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Abstract

Images obtained in low-light scenes are often accompanied by problems such as low visibil-

ity, blurred details, and color distortion, enhancing them can effectively improve the visual

effect and provide favorable conditions for advanced visual tasks. In this study, we propose

a Multi-Technology Fusion of Low-light Image Enhancement Network (MTIE-Net) that mod-

ularizes the enhancement task. MTIE-Net consists of a residual dense decomposition net-

work (RDD-Net) based on Retinex theory, an encoder-decoder denoising network (EDD-

Net), and a parallel mixed attention-based self-calibrated illumination enhancement network

(PCE-Net). The low-light image is first decomposed by RDD-Net into a lighting map and

reflectance map; EDD-Net is used to process noise in the reflectance map; Finally, the light-

ing map is fused with the denoised reflectance map as an input to PCE-Net, using the Fou-

rier transform for illumination enhancement and detail recovery in the frequency domain.

Numerous experimental results show that MTIE-Net outperforms the comparison methods

in terms of image visual quality enhancement improvement, denoising, and detail recovery.

The application in nighttime face detection also fully demonstrates its promise as a pre-pro-

cessing means in practical applications.

1. Introduction

With the rapid development of deep learning, digital image processing technology has been

widely used in industrial production, video surveillance, daily life, military applications and

other fields. However, there are frequently objective factors that lead to image defects during

the image acquisition process. For instance, under weak illumination conditions, such as at

night or on cloudy days, the light reflected from the surface of objects is generally weak. This

often results in images that are characterized by low brightness, low contrast, color distortion,

and high noise, as demonstrated in studies [1–3]. In addition, for color low-light images, the

pixel values are mainly concentrated in a low range, and the gray scale difference of the corre-

sponding pixels between each channel is also very limited, with only a small difference between

the maximum and minimum gray scale of the image, a deviation of the overall color layer, and

weak edge information, which leads to the difficulty in distinguishing the details of the image

when observed by human beings or processed by computers. These characteristics seriously

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0297984 February 2, 2024 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Tao J, Wu H, Ni Z, Jin Z, Zhong C (2024)

MTIE-Net: Multi-technology fusion of low-light

image enhancement network. PLoS ONE 19(2):

e0297984. https://doi.org/10.1371/journal.

pone.0297984

Editor: Sen Xiang, Wuhan University of Science

and Technology, CHINA

Received: September 19, 2023

Accepted: January 14, 2024

Published: February 2, 2024

Copyright: © 2024 Tao et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from (https://github.com/JianghaiSCU/R2RNet).

Funding: This research was funded by The Project

of Sichuan provincial science and Technology

Department (Grant No. 2022YFS0518,

2022ZHCG0035); The artificial intelligence key

laboratory of Sichuan province Foundation

(2023RYY06); Enterprise informatization and

Internet of things measurement and control

technology key laboratory project of Sichuan

provincial university (2022WYY04); Talent

https://orcid.org/0009-0007-7327-0342
https://doi.org/10.1371/journal.pone.0297984
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297984&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297984&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297984&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297984&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297984&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297984&domain=pdf&date_stamp=2024-02-02
https://doi.org/10.1371/journal.pone.0297984
https://doi.org/10.1371/journal.pone.0297984
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/JianghaiSCU/R2RNet


reduce the subjective visual effects of low-light images, resulting in a significant reduction in

their usability [4]. Enhancing low-light images and converting them into high-quality clear

images can effectively improve the performance of advanced visual tasks such as target detec-

tion, multi-target tracking, semantic segmentation, underwater vision [5, 6] and face recogni-

tion. There-fore, low-light image enhancement technology has important research

significance and broad application prospects as a pre-processing to improve subsequent

advanced vision tasks. The purpose of low-light image enhancement is to improve its visibility,

transforming the image into a form more suitable for human observation or computer pro-

cessing, while suppressing noise and artifacts. At present, in order to weaken the influence of

low-light images on visual tasks, researchers have proposed two solutions. One is to improve

the performance of image acquisition equipment [7, 8], and the other is to perform illumina-

tion enhancement processing on the collected low-light images. Existing low-light cameras

from companies such as Sony, Photonis, SiOnyx, and Texas Instruments use high-perfor-

mance charge-coupled devices or complementary met-al-oxide-semiconductor [9] technology,

professional low-light circuits, and filters as core components to improve low-light image qual-

ity. However, due to the demanding manufacturing process, complex technology and high

price of these high-performance equipment, they have not been widely used at this stage [10].

