YSLT. Here, S = diag(σ1, � � �, σp) represents the singular

values, while Y 2 Rm×p are the left singular vectors and L 2 Rm×p are the right singular vectors,

respectively. We compute the final clustering matrix C ¼ S�
1
2YTŜ, and then perform self-train-

ing clustering on C = CT [29].

We improve clustering iteratively by matching the target distribution through soft cluster-

ing. The clustering loss function is defined as follows:

loss ¼ KLðPkQÞ ¼
X

i

X

j

pij log
pij

qij
; ð9Þ

Where KL(�k�) denotes the Kullback-Leibler divergence, Q represents the soft clustering labels,

P represents the target distribution, and qij is the metric based on Student’s t-distribution [30].

It measures the resemblance among cluster Ci and cluster center μi and can be understood as

the likelihood of allocating sample i to cluster j:

qij ¼

�
1þ kCi � mjk

2
�� 1

Sj0

�

1þ

�
�
�Ci � mj0

�
�
�

2
�� 1

; ð10Þ

In Eq 9, the target distribution P is obtained by squaring the term q and then normalizing

it. It is defined as:

pij ¼
q2
ij=Siqij

P
j0q2

ij0=Siqij0
; ð11Þ

Finally, our clustering labels are given by:

label ¼ argmaxjqij; ð12Þ

Where qij is calculated using Eq 10. If the change in labels of the target distribution between

consecutive updates is less than the threshold δ, the training is terminated. We obtain the clus-

tering results based on the previous iteration’s Q.

4 Optimization

In Eq 8, there are two sets of variables S and λv. We utilize an alternating optimization

approach, we keep one variable fixed while updating the other.

• Fix λv, update S

Treating λv as a constant, the optimization objective for S is as follows:

min
S

XV

v¼1

l
v
ðk�XvT � BvTSk2

F þ axÞ; ð13Þ

We employ the gradient descent algorithm to solve for S, and the gradient of S can be

decomposed into two parts. The first part is given by:

2
XV

v¼1

l
v
�

� ½Bv �XvT�ij þ
h
BvBvTSðt� 1Þ

i

ij

�

; ð14Þ
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Let n be the total sum of the number of neighbors for all nodes, then the second term is:

XV

v¼1

l
v
� 1þ

nexpðSðt� 1Þ

ij Þ
Pm

p6¼i expðS
ðt� 1Þ

ip Þ

 !

; if j 2 Nv
i

XV

v¼1

l
v nexpðSðt� 1Þ

ij Þ
Pm

p6¼i expðS
ðt� 1Þ

ip Þ

 !

; other

;

8
>>>>>><

>>>>>>:

ð15Þ

Then, we utilize the Adam optimization algorithm [31] to update S. To improve convergence

speed, We get an initial S+ by Eq 6.

• Fix S, update λv

The loss function for λv is given by:

min
lv

XV

v¼1

l
v
ðk�XvT � BvTSk2

F þ axÞ þ
XV

v¼1

ðl
v
Þ
o
; ð16Þ

Setting its derivative to 0, we can obtain:

l
v
¼
� k�XvT � BvTSk2

F þ ax

o

� � 1
o� 1

; ð17Þ

We alternately update S and λv until convergence. The entire process is outlined in Algo-

rithm 1.

For the obtained similarity graph Z using Eq 4, we can directly perform spectral clustering

to achieve the ultimate clustering result. Nevertheless, this algorithm has a time complexity of

O(N3) and significant memory overhead, which is not suitable for scenarios with large datasets.

Instead, we utilize node sampling algorithm to obtain a smaller similarity graph S using Eq 8

with a time complexity of only O(m3). Regarding the time cost of the gradient descent is O
(tVmn + 2tVm), while generating the final clustering matrix Y and E is O(m3) and O(m2N)

respectively, and the time cost of self-training clustering is O(tm2). In summary, our algorithm

has higher efficiency compared to traditional graph learning algorithms.

Algorithm 1: SLMGC

Data: adjacency matrix fA1 ; . . . ;fAV, feature matrix X1, � � �, XV, The graph
filtering order k, and the parameters α, ω, γ, as well as the
number of clusters p.

Result: Clustering label
1 compute the normalized adjacency matrix Av ¼ Dv

� 12ðfAv þ IÞDv
� 12;

2 compute the Laplacian matrix Lv = I − Av;
3 perform graph filtering on each view’s feature matrix according to
Eq 2;

4 extract m samples and represent their indices as “ind.”;
5 select m rows from the graph-filtered �X using the indices “ind” to
construct a new feature matrix B;

6 while not converged do
7 Use the Adam optimization algorithm to update S;
8 for each view do
9 update λv using Eq 17.
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10 end
11 end
12 compute the normalized consensus graph Ŝ and calculate the final

clustering matrix C;
13 Perform self-training clustering on CT;
14 while not converged do
15 calculate the soft clustering labels Q and the target distribu-

tion P;
16 calculate the loss using Eq 9.
17 end
18 return Q;
19 Obtain the final clustering labels using Eq 12.

