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Abstract

Background

Area-level social determinants of health (SDOH) based on patients’ ZIP codes or census

tracts have been commonly used in research instead of individual SDOHs. To our knowl-

edge, whether machine learning (ML) could be used to derive individual SDOH measures,

specifically individual educational attainment, is unknown.

Methods

This is a retrospective study using data from the Mount Sinai BioMe Biobank. We included

participants that completed a validated questionnaire on educational attainment and had

home addresses in New York City. ZIP code-level education was derived from the American

Community Survey matched for the participant’s gender and race/ethnicity. We tested sev-

eral algorithms to predict individual educational attainment from routinely collected clinical

and demographic data. To evaluate how using different measures of educational attainment

will impact model performance, we developed three distinct models for predicting cardiovas-

cular (CVD) hospitalization. Educational attainment was imputed into models as either sur-

vey-derived, ZIP code-derived, or ML-predicted educational attainment.

Results

A total of 20,805 participants met inclusion criteria. Concordance between survey and ZIP

code-derived education was 47%, while the concordance between survey and ML model-

predicted education was 67%. A total of 13,715 patients from the cohort were included into
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our CVD hospitalization prediction models, of which 1,538 (11.2%) had a history of CVD

hospitalization. The AUROC of the model predicting CVD hospitalization using survey-

derived education was significantly higher than the model using ZIP code-level education

(0.77 versus 0.72; p < 0.001) and the model using ML model-predicted education (0.77 ver-

sus 0.75; p < 0.001). The AUROC for the model using ML model-predicted education was

also significantly higher than that using ZIP code-level education (p = 0.003).

Conclusion

The concordance of survey and ZIP code-level educational attainment in NYC was low. As

expected, the model utilizing survey-derived education achieved the highest performance.

The model incorporating our ML model-predicted education outperformed the model relying

on ZIP code-derived education. Implementing ML techniques can improve the accuracy of

SDOH data and consequently increase the predictive performance of outcome models.

Introduction

Social determinants of health (SDOH) are non-medical factors that influence health outcomes.

The World Health Organization defined SDOH as the conditions in which people are born,

grow, live, work, age, and the wider set of forces and systems shaping the conditions of daily

life. Numerous studies have highlighted the important role of SDOH, such as educational

attainment, as crucial determinants of health outcomes [1–3]. Despite the significance of

SDOH, acquiring individual SDOH information is challenging. Individual SDOH is frequently

absent from electronic health records (EHRs) or documented as free text which is not available

for statistical analysis. Surveys, which are the standard for obtaining individual SDOH require

substantial time and resources. Therefore, in lieu of individual SDOHs, researchers have com-

monly utilized area-level SDOHs based on patients’ geographic location, such as ZIP codes [4].

Prior studies evaluating the impact of including SDOH into predictive model performance

have resulted in mixed results [5–11]. Hammond et al. [5] demonstrated that adjusting for

SDOH improved the accuracy of cardiovascular hospitalization and mortality regression pre-

diction models. Segar et al. [7] also illustrated that the addition of SDOH measures improved

the performance of ML-based random forest algorithms to predict heart failure mortality, but

only in Black patients. In contrast, Bhavsar et al. [9] showed that although neighborhood socio-

economic status (SES) was associated with health outcomes, SES did not improve the risk pre-

diction of clinical events, including emergency department visits, outpatient visits, and

hospitalizations, above and beyond what is already provided by the EHR data. A systematic

review of 13 studies using SDOH for risk prediction revealed that eight of them demonstrated

a significant improvement in predictive models when incorporating SDOH measures [11].

Notably, all studies that integrated individual-level SDOH data reported a significant enhance-

ment in performance. In contrast, among the six studies that merged neighborhood-level

SDOH data with EHR data, only one showed a significant improvement [11]. At present, to

our knowledge, there is no study directly comparing the impact of using individual and neigh-

borhood SDOH measures in predictive risk models.