As an alternative, the use of algorithms to perform illumination enhancement on low-illumi-

nation images provides greater flexibility [11].

Over the past few decades, there has been significant progress in the research of low-light

image enhancement. However, these methods are not stable in unknown application scenar-

ios, and there is still a large room for improvement in general. For example, the noise amplifi-

cation caused during the enhancement process leads to blurred details and color deviations in

the enhancement results; when improving image contrast, the appropriate balance between

image color, visual effects, information entropy and other factors is not considered. In sum-

mary, we propose a Multi-Technology Fusion of Low-light Image Enhancement Network

(MTIE-Net). The network modularizes the enhancement task, i.e., decomposition, denoising

and enhancement. Among them, the decomposition network combines dense residual blocks

for global residual learning; The denoising network adopts an encoder-decoder structure, and

uses channel Transformer instead of simple skip connections to transfer feature information

to improve the denoising performance of the network. The enhancement network exploits the

frequency information of the image. A new attentional mechanism is used for weighted fusion

of different regions in an image for the purpose of enhancement. Furthermore, the enhance-

ment process incorporates a self-calibrated training strategy. This strategy continuously

adjusts the inputs at each stage, ensuring rapid convergence to an optimal level.

Overall, the contributions of this paper are as follows.

1. We propose a Multi-Technology Fusion of Low-light Image Enhancement Network

(MTIE-Net). MTIE-Net contains a dense residual decomposition network based on Retinex

theory (RDD-Net), a denoising network based on encoder-decoder structure (EDD-Net)

and a self-calibrated enhancement network based on parallel mixed attention mechanism

(PCE-Net). Among them, RDD-Net decomposes the input low-light image into lighting

map and reflectance map; EDD-Net is used to process the noise in the reflectance map;

finally, the lighting map is fused with the denoised reflectance map as the input of PCE-Net,

and the Fourier Transform is used to perform the illumination enhancement and detail

recovery in the frequency domain.

2. We study a residual dense block to construct the more efficient residual dense decomposi-

tion network by utilizing the powerful feature extraction capability of residual dense net-

work to facilitate the feature information transfer between channels. In the design of
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EDD-Net, we use subpixel convolution for upsampling to improve the resolution of the

image while denoising; The channel Transformer is used instead of skip connections in the

traditional encoder-decoder architecture to better capture remote dependencies and

enhance contextual understanding. In addition, we propose a new attentional mechanism

that enables PCE-Net to adaptively perform weighted fusion of different regions in an

image to improve the enhancement effect.

3. Numerous experimental results show that MTIE-Net outperforms the comparison methods

in terms of image visual quality enhancement improvement, denoising and detail recovery.

The application of MTIE-Net as a pre-processing method to face detection at night further

validates its application value in improving the performance of advanced visual tasks.

1.1 Related work

Existing research on low-light image enhancement categorizes methods into two primary

types: traditional methods and network-based methods. Traditional methods are mainly based

on histogram equalization and the Retinex theory. The use of histogram equalization to stretch

the dynamic range of an image was first proposed by Pizer et al. [12] for the enhancement of

low-light images. The method is computationally simple but cannot suppress noise and has

limited effect on low-light image enhancement. Jobson et al. [13] were the first to apply the

Retinex [14] theory to the field of low-light image enhancement, proposing to decompose the

image into lighting map and reflectance map, and then perform the enhancement process. The

method achieves favorable results in noise suppression and detail recovery, but due to the

large computational volume of the algorithm, it is unable to process batch low-light images

quickly. Later, Chen et al. [15] combined CNN with Retinex theory and proposed RetinexNet.

The network contains two modules, decomposition and illumination enhancement. The

decomposition module decomposes the low-light image into lighting map and reflectance

map; the illumination enhancement module is responsible for enhancing the low-light image

and denoising the reflectance map before outputting the reconstructed image. In recent years,

deep neural networks have been widely used in the field of image enhancement with good

results due to their powerful nonlinear fitting ability [16]. Jiang Hai et al. [17] proposed a

novel Real-low to Real-normal Network (R2RNet) based on Retinex theory. Combining the

spatial and frequency information of the image for illumination enhancement and proposing a

new frequency loss function to recover more image details. Guo et al. [18] proposed Zero Ref-

erence Depth Curve Estimation (Zero-DCE), which uses low-light image enhancement as a

deep network-based image-specific curve estimation task. The method takes a low-light image

as input and produces a higher order curve as its output, then adjusts the dynamic range of the