5 Experiment

5.1 Dataset and evaluation metrics

We choose five datasets to assess our experiments. Among these datasets, ACM, DBLP, and

IMDB consist of a feature matrix and several adjacency matrices. Amazon Photo and Amazon

Computer [32] consist of multiple feature matrices and one adjacency matrix. The statistical

information of the dataset statistics are presented in Table 1.

• ACM: It is a paper network. We construct two views based on the co-paper (papers authored

by the same authors) relationship and co-subject (papers with the same subjects) relation-

ship. The paper features are represented as bag-of-words elements composed of keywords.

We utilize the academic disciplines or subject areas of the papers as clustering labels;

• DBLP: It is an author network. It consists of three types of relationships: co-authorship

(authors who have jointly authored papers), co-conference (authors who have published

papers in the identical conferences), and co-term (authors who have utilized identical termi-

nologies in their respective papers). The author features are represented as bag-of-words ele-

ments composed of keywords. We utilize the academic disciplines or subject areas of the

authors as clustering labels;

• IMDB: This is a movie network. It employs two connections, co-actor (movies with com-

mon actors) and co-director (movies directed by common directors), to build a dual-view

representation. The movie features are represented as bag-of-words elements composed of

plots. We use movie genres as clustering label;

Table 1. Data set introduction.

Dataset Nodes Features View and Edges Clusters

ACM 3025 1830 Co-Author (2,210,761) 3

Co-Subject (29,281)

DBLP 4057 334 Co-Author (11,113) 4

Co-Conference (5,000,495)

Co-Term (6,776,335)

IMDB 4780 1232 Co-Actor (98,010) 3

Co-Director (21,018)

Amazon photos 7487 745 Co-Purchase (119,043) 8

7487

Amazon computers 13381 767 Co-Purchase (245,778) 10

13381

https://doi.org/10.1371/journal.pone.0297989.t001
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• Amazon Photos and Amazon Computers: They are portions of the Amazon co-purchase

network dataset, where nodes correspond to products, and each product’s features are rep-

resented as bag-of-words from product comments. The relationships in the views are

based on co-purchasing of products, and the clustering labels are product categories. To

acquire multi-view attributes, the second feature matrix is formed by taking the Cartesian

product.

We employ four commonly used metrics to showcase the effectiveness of our approach:

Accuracy (ACC), Adjusted Rand Index (ARI), Normalized Mutual Information (NMI) and F1

score (F1).

5.2 Experimental setup and comparison models

The computer configuration used in this experiment is as follows: CPU is AMD Ryzen 5

4600H with Radeon Graphics, 6 cores and 12 threads, operating at 3.00GHz. The memory is

16GB at 3200MHz, and the GPU is NVIDIA GeForce GTX 1650 with 4GB of memory.

To validate our effectiveness, we compare SLMGC with several typical models. Among

them, LINE and GAE are two traditional single-view clustering algorithm, and we average

their results across each view to obtain the final metrics. PMNE is a multi-view clustering algo-

rithm. RMSC is a robust multi-view spectral clustering algorithm utilizing Markov chains.

PwMC and SwMC introduce weighted mechanisms for clustering multi-view data. O2MAC

and O2MA are multi-view attribute graph clustering algorithms utilizing graph autoencoders.

MAGCN is a multi-view attribute graph convolutional network, MAGC and MCGC are

multi-view clustering algorithms that utilize graph learning modules.

For the Amazon Photo and Amazon Computer datasets, we will only compare with

MAGCN, MAGC, and MCGC as they have shown superior performance compared to MGAE

[33], ARVGAE [34], DAEGA [35], and GATE [36].

5.3 Experiment result

Tables 2 and 3 present the clustering results. In most measurements, our algorithm outper-

forms the reference algorithms on the ACM, DBLP, IMDB, Amazon Photo, and Amazon

Computer datasets.

Table 2. Clustering results on ACM, DBLP, IMDB.