We hypothesized that area-level SDOH measures may not accurately represent individual

SDOHs, especially in highly diverse urban neighborhoods, and this discordance will negatively

impact performance of health outcome prediction models resulting in the above conflicting
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results. To develop a method for predicting individual level education using features readily

available in the EHR, we employed machine learning (ML). ML which uses more sophisticated

mathematical functions than traditional statistics will typically yield superior performance

when predicting outcomes influenced by a large number of variables with nonlinear and com-

plex interactions [12, 13] and therefore improve accuracy of individual SDOH estimates. To

address these gaps in the literature, first, we assessed the concordance between ZIP code-level

educational attainment and survey-derived data using survey-derived data as a gold standard.

We specifically focused on educational attainment as a significant available SDOH data. We

then utilized ML models to derive educational achievement using routinely collected clinical

and sociodemographic factors. To evaluate the impact of SDOH on the clinical outcome pre-

diction, we focused on cardiovascular disease (CVD) hospitalization. The incidence of CVD is

clearly associated with lifestyle behaviors, including smoking, limited exercise, obesity, and

diet [14, 15]. Higher education may reduce the risk of CVD due to increased health knowledge

and awareness, leading to the improvement of lifestyle behaviors [16]. Higher education may

also be associated with stronger social connections and access to health care [17, 18]. Several

previous studies have established the association of education and CVD outcomes [19–21].

Therefore, we subsequently conducted a comparative analysis of the performance of three dis-

tinct predictive models for CVD hospitalization.

Methods

Study population and data sources

We obtained individual data from the BioMe Biobank, which is an ongoing, non-selective

patient-based EHR-linked biorepository at the Mount Sinai Health System (New York, NY,

USA) [22]. Participants were recruited into the biobank since September 2007. At enrollment,

participants completed a questionnaire which included questions on age, gender, race/ethnic-

ity, and educational attainment (S1 Questionnaire). The BioMe Biobank received ethics

approval from the Institutional Review Board of the Mount Sinai School of Medicine

(STUDY-11-01139). All participants provided written informed consent for the study. As we

focused on educational attainment, we included only participants who were at least 25 years

and completed the questionnaire from 2007 through 2020. We excluded individuals with miss-

ing data for gender, race/ethnicity, educational attainment, and NYC ZIP code home address.

We used data from the American Community Survey (ACS) to derive area-level education

[23]. ACS provides estimates of the characteristics of the population such as education,

income, employment, detailed race and ethnicity, and health insurance coverage. Estimates

from the ACS serve as a complement to the population data collected by the U.S. Census

Bureau. Continuous data collection throughout the year is used to produce estimates for each

calendar year. These estimations are founded on data collected over time, as opposed to a sin-

gle point in time. The ACS 5-year estimates are compiled from aggregated data spanning a

5-year period, allowing for comprehensive SDOH attribute estimates at the block, census tract,

ZIP code, and county levels. These estimates are available as 5-year aggregate files from 2007

to 2020.

We chose the ZIP Code Tabulation Area (ZCTA) as the spatial scale for analysis to estimate

area variations at the neighborhood level. ZCTAs are generalized areal representations of

United States Postal Service (USPS) ZIP code service areas. To achieve ZIP code-level educa-

tional attainment, we linked individual participants in the BioMe Biobank to ACS 5-year esti-

mates of educational attainment according to the participant’s survey completion year. This

linkage was based on the participant’s ZIP code, gender, and race/ethnicity.
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Measures

Race/Ethnicity and educational attainment. Participant’s race/ethnicity was categorized

into seven groups: American Indian/Alaska Native, Asian, Black/African American, Hispanic/

Latino, Native Hawaiian/Other Pacific Islander, White, and others.

We defined educational attainment as the highest level of education obtained and was cate-

gorized into four groups: less than a high school diploma, high school graduate, some college

or associate degree, and bachelor’s degree or higher.