original image pixel by pixel based on the output curve. It achieves low-light image enhance-

ment through intuitive and simple nonlinear curve mapping. Xu et al. [19] designed a signal-

to-noise ratio (SNR) aware converter with a new self-attention module and combined it with a

convolutional model through spatial variations to achieve dynamic enhancement of low-light

images with a SNR prior. Wang et al. [20] proposed a flow-based low-light image enhance-

ment method (LLFlow). By modeling the distribution of normally exposed images as an

invertible network of Gaussian distributions and using this to learn a one-to-many mapping

from low-light images to the distribution of normally exposed images. The method enables

better regulation of light as well as suppression of noise and artifacts. Ma et al. [21] proposed a

new Self-Calibrating Illumination (SCI) learning framework, which employs a cascading illu-

mination learning process with weight sharing to deal with low-light image enhancement
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tasks. Among them, the self-calibration module can greatly reduce the computational burden

of the cascade mode and realize fast, flexible and stable brightening of images in real low-light

scenes. Zhang et al. [22] used a dual-histogram-based iterative threshold method and a limited

histogram method with Rayleigh distribution to improve the global and local contrast of the

color-corrected image. After multi-scale fusion of the two, a multiscale unsharp masking strat-

egy to further sharpen the fused image for better visual quality.

2 Methods

2.1 Network architecture

Drawing inspiration from the works of [15, 17], MTIE-Net comprises three main stages:

decomposition, denoising, and enhancement. As illustrated in Fig 1: the input low-light image

is firstly decomposed into lighting map and reflectance map, so as to realize the effective sepa-

ration of image features and noise. Subsequently, the reflectance map is denoised, and then the

denoised reflectance map is multiplied element-by-element with the lighting map, and the

result obtained is used as the input to the enhancement network, which utilizes the Fourier

transform to perform illumination enhancement and detail recovery in the frequency domain.

2.1.1 RDD-Net. The Retinex theory [23] proposes a basic physical law for low-light image

enhancement, i.e., the visual color image I can be decomposed into reflectance map R and

lighting map L, as shown in Eq (1):

I ¼ R� L ð1Þ

Fig 1. The network structure of the improved MTIE-Net.

https://doi.org/10.1371/journal.pone.0297984.g001
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Where� denotes element-by-element multiplication. The reflectance map is an inherent

property of the image and is consistent across all luminance conditions; The lighting map rep-

resents the various luminances on an object, which are usually affected by darkness and unbal-

anced illumination distributions. Therefore, illumination enhancement can be achieved by

changing the dynamic range of the pixels in the lighting map [15].

Retinex-based methods have been shown to be effective means of low-light image enhance-

ment. However, in several early Retinex-based methods [13, 14, 24], the lighting map is first

estimated and then the reflectance map is used as the final enhancement result. Although it

can significantly restore image details, often results in unnatural and overexposed visual effects

[25, 26]. In addition, existing Retinex-based decomposition networks generally control the

performance through elaborate constraints and parameters, resulting in reduced model

robustness across various application scenarios [15].

Studies [27, 28] have demonstrated that residual dense networks [29] and long skip connec-

tions can be used to construct deep convolutional neural networks to improve the perfor-

mance of visual tasks. In order to obtain higher quality lighting maps and reflectance maps,

this paper combines Residual Dense Block (RDB) with Retinex theory to construct a more effi-

cient residual dense decomposition network (RDD-Net). Among them, the RDB consists of

standard convolution with Recursive Gated Convolution (gnConv) [30], using LeakyReLu as

the activation function. The structure of the RDB network is illustrated in Fig 2(B): firstly, shal-

low features are extracted using a 1 × 1 convolution, and the output information is adaptively

controlled for local feature fusion to further improve the information flow through local resid-

ual learning; Secondly, the shallow features are used as inputs, and 3 sequential gnConv are

used to extract the deep features, using their recursive design to improve the spatial interaction

between the shallow features and the deep features; Afterwards, continuous feature transfer is

generated through dense connectivity, which fully utilizes the features of all previous layers for

dense feature fusion; Then a 1 × 1 convolution is used for global feature fusion; Finally the out-

put feature map of the RDB is fused with the shallow features of the original input image

through a dilation convolution (with a dilation factor of 2) via skip connection in order to

maintain the structural similarity between the decomposed image and the original image [31].

Dilated convolution, in contrast to standard convolution, expands the sensory field without

sacrificing resolution, enabling the extraction of more localized features.