Algorithm ACM DBLP IMDB

ACC ARI NMI F1 ACC ARI NMI F1 ACC ARI NMI F1

GAE 0.7047 0.4409 0.4813 0.7088 0.5585 0.2618 0.3096 0.5475 0.4512 0.0483 0.0433 0.4285

LINE 0.6336 0.3402 0.3814 0.6495 0.8723 0.6966 0.6593 0.8532 0.4689 -0.009 0.0060 0.2858

PMNE 0.6901 0.4287 0.4601 0.6922 0.7917 0.5233 0.5880 0.7939 0.4907 0.0358 0.0357 0.3898

RMSC 0.6330 0.3354 0.4020 0.5776 0.9006 0.7673 0.7189 0.8310 0.2723 0.0019 0.0055 0.3781

PwMC 0.4157 0.0388 0.0301 0.3761 0.3220 0.0151 0.0180 0.2792 0.2447 0.0017 0.0022 0.3115

SwMC 0.3855 0.0188 0.0849 0.4737 0.6571 0.3832 0.3771 0.5644 0.2691 0.0004 0.0057 0.3747

O2MA 0.8880 0.6987 0.6515 0.8894 0.9040 0.7705 0.7257 0.8976 0.4697 0.0753 0.0524 0.4229

O2MAC 0.9042 0.7394 0.6923 0.9053 0.9074 0.7780 0.7287 0.9013 0.4502 0.0564 0.0421 0.4159

MAGC 0.8806 0.6808 0.6180 0.8835 0.9282 0.8267 0.7768 0.9237 0.6125 0.1806 0.1167 0.4551

MCGC 0.9147 0.7627 0.7126 0.9155 0.9298 0.7746 0.8302 0.9252 0.6182 0.1833 0.1149 0.4401

SLMGC 0.9372 0.8317 0.8218 0.9344 0.9320 0.8351 0.7808 0.9210 0.5718 0.0845 0.0389 0.3962

https://doi.org/10.1371/journal.pone.0297989.t002
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5.4 Run time comparison

Next, we compared the runtime of SLMGC with two top-performing deep neural network

algorithms, O2MAC and MAGCN, as well as graph learning algorithms MAGC and MCGC

on five datasets. The specific performance is presented in Table 4.

5.5 Ablation study

In this part, we conducted a series of experiments to investigate the impact of each parameter

in the algorithm, comprising the order of graph filtering k, the number of sampled points m

and its parameter γ for sample extraction, as well as the parameters α and ω in graph contras-

tive learning.

In theory, the higher the order of graph filtering, the better it can capture global informa-

tion. Therefore, we set k=[0, 2, 5, 10, 100] and performed t-SNE visualization on node features

under different filter orders on the DBLP dataset, as shown in Fig 2.

It can be observed that graph filtering indeed processes the node features effectively. How-

ever, a higher filter order does not necessarily lead to better results; excessively high filter

orders can make the node features too similar, making it difficult to distinguish between them.

Through experiments, we have found that a filter order of 2 is a preferable choice.

In order to assess the efficacy of graph filtering, we performed comparative experiments on

three datasets: ACM, DBLP, and IMDB. We compared the results obtained without using

Table 3. Clustering results on Amazon Photo and Amazon Computer.

Algorithm Feature Matrix Amazon Photo Amazon Computer

ACC ARI NMI F1 ACC ARI NMI F1

MAGCN-view1 X1 0.3775 0.3321 0.2413 0.3320 0.3357 0.1185 0.1666 0.3493

MAGCN-view2 X2 0.3019 0.0480 0.1313 0.3279 * * * *

MAGC-view1 X1 0.4410 0.1060 0.4192 0.3282 0.5730 0.2198 0.4376 0.4703

MAGC-view2 X2 0.3844 0.0605 0.3637 0.2788 0.5727 0.2194 0.4366 0.4698

MCGC-view1 X1 0.6903 0.4244 0.6166 0.6735 0.5851 0.3811 0.5252 0.5238

MCGC-view2 X2 0.7103 0.4396 0.6048 0.6764 0.5889 0.3896 0.5244 0.5101

SLMGC-view1 X1 0.5783 0.3710 0.4473 0.5216 0.4582 0.2462 0.3828 0.4628

SLMGC-view2 X2 0.5669 0.3253 0.4239 0.5217 0.4299 0.2273 0.3101 0.3281

MAGCN-multi-view X1,X2 0.4835 0.2105 0.3550 0.4416 * * * *

MAGC-multi-view X1,X2 0.4511 0.1127 0.4297 0.3359 0.6080 0.2958 0.4395 0.5080

MCGC-multi-view X1,X2 0.7164 0.4323 0.6154 0.6864 0.5967 0.3902 0.5317 0.5204

SLMGC-multi-view X1,X2 0.5802 0.3013 0.4330 0.5478 0.4733 0.2714 0.3575 0.3126

The ‘*’ indicates that the algorithm encounters an out-of-memory problem.

https://doi.org/10.1371/journal.pone.0297989.t003

Table 4. Run time comparison. (seconds).

Algorithm ACM DBLP IMDB Amazon Photo Amazon Computer

O2MAC 2079.43 6059.71 7930.58 * *

MAGCN * * * 5947.31 *

MAGC 189.72 203.11 247.40 1859.13 5331.09

MCGC 249.18 301.17 359.75 2688.83 6595.71

SLMGC 114.32 137.47 153.83 1427.22 4738.60

The ‘*’ indicates that the algorithm encounters an out-of-memory problem.

https://doi.org/10.1371/journal.pone.0297989.t004
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graph filtering and with using 2nd-order graph filtering. It can be observed that graph filtering

indeed improves the final clustering results, demonstrating the effectiveness of graph filtering.