Health outcome. The primary outcome was CVD hospitalization within 5 years after

enrollment in the BioMe biobank. Individual CVD hospitalizations were identified using the

Clinical Classification Software Refined (CCSR) to aggregate the diagnosis codes from the

International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM)

[24] recorded in the Mount Sinai Health System. CVD hospitalization includes the primary

diagnosis code in the category of ’Diseases of the circulatory system’.

Individual education prediction model development. For feature selection, we collected

data on patient demographics (age, sex, race/ethnicity), comorbidities derived from the ICD-

10 codes according to the Elixhauser comorbidity index, the history of tobacco, alcohol, drug

use, and ZIP code-level educational attainment. The Elixhauser comorbidity index measures a

patient’s comorbidity based on ICD codes, which are weighted based on the association of

each comorbidity with death, resulting in a concise summary index of comorbidity [25, 26].

Based on the patient’s ZCTA, we also included the dissimilarity index, which measures the seg-

regation of Blacks from Whites, and the Gini index, which measures income inequality.

We then developed three models to predict educational attainment.

• Model 1 utilized only ZIP code-level education.

• Model 2 included ZIP code-level education + demographic variables and comorbidity + use

of tobacco, alcohol, and drug.

• Model 3 included ZIP code-level education + demographic variables and comorbidity + use

of tobacco, alcohol, and drug + other neighborhood SDOHs (GINI and dissimilarity indices).

We chose three ML algorithms that are well-suited for multiclass classification, where our

outcome could be one of three or more possibilities: Naïve Bayes (NB), decision tree (DT), and

random forest (RF).

NB is a probabilistic machine learning algorithm commonly used for binary and multiclass

classification tasks. It is based on Bayes’ theorem and assumes that the features used for classi-

fication are conditionally independent [27].

DT is a supervised ML algorithm used for classification and regression. It has a hierarchical

tree structure which consists of a root node, branches, internal nodes, and leaf nodes. This

algorithm is fast, easy to use and can naturally handle multiclass classification [28].

RF is an ensemble algorithm, which combines multiple decision trees. Each tree is built

independently, and the final prediction is obtained by aggregating the predictions of all trees

by the maximum vote for classification problems. This reduces overfitting and increases accu-

racy [29, 30].

Before modeling, all categorical variables with more than two factors were converted into

dummy variables. Subsequently, the dataset was randomly divided into training and test sets,

with a 75/25 split. We employed five-fold cross-validation for all our ML models. We con-

ducted subgroup analysis by evaluating performance of our models in different race/ethnicity

groups and by White- or Black-predominant ZIP codes (defined as more than 50 percent of

people residing in that ZIP code identifying as that race/ethnicity).
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CVD hospitalization prediction model development. For CVD hospitalization predic-

tion models, we included only participants with a history of hospital visits and had ICD-10 rec-

ords in the Mount Sinai Health System. The index date was recorded as the BioMe biobank

enrollment. We then followed patients until 5 years after the enrollment date to predict the

5-year risk of CVD hospitalization. To evaluate changes in prediction model performance

based on how educational attainment is derived, we first built a model without considering

educational attainment. These models utilized patient demographics (age, gender, and race/

ethnicity) and the baseline Elixhauser comorbidity index score, as additional covariates to pre-

dict CVD hospitalization as a binary classification. Then we included educational attainment

in three different ways: individual-level educational attainment from surveys, ZIP code-level

educational attainment, and educational attainment predicted from the most accurate ML

model.

Hyperparameter tuning. We conducted a grid search over a set of chosen parameters to

find the optimal settings. Grid search is a technique used in ML to search and find the optimal

combination of hyperparameters for a given model. Hyperparameters are ML parameters that

are used to control the algorithm. For example, the learning rate and number of trees are

hyperparameters. The Gird search technique systematically explores a predefined set of hyper-

parameter values, creating a grid of possible combinations. We implemented the grid search

using the default setting of GridSearchCV() function from scikit-learn [31] and explored

hyperparameter combinations listed in S1 Table to identify the configuration that optimized

model performance. Model performance was evaluated using 5-fold cross-validation. The

selected model was chosen based on that with the best-performing parameters.