2.1.2 EDD-Net. Current deep learning based low-light image enhancement methods are

learned based on datasets with minimal noise [32]. However, images captured in actual low-

light conditions often contain varying levels of noise, which is the main reason why such

Fig 2. The network structure of RDB.

https://doi.org/10.1371/journal.pone.0297984.g002

PLOS ONE Low-light image enhancement network

PLOS ONE | https://doi.org/10.1371/journal.pone.0297984 February 2, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0297984.g002
https://doi.org/10.1371/journal.pone.0297984


methods are usually ineffective in unknown and complex scenes. To address this, we introduce

a denoising network with an encoder-decoder structure, termed EDD-Net. As a plug-and-play

sub-network, EDD-Net can rapidly and flexibly handle different levels of noise generated in

the enhancement process of low-light images, so that the enhancement network can be inter-

fered by as little noise as possible in the illumination recovery process.

The backbone of EDD-Net is based on the Res_U-Net [33] architecture, which takes advan-

tage of the high efficiency of the encoder-decoder structure for transforming images to remove

noise from reflectance maps. where the encoder structure captures both low-level and high-

level features; The decoder structure combines semantic features to construct the final output;

The Channel Transformer (CTrans) module [34] is used to convey the spatial information lost

in the pooling layer and restore the complete spatial resolution through the encoding-decoding

process. As illustrated in Fig 3, CTrans consists of a Channel-wise Cross fusion Transformer

and a Channel-wise Cross Attention. The former is used for multi-scale fusion of features in

the encoder structure; the latter is used for fusing features that are semantically inconsistent

between the decoder and decoder structures. EDD-Net operates across four scales (512, 256,

128, and 64 channels), utilizing four consecutive RDBs for up/down sampling. Redundant

low-frequency information is bypassed by additional skip connections between each up/down

sampling, allowing the network to focus on learning high-frequency information. In this, the

downsampling process converts the noisy image from a high resolution scale to a low resolu-

tion scale using step convolution; The upsampling process uses Subpixel Convolution to trans-

fer the low resolution scale back to the high resolution scale, thus removing noise and

preserving important features of the input image.

2.1.3 PCE-Net. According to Retinex theory, the low-lighting image i is associated with

the desired clear image z as follows:

i ¼ z � l ð2Þ

Where l denotes the lighting component. In general, enhancing the lighting component is

regarded as the primary means of low-light image enhancement. Therefore, in this paper, we

begin with the lighting map derived from RDD-Net decomposition, first fusing it with the

denoised reflectance map from EDD-Net, and then in the illumination enhancement. Consid-

ering that existing low-light enhancement [18–20] focuses more on the spatial information of

the image and ignores the channel information during the design, resulting in the enhanced

image still having problems such as blurring of details, we study a self-calibrated illumination

enhancement network based on parallel mixed attention (PCE-Net). Drawing inspiration

Fig 3. The network structure of CTrans.

https://doi.org/10.1371/journal.pone.0297984.g003
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from [17, 35], PCE-Net initially converts the input image from the spatial to the frequency

domain using the Fourier transform to obtain the frequency component information of the

image. Among them, the high amplitude frequency component implies that in the spatial

domain image, there is a faster change in luminance or color, which usually corresponds to

information such as details, edges, textures, etc. in the image; Low amplitude frequency

domain components are used to recognize the global structural information of the image, such

as the overall shape, general distribution in the image, etc. Then, Fast Fourier Convolution

(FFC) [36] is used to integrate the magnitude and phase information of the input image in the

frequency domain and to realize the detail reconstruction by enhancing the high magnitude

frequency components. Finally, the Fourier inverse transform is utilized to convert the image

back to the spatial domain and output the enhanced high frequency signal.

In order to take into account the channel information of the image during the enhancement

process, we study a parallel mixed attention module (PMA). As illustrated in Fig 4, PMA con-

sists of the Pixel Attention Module (PAM) [37] fused with the Channel Attention Module

(CAM) and Spatial Attention Module (SAM) mechanisms of the parallel structure, which can

simultaneously attend to the channel, spatial, and pixel information of the images. In Section

3.3.1, the tandem structure of CAM and SAM suffers from distribution lag in feature extrac-

tion, which leads to an overall distortion of the color of the enhanced low-light image, whereas

connecting the two in parallel focuses on both the light information and the color information

of the low-light image. In addition, it was shown in [16] that low-light images have extremely

high local dependencies between neighboring pixel points, While PAM can adaptively rescale

the per-pixel weights for all input feature mappings. For this reason, we integrated PAM

behind the parallel structure of CAM and SAM to adjust all input features channel-by-channel

and pixel-by-pixel. The characterization strength of pixel information in low-light images is

improved while strengthening the feature linkage between adjacent pixel points, which in turn

improves the overall performance of PCE-Net.