The results are presented in Table 5.

In the previous sections, we proposed the theory of sample extraction, which can reduce

computation time, save memory overhead, and avoid the influence of outliers on the final clus-

tering. Next, we conduct experiments and analysis on the sample extraction size in the ACM,

DBLP, and IMDB datasets. We start by sampling every 500 nodes downwards from the total

number of original nodes. It is observed that too few sample points can result in insufficient

information, affecting the final clustering metrics. Through experiments, we found that sample

extraction size around 2/3 of the total number of nodes yields the best performance. See Fig 3.

The parameter γ has a very small impact on sample extraction, as shown in Fig 4. In our

experiments, we use a slightly superior value of 4 for γ.

Finally, we conduct experiments on the two parameters in graph contrastive learning. We

set α=[1, 5, 10, 100, 1000] and ω=[-1,-2,-3,-4,-5], and observe their effects on the four evalua-

tion metrics on the DBLP dataset. As shown in Fig 5, our algorithm performs less favorably

under higher α values, but it is not sensitive to lower α values and ω. This demonstrates the

robustness of our algorithm within a certain range of these parameters, making it applicable

and meaningful in practical scenarios.

5.6 Discussion

Through experiments on the ACM, DBLP, and IMDB datasets, we found that O2MA, MAGC,

MCGC, and our SLMGC algorithm outperform single-view algorithms GAE and LINE. This

is because single-view algorithms cannot leverage multiple-view relationships, demonstrating

the superiority of multi-view clustering. However, early multi-view clustering methods such as

PMNE, RMSC, PwMC, and SwMC show poor performance as they cannot simultaneously uti-

lize node attributes and structural relationships.

It can be observed that the three algorithms using graph learning modules perform better

than several methods using deep neural networks. This is attributed to the fact that graph

learning modules can simultaneously leverage node attributes and structural relationships

Fig 2. The t-SNE visualization of node features in DBLP dataset under different filter orders (k = 0, 2, 5, 10, 100).

https://doi.org/10.1371/journal.pone.0297989.g002

Table 5. The effectiveness of graph filtering on ACM, DBLP, and IMDB.

Dataset Graph Filtering ACC ARI NMI F1

ACM 0 0.9017 0.7885 0.7248 0.8962

2 0.9372 0.8317 0.8218 0.9344

DBLP 0 0.9147 0.7985 0.7348 0.9062

2 0.9320 0.8351 0.7808 0.9280

IMDB 0 0.5447 0.0432 0.0308 0.3351

2 0.5718 0.0845 0.0389 0.3962

https://doi.org/10.1371/journal.pone.0297989.t005
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while fully considering information from all views. In the case of our method within the graph

learning module algorithm, it does not perform as well as MAGC and MCGC on the IMDB

dataset. This is because our node sampling method, in datasets with numerous nodes, discards

a significant number of nodes, leading to a loss of accuracy.

On the Amazon Photo and Amazon Computer datasets, our SLMGC algorithm exhibits a

significant advantage compared to the deep neural network algorithm MAGCN. This is

because our algorithm considers not only various node attributes but also the structural rela-

tionships in the graph. However, our algorithm has a considerable disadvantage compared to

the other two graph learning module algorithms on the Amazon Computer dataset. This is

because, in samples with multiple node attributes, discarding more nodes results in greater

loss.

Although our algorithm sacrifices some accuracy through sampling, it significantly outper-

forms in terms of computational time. The comparison of runtime indicates that graph

Fig 3. The performance of sample extraction size in ACM, DBLP, and IMDB datasets.

https://doi.org/10.1371/journal.pone.0297989.g003

Fig 4. The impact of the sample extraction parameter γ in DBLP.

https://doi.org/10.1371/journal.pone.0297989.g004
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learning module algorithms have much shorter runtimes compared to deep neural network

algorithms. Additionally, our algorithm saves 40% more time than MAGC.

6 Conclusions

Existing graph clustering algorithms heavily rely on deep learning networks, and multi-view

clustering is still in its early stage with many unresolved issues. This paper proposes a sam-

pling-based graph learning multi-view clustering algorithm. We introduce graph filtering to

reduce noise in the original graphs, followed by extracting a subset of node samples based on

their importance. This approach reduces computational cost while maintaining clustering

accuracy. Moreover, we incorporate a graph contrastive regularization term to enhance the

graph learning module. Finally, we employ self-training clustering to reduce potential errors

in traditional clustering algorithms. We compare our algorithm with popular and well-per-

forming deep learning graph clustering algorithms on five datasets, and the experimental

results demonstrate the superiority of our proposed approach.
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