Statistical analysis

Categorical data are described as numbers and percentages. Continuous data are summarized

as mean ± standard deviation (SD) for normally distributed variables or median (interquartile

range; IQR) for non-normally distributed variables. We used Student’s T test for normally dis-

tributed continuous variables, χ2 for categorical variables, and Kruskal-Wallis for non-nor-

mally distributed continuous variables. Cohen’s κ index was used to assess the agreement

between survey and ZIP code-derived education, as well as survey and ML-predicted educa-

tion. To evaluate model performance, we assessed the accuracy, precision, and F1-score. The

area under the receiver operating characteristic (AUROC) curve and the area under the preci-

sion-recall curve (AUPRC) are also used as metrics to measure prediction model performance.

The AUROC curve of each prediction model was pairwise compared using the DeLong test. A

p< 0.05 was considered statistically significant. All analyses were performed using the scikit-
learn [31], censusgeocode, and matplotlib [32] libraries within Python 3.8.

Results

Baseline characteristics

We included 20,805 patients from 185 unique ZIP codes in NYC for analysis. S1 Fig presents

the CONSORT diagram. The mean age of the cohort was 52.8±15.8 years. Of these patients,

12,111 (58%) patients were female, 8,858 (43%) were Hispanic, 5,250 (25%) were White, and

4,446 (22%) were Black.

Regarding educational attainment according to surveys, 9% of patients had less than a high

school diploma, 37% completed high school, 1% graduated with some college or associate

degree, and 53% had a bachelor’s degree or higher. Based on the patient’s ZIP code, gender,

and race, the educational attainment at the ZIP code level revealed that 25% had completed

less than a high school diploma, 24% had completed high school, 8% had completed an
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associate degree, and 43% had a bachelor’s degree (Table 1). The concordance rate between

survey education and ZIP code-level education was 47%. The weighted Cohen’s κ coefficients

indicating the concordance between survey-derived and ZIP code-derived education was 0.32

(95% CI 0.31 to 0.34; p = 0.206). Fig 1 illustrates the percentage of matches between individual

and ZIP code education levels by gender and race.

Table 1. Baseline characteristics of participants in cohort.

Characteristics

Age 53 ± 16

Female 12,111 (58%)

Race

Hispanic 8858 (43%)

White 5350 (25%)

Black 4446 (22%)

Asian 1121 (5%)

Others 1130 (5%)

Comorbidity

Hypertension 8420 (40%)

DM 4260 (21%)

Coronary artery disease 2157 (10%)

Peripheral arterial disease 2176 (10%)

Arrhythmia 989 (5%)

Valvular heart disease 874 (4%)

Pulmonary vascular disease 491 (2%)

Liver disease 1869 (9%)

HIV infection 1532 (7%)

Solid malignancy 2172 (10%)

Lymphoma 251 (1%)

Anemia 2326 (11%)

Peptic ulcer 258 (1%)

Connective tissue diseases 1161 (6%)

Psychosis 687 (3%)

Depression 4865 (23%)

Tobacco use

Current 4221 (20%)

Former 7220 (35%)

Alcohol use

Current 9857 (47%)

Former 1070 (5%)

Individual educational attainment

Less than a high school diploma 1880 (9%)

High school graduate 7642 (37%)

Some college or associate degree 237 (1%)

Bachelor’s degree or higher 11046 (53%)

ZIP code-level educational attainment

Less than a high school diploma 5302 (25%)

High school graduate 4929 (24%)

Some college or associate degree 1630 (8%)

Bachelor’s degree or higher 8944 (43%)

https://doi.org/10.1371/journal.pone.0297919.t001
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ML models to predict individual education