Furthermore, PCE-Net employs a Self-Calibrated (SC) [21, 38] training strategy, which

continuously calibrates the input image throughout the enhancement process to converge the

results at each stage, which improves the exposure stability while greatly reducing the compu-

tational effort. Essentially, the core idea of SC is to introduce an auxiliary process in the train-

ing phase to enhance the modeling capabilities of the augmented network. This module

extracts features from the input image (at the first stage) using multiple convolutions, serving

Fig 4. The network structure of PMA.

https://doi.org/10.1371/journal.pone.0297984.g004

PLOS ONE Low-light image enhancement network

PLOS ONE | https://doi.org/10.1371/journal.pone.0297984 February 2, 2024 7 / 18

https://doi.org/10.1371/journal.pone.0297984.g004
https://doi.org/10.1371/journal.pone.0297984


as the input for the subsequent stage of illumination estimation and generating calibration

results; Connecting the inputs of each subsequent stage to the inputs of the first stage ensures

that the outputs of the different stages in the training process converge to the same state, and

ultimately calibrates the input images to improve the exposure stability of the model in differ-

ent application scenarios. Specifically, the SC module can be represented as:

G ðltÞ :

zt ¼ i;lt;

st ¼ kWðztÞ;

vt ¼ iþ st;

ð3Þ

8
><

>:

where lt is the illumination at stage t; ; denotes division by elements; κϑ is the parameter learn-

able operator; st is the self-calibrated mapping at moment t; and vt is calibrated for the next

stage of inputs. Fig 5 illustrates the calibration process in detail.

2.2 Loss function

The loss function of MTIE-Net consists of three parts [15, 17]: reconstruction loss Lr, denois-

ing loss Ld, and illumination loss Li, which can be expressed as follows:

L ¼ Lr þ Ld þ Li ð4Þ

In Retinex theory, the reflectance map is computed by a pixel-by-pixel division between the

input image and its lighting map mapping, which serves as a constraint on the lighting map

and the reflectance map [39], the reconstruction loss Lr can be expressed as follows:

Lr ¼ kI � ðR� LÞk1 þ kL � L0k1 þ kR � I=Lk1 ð5Þ

where L0 is the initial estimated R, G, and B channel intensity maximum of the lighting map.

The primary task of EDD-Net is to recover clean signals from reflectivity maps, thus the

loss function should be able to quantify the difference between the network output and the

true clean signal. In this paper, smoothing L1 loss is chosen as the loss function of EDD-Net.

As a balanced form of L1 loss and L2 loss, it performs better for handling both noisy data and

outliers. Smoothing L1 loss adds a smoothing parameter ε2 to the L2 loss, which is used to

increase the stability of the values so that they do not suffer excessively as the L2 loss

approaches zero. The denoising loss Ld can be expressed as:

Ld ¼
1

N

XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððRj
nor � R̂j

lowÞ
2
þ ε2Þ

q

ð6Þ

Fig 5. The calibration process.

https://doi.org/10.1371/journal.pone.0297984.g005
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Where N is the number of samples, the index j 2 [1, N] represents the j th sample used to

calculate the loss, which is consistent in the following equations. Rj
nor is the reflectance map of

the reference image, and R̂j
low is the reflectance map of the low-light image after enhancement.

PCE-Net actually uses FFT and its inverse transform to realize the input image in the "spa-

tial domain—frequency domain—spatial domain" between the conversion, and then achieve

the purpose of illumination enhancement and detail reconstruction. Therefore, we use fre-

quency loss [15] to enhance the performance of PCE-Net, and the frequency loss Lfre can be

expressed as:

Lfre ¼
1

N2

XN

j¼1

infg �
Y
ðÎ jlow; I

j
norÞEðx;yÞ � kÎ

j
low� I

j
nork

� �
ð7Þ

Where infγ~ denotes joint distribution. E(x,y)~ denotes using the Wasserstein distance to

minimize the difference between the real part and imaginary part of enhanced result and the

ground truth in frequency domain. Î jlow denotes the denoised low-light image, Ijnor denotes the

denoised reference image.