We split the data into training (n = 15,603) and test (n = 5,202) datasets. In Model 1, which

included only ZIP code-level education, all algorithms showed individual education predic-

tion accuracies ranging from 0.55 to 0.57, with AUROC values ranging from 0.64 to 0.65. In

Model 2, which included ZIP code-level education, demographic variables, and comorbid-

ity, the AUROCs improved to a range of 0.69 to 0.75. Model 3, which included ZIP code-

level education, demographic data, comorbidity, GINI, and dissimilarity indices, gave the

best performance. RF revealed the highest AUROC (0.77 (0.76 to 0.78)) (Table 2) of the

models in predicting individual education. The concordance rate between RF model-pre-

dicted education and survey education was 67%. The weighted Cohen’s κ coefficients indi-

cating the concordance between survey-derived and RF model-predicted education was

0.45.

Performance of the ML model by race/ethnicity

The performance of the RF utilizing all features (Model 3) differed by patients’ race/ethnicity.

The model performed best in the White group (AUROC 0.79), followed by the Asian group

(AUROC 0.69), the Hispanic group (AUROC 0.68), and the Black group (AUROC 0.66),

respectively (S2 Table).

The performance of all models improved when analyzed in White-predominant ZIP codes

and lower in Black-predominant ZIP codes. Model 3 consistently demonstrated the best per-

formance. Using RF in Model 3, the AUROC values in White-predominant and Black-pre-

dominant ZIP codes were 0.81 (0.79 to 0.82) and 0.72 (0.68 to 0.75), respectively, with

corresponding accuracies of 0.71 and 0.56. (S3 Table)

Fig 1. The percentage of matches between individual and ZIP code education levels by gender and race.

https://doi.org/10.1371/journal.pone.0297919.g001
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Cardiovascular disease hospitalization prediction

A total of 13,715 patients from the cohort had hospital visit records, with 1,538 (11.2%) of

them having a history of CVD hospitalization. The mean age of the cohort was 54.2±15.4 years

(S4 Table).

Model performance

The performance metrics of all models for predicting CVD hospitalization are shown in

Table 3. The model that did not include educational attainment as a variable achieved an

AUROC of 0.72 and an AUPRC of 0.26. Incorporation of survey-derived education signifi-

cantly improved the performance of the models. Among the models using different levels of

education, the model based on survey-derived education demonstrated the highest accuracy

and precision. Furthermore, it exhibited a significantly higher AUROC compared to the

model using ZIP code-level education (0.77 versus 0.72; p < 0.001) and the model using ML

model-predicted education (0.77 versus 0.75; p < 0.001). The AUROC for the model using

the ML model-predicted education was also significantly higher than that of the model

using ZIP code-level education (p = 0.003). Additionally, the model using survey-derived

education achieved the highest AUPRC of 0.35, followed by the model using ML model-pre-

dicted education (0.28) and the model using ZIP code-level education (0.26). Fig 2 illustrate

the ROC and PRC curves for each model. Fig 3 presents the rankings of the top 10 variables

importance for predicting CVD hospitalization using the RF algorithm. The Elixhauser

index was the feature that obtained the highest importance scores for prediction, followed

by age, educational attainment, and former tobacco use, respectively.

Race/ethnicity-specific model performance

The model based on survey-derived education yielded the highest AUROC in all race/eth-

nicity groups. Among White and Hispanic patients, the models that utilized ML model-

predicted education showed significantly higher AUROC values compared to those that

were based on ZIP code-level education (p = 0.009 and p = 0.004, respectively). However,

no significant differences in AUROC were observed within the Black and Asian groups

(Table 3).

Table 2. Individual educational attainment prediction model performance.