In addition, we use the VGG loss to assist in the construction of the illumination loss,

which is used to enhance the perceived quality of the enhanced image, and the VGG loss Lvgg

can be expressed as:

Lvgg ¼
1

N

XN

j¼1

ðk�jðR̂
j
lowÞ� �jðR

j
norÞk

2
Þ ð8Þ

Where ϕj denotes the loss network.

Then the illumination loss Li can be expressed as:

Li ¼ Lfre þ Lvgg ð9Þ

As illustrated in Fig 6, combining Lr, Ld and Li, MTIE-Net can converge to decompose the

input image I into a reflectance map R and lighting map L; Denoising the reflectance map and

multiplying it element by element with the lighting map yields Fig 6(D); The final result is

then enhanced to obtain Fig 6(E) and 6(F) shows the referenced normal light image.

3 Experiments

3.1 Implementation details

We use the publicly available dataset LSRW [17] as the training set. The performance of the

model was validated using the test set of LSRW (containing 30 images), 100 randomly selected

images from LOL [15], and 15 randomly selected images from the MIT-5k dataset as three

independent test sets, respectively. The experimental environment configuration is shown in

Table 1. For model training, the epoch is set to 40; the batch size is 4; and the patch size is 96;

Fig 6. MTIE-Net processing and results.

https://doi.org/10.1371/journal.pone.0297984.g006
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using the Adam [40] optimizer, the initial learning rate is set to 10−3, and after 20 rounds of

training the learning rate is reduced to 10−4 according to the learning rate decay strategy.

3.2 Evaluation metrics

In this paper, image quality assessment metrics such as peak signal-to-noise ratio (PSNR) [41],

structural similarity (SSIM) [42], learned perceptual image patch similarity (LPIPS) [43], natu-

ral image quality evaluator (NIQE) [44], average gradient (AG) and spatial frequency (SF) are

used to evaluate the performance of MTIE-Net. In which, PSNR, SSIM, LPIPS are full refer-

ence metrics and NIQE, AG, SF are no reference metrics. PSNR evaluates the image quality by

calculating the pixel error in the global range, and the larger its value, the lower the distortion

and the higher the quality of the enhanced image. SSIM combines the brightness, contrast and

structural information similarity between two images to assess the quality of the processed

image relative to the GT image, the size of the value between 0 and 1, the closer the value of 1

indicates that the enhanced image is more similar to the original image, the better the enhance-

ment effect. LPIPS calculates the perceptual difference between the enhanced image and the

GT image by establishing an inverse mapping relationship between the two images, with lower

values indicating that the two images are more similar. NIQE predicts the perceived quality of

an image by analyzing the statistical properties of the natural scene of the image, with lower

values indicating that the enhanced image is of higher quality and closer to the natural image.

AG is used as a measure of image sharpness, the larger the AG, the sharper the enhanced

image. SF reflects the rate of change of the gray scale of the image, the larger value indicates

that the image is clearer, the better the quality of the enhanced image.

3.3 Ablation study

3.3.1 PMA structural ablation study. Firstly, we conduct an ablation study on the LOL data-

set to validate the effectiveness of PMA and the optimal way of integrating the three attentional

mechanisms of CAM, SAM, and PAM, using PSNR and SSIM as objective evaluation metrics.

As shown in Table 2: connecting the PAM serially to the parallel structure after the CAM

and the SAM, the network obtains the highest PSNR and SSIM values, achieving the best

Table 1. Experimental setting.

Software/Hardware Models

CPU AMD EPYC 7302

GPU Nvidia Ampere A100

Deep learning framework Pytorch

Python version 3.8

https://doi.org/10.1371/journal.pone.0297984.t001

Table 2. The ablation experiment of PMA structure.

Models PSRN SSIM

MTIE-Net* 17.887 0.741

MTIE-Net* + CAM + SAM 20.001 0.758

MTIE-Net* + CAM & SAM 20.033 0.765

MTIE-Net* + PAM + CAM + SAM 19.979 0.762

MTIE-Net* + CAM + SAM + PAM 19.934 0.755

MTIE-Net* + PAM + CAM & SAM 20.082 0.768

MTIE-Net* + CAM & SAM + PAM 20.250 0.771

https://doi.org/10.1371/journal.pone.0297984.t002
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enhancement results in comparison (MTIE-Net * denotes that the network has not added any

of the modules of RDB, CTrans, PMA and SC; "+" denotes the serial structure and "&" denotes

the parallel structure). Additionally, we randomly select two images from the LOL dataset for

the enhancement test to further verify the superiority of the parallel structure of CAM and

SAM. The comparison of subjective effects is illustrated in Fig 7.