AUROC (95% CI) Accuracy F1-score Precision

Model 1: ZIP code-level Education

Naïve Bayes 0.64 (0.63 to 0.66) 0.55 0.26 0.25

Decision Tree 0.65 (0.64 to 0.66) 0.57 0.30 0.29

Random Forest 0.65 (0.64 to 0.66) 0.57 0.30 0.29

Model 2: ZIP code-level Education + demographic data + use of tobacco, alcohol, and drug

Naïve Bayes 0.69 (0.68 to 0.71) 0.51 0.35 0.36

Decision Tree 0.71 (0.70 to 0.73) 0.62 0.37 0.30

Random Forest 0.75 (0.73 to 0.76) 0.61 0.31 0.30

Model 3: ZIP code-level Education + demographic data + use of tobacco, alcohol, and drug + GINI and dissimilarity indices

Naïve Bayes 0.70 (0.68 to 0.71) 0.51 0.35 0.36

Decision Tree 0.74 (0.73 to 0.75) 0.62 0.37 0.44

Random Forest 0.77 (0.76 to 0.78) 0.67 0.31 0.32

https://doi.org/10.1371/journal.pone.0297919.t002
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Discussion

The findings in our study suggest a significant disagreement between education obtained via

patient surveys compared to education derived from ZIP codes. Overall agreement was

achieved in less than half of patients, and the level of agreement varied by gender, race, and

ethnicity. We tested three ML algorithms and found that the RF model resulted in the best

Fig 2. Receiver-operating characteristic and precision-recall curves for predicting CVD hospitalization of each model.

https://doi.org/10.1371/journal.pone.0297919.g002

Table 3. Predictive performance of CVD hospitalization models using different educational attainment methods.

Model Model performance metric

Accuracy Precision AUPRC AUROC

All

Without education 0.87 0.48 0.26 0.71

Survey derived education 0.89 0.55 0.35 0.77*
ZIP code-level education 0.89 0.44 0.26 0.72

ML model-predicted education 0.89 0.51 0.28 0.75*
White

Survey derived education 0.90 0.67 0.35 0.77*
ZIP code-level education 0.90 0.53 0.22 0.71

ML model-predicted education 0.90 0.67 0.28 0.75*
Black

Survey derived education 0.89 0.61 0.36 0.78*
ZIP code-level education 0.87 0.44 0.30 0.73

ML model-predicted education 0.88 0.46 0.30 0.74

Hispanic

Survey derived education 0.90 0.88 0.36 0.76*
ZIP code-level education 0.90 0.58 0.27 0.72

ML model-predicted education 0.90 0.60 0.30 0.75*
Asian

Survey derived education 0.89 0.48 0.46 0.83*
ZIP code-level education 0.89 0.40 0.28 0.77

ML model-predicted education 0.89 0.38 0.28 0.78

* p-value < 0.05 compared with ZIP code-level education model

https://doi.org/10.1371/journal.pone.0297919.t003
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performance in the prediction of individual education. Additionally, we demonstrate that use

of our ML-predicted educational attainment resulted in a significantly better CVD hospitaliza-

tion model compared to models that used ZIP-code educational attainment. However, hospi-

talization models using survey educational attainment was significantly better than all the

other models.

Previous studies have reported poor agreement between socioeconomic measures at the

individual and area levels, as well as the impact of using these measures on the association

between socioeconomic factors and health outcomes. Pardo-Crespo et al. [33] observed a lack

of agreement between individual-level and area-level socioeconomic measures in Olmsted

County, Minnesota, which is characterized by an urban-rural setting. The weighted Cohen’s κ
indices ranged from 0.15 to 0.22. Furthermore, area-level socioeconomic measures revealed

weaker associations with health outcomes in children, such as low birth weight and over-

weight, than individual-level socioeconomic measures. Moss et al. [34] found poor to moder-

ate agreement between socioeconomic status, including household income, college degree,

and unemployment, at individual, census tract, and county levels in the Mortality Disparities

in American Communities (MDAC) study. When area-level measures were used as proxies for

individual socioeconomic status, the associations between socioeconomic status and mortality

were consistently underestimated.