3.3.2 MTIE-Net compositional ablation study. Further, to comprehensively demonstrate

the positive impact of each core module in MTIE-Net, we performed ablation studies in the

LOL dataset. Specifically, 1) MTIE-Net without residual dense block (-w/o RDB), 2) MTIE-Net

without channel transformer (-w/o CTrans), 3) MTIE-Net without Pixel attention module

(-w/o PMA), 4) MTIE-Net without self-calibrated (-w/o SC). Fig 8 can observe the visual

results of the ablation experiments: (b) -w/o RDB does not reduce noise; (c) -w/o CTrans does

not enhance the texture structure of images, (d) -w/o PMA does not remove color distortion,

(e) -w/o SC does not improve contrast. The average scores of PSNR and SSIM for the ablation

model are given in Table 3, which shows that our full model obtained the highest score. Mean-

while, it is further proved that each core module positively affects MTIE-Net.

3.3.3 Calculation cost analysis. Finally, we validate the computational efficiency of our

MTIE-Net as a way to demonstrate the positive impact of the self-calibrated training strategy

in reducing the computational effort and speeding up the convergence of the network. Table 4

compares the FLOPs and running time (GPU-seconds for inference) of MTIE-Net with some

state-of-the-art models. To ensure the rigor of the experiments, we randomly selected 100 test

images of size 600*400 from the LOL dataset and calculated their FLOPs and running time in

Fig 7. Comparison of subjective enhancement effect of different combined structures of CAM and SAM.

https://doi.org/10.1371/journal.pone.0297984.g007

Fig 8. Qualitative results of ablation experiments.

https://doi.org/10.1371/journal.pone.0297984.g008
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the Pytorch platform (GPU). As shown in Table 4, the FLOPs and runtime of MTIE-Net are

significantly reduced after the introduction of the self-calibrated training strategy. While the

computational cost of MTIE-Net is higher than SCI, notably, it is a complete network that

allows for simultaneous denoising and enhancement. In conclusion, Table 4 can fully verify

the efficiency and rapidity of MTIE-Net. The best result is in red whereas the second best one

is in blue.

3.4 Comparison experiment

We compare MTIE-Net with RetinexNet, R2R, RUAS [45], SNR, ZERO-DCE, and SCI on

three publicly available datasets.

As shown in Table 5: MTIE-Net outperforms the comparison methods in SSIM, LPIPS,

NIQE, AG and SF on the LOL dataset. The average SSIM value is 0.783, the average LPIPS

Table 3. Quantitative results of ablation experiments.

Model PSRN SSIM

MTIE-Net* 17.887 0.741

-w/o RDB 20.271 0.772

-w/o CTrans 20.109 0.769

-w/o PMA 19.874 0.766

-w/o SC 20.283 0.775

MTIE-Net (full model) 20.409 0.783

https://doi.org/10.1371/journal.pone.0297984.t003

Table 4. Comparison of calculation costs.

Method FLOPs running time

RetinexNet 136.0155 0.1198

RUAS 0.2871 0.0063

SCI 0.0724 0.0021

ZERO-DCE 5.2132 0.0051

MTIE-Net (-w/o SC) 8.2738 0.0618

MTIE-Net (full model) 2.8102 0.0045

https://doi.org/10.1371/journal.pone.0297984.t004

Table 5. Comparison of objective evaluation metrics.

Datasets Metrics Method

RetinexNet R2R RUAS SNR ZERO-DCE SCI Ours

LOL PSNR 15.720 17.892 14.846 20.476 18.059 17.253 20.409
SSIM 0.468 0.752 0.490 0.774 0.580 0.551 0.783

LPIPS 0.589 0.395 0.434 0.351 0.361 0.355 0.343

NIQE 4.712 4.240 7.695 4.733 7.513 7.745 3.905

AG 3.959 4.119 6.615 4.322 6.258 6.323 10.321

SF 6.175 6.852 10.008 6.649 10.424 10.075 11.788

LSRW PSNR 15.090 17.267 15.687 17.614 16.396 15.090 21.575

SSIM 0.415 0.540 0.481 0.578 0.465 0.415 0.801

LPIPS 0.445 0.476 0.552 0.502 0.451 0.445 0.336

NIQE 4.035 4.408 5.800 7.546 3.820 4.035 3.921
AG 2.517 2.664 2.504 3.933 3.843 3.826 4.675

(Continued)
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Table 5. (Continued)

Datasets Metrics Method

RetinexNet R2R RUAS SNR ZERO-DCE SCI Ours

SF 4.865 5.055 4.057 6.498 6.978 6.826 7.692

MIT-5k PSNR 14.198 17.591 18.714 17.560 16.664 19.907 18.944
SSIM 0.727 0.774 0.758 0.652 0.780 0.834 0.761

LPIPS 0.516 0.407 0.453 0.574 0.443 0.327 0.416

NIQE 4.529 4.261 4.587 5.133 4.101 3.963 3.904

AG 1.673 2.981 3.598 1.117 3.299 3.184 3.247
SF 3.657 4.824 5.297 2.649 5.932 5.289 5.810

https://doi.org/10.1371/journal.pone.0297984.t005

Fig 9. Comparison of enhancement effects on the LOL dataset.

https://doi.org/10.1371/journal.pone.0297984.g009
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value is 0.343, the average NIQE value is 3.905, the average AG value is 10.321 and the average

SF value is 11.788; the average PSNR value is 20.409 dB, which is only 0.067 dB lower than the

SNR with the highest average value. On the LSRW dataset, the PSNR, SSIM, LPIPS, AG and

SF of MTIE-Net outperform the comparison methods. The average PSNR value was 21.575,

the average SSIM value was 0.801, the average LPIPS value was 0.336, the average AG value

was 4.675 and the average SF value was 7.692; the average NIQE value was 3.921, which was

only 0.101 higher than the ZERO-DCE, with the lowest average value. On the MIT-5k dataset,

MTIE-Net achieved the lowest NIQE values; the average AG value is 3.247, which is only 0.052

lower than the ZERO-DCE with the highest average value; the average SF value is 5.810, which

is only 0.122 lower than the ZERO-DCE with the highest average value. In summary, it is

Fig 10. Comparison of enhancement effects on the LSRW dataset.

https://doi.org/10.1371/journal.pone.0297984.g010
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shown that MTIE-Net achieves the best enhancement performance on both LOL and LSRW

datasets. Comprehensive performance is also at the top of the MIT-5k dataset.

Additionally, in order to further verify the superiority of MTIE-Net enhancement perfor-

mance, we randomly selected two low-light images from each of the LOL and LSRW datasets

to test the enhancement effect of the above comparison algorithms.

As demonstrated in Figs 9 and 10, RetinexNet exhibits detail blurring and noise amplifica-

tion on both datasets; R2R showed significant color distortion problems on both datasets;

RUAS showed varying degrees of overexposure on both datasets, while ZERO-DCE and SCI

showed significant underexposure, especially on the LOL dataset; Objects in SNR enhanced

images have distinct colors, but the network is inferior to MTIE-Net in image detail and tex-

ture restoration. Detailed comparisons of the enhancement effects of each algorithm have

been labeled with red wireframes in Figs 9 and 10. In summary, MTIE-Net shows significant

enhancement performance across various low-light datasets. Compared to existing single

enhancement techniques, MTIE-Net is able to enhance the luminance and preserve details of

low-light images more effectively, while suppressing noise. A large number of comparison

experiments in Table 4 also fully prove the effectiveness and superiority of MTIE-Net.

Fig 11. Comparison of nighttime face detection effect.

https://doi.org/10.1371/journal.pone.0297984.g011
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3.5 Pre-processing for face detection in low-light environments

In this section, we compare MTIE-Net as a pre-processing tool for nighttime face detection

with the algorithm described in Section 3.4, in order to verify its impact on advanced visual

tasks. We use the current state-of-the-art face detection algorithm RetinaFace [46] in the

DARK FACE [47] dataset for comparison experiments. As illustrated in Fig 11: MTIE-Net

improves RetinaFace detection performance most significantly in low-light environments. The

experimental results further validate the generalizability of MTIE-Net and also show its poten-

tial for application in advanced vision tasks.

4 Conclusion

In this paper, we propose a Multi-technology fusion of low-light image enhancement network

(MTIE-Net). The network modularizes the low-light enhancement task into three parts:

decomposition, denoising and enhancement based on Retinex theory. Our experiments on

several publicly available datasets demonstrate MTIE-Net’s ability to effectively enhance visual

quality and suppress noise in images. In addition, the nighttime face detection experiments

demonstrate the promising application of MTIE-Net as a pre-processing means to enhance

the performance of advanced visual tasks. Overall, this study presents a comprehensive and

effective solution to low-light image enhancement, offering significant theoretical and practical

value.
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