NYC is a demographically and geographically diverse metropolis with approximately 214

ZCTAs designated by the U.S. Census Bureau across the five boroughs. The communities of

NYC are characterized by racial/ethnic diversity and variation in the distribution of SDOH

Fig 3. Feature importance ranking for CVD hospitalization prediction using RF algorithm. A. Survey-derived education

model. B. Zip code-level education model. C. Machine learning-predicted education.

https://doi.org/10.1371/journal.pone.0297919.g003
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within their geographical boundaries. As a result, area-level SDOH measures may not accu-

rately represent individual-level SDOH measures. Similar to prior studies, agreement between

ZIP-code level education data with actual educational attainment in our study was low [33].

Therefore, we developed ML models to improve the prediction of individual-level education.

By incorporating demographic data, racial segregation, and an income inequality index using

the RF model, we achieved a noteworthy advancement in predicting individual educational

attainment. This was demonstrated by a rise in the concordance rate to 67% and the AUROC

to 0.77.

Additionally, we found that the concordance rate between individual and ZIP code-level

education varied among races/ethnicities. Our ML models also performed differently across

various race/ethnicity groups and significantly improved the concordance in Hispanics (from

31% to 52%) and Blacks (from 40% to 56%), groups that had the lowest concordance rate

between survey and ZIP code-level education. To the best of our knowledge, this study repre-

sents the first attempt to apply area-level SDOH and multiclass ML algorithms for the predic-

tion of individual SDOH.

Prior studies have examined whether the addition of SDOH into risk prediction models

improves risk prediction accuracy. Individual SDOH measures have been reported as impor-

tant features in CVD outcome prediction models [5, 35]. However, individual-level SDOH

measures are difficult to obtain and often require direct patient surveys, which is time-con-

suming. Instead, many research studies use area-level SDOH measures as proxies; however, it

is not clear if area-level SDOH improves risk prediction of clinical events.

We hypothesized that the inconsistency in the benefit of including neighborhood SDOH

into prediction models of clinical outcomes is related to discordance of neighborhood and

individual-level SDOH. Therefore, we evaluated the performance of a model to predict CVD

hospitalizations using three different methods to identify educational attainment. Previous

studies have reported a significant association between patient educational attainment and

CVD hospitalization such as acute coronary syndrome and heart failure [19, 20]. As expected,

survey-derived educational attainment had the best performance. While ZIP code-level educa-

tion did not enhance the predictive performance of the CVD hospitalization model relative to

the model without education, utilizing education data from our ML model significantly

improved the prediction of CVD hospitalization. This improvement was particularly signifi-

cant in Hispanic patients, where a low concordance rate was observed between survey and ZIP

code-level education. However, we did not find a significant improvement in the model per-

formance when using ML model-derived education in Black patients. These findings may be

explained by the lower improvement of concordance between survey and ZIP code-level edu-

cation by the ML model in the Black population.

Our study, to our knowledge, is the first to demonstrate and compare the impact of using

SDOH derived from three different sources in predictive health outcome models. In addition,

we have shown that ML-predicted SDOH measures not only improve individual-level SDOH

prediction but also significantly boost the performance of a health outcome prediction model.

Our study used a high-quality dataset with a large sample size and a racially and ethnically

diverse cohort. The individual data utilized in our study was obtained from a self-reported

questionnaire, and measurements of area-level education were derived from the ACS data for

the same year. It is noteworthy that our participant pool encompassed over 85% of ZCTAs in

NYC, providing comprehensive insights.

Our study placed particular emphasis on the importance of individual-level SDOH mea-

sures and raised concern regarding the utilization of area-level SDOH measures in public

health research. To accurately assess individual SDOH data, it is crucial to employ well-

designed and validated questionnaires with standardized data collection procedures. However,
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surveys are labor-intensive to obtain. Therefore, the use of models like ours may facilitate stud-

ies to assess the impact of SDOH on outcomes. In addition, the implementation of natural lan-

guage processing (NLP) may enhance the extraction of SDOH information from clinical notes

in EHR, thereby improving data collection. In studies where individual-level SDOH cannot be

directly measured, caution should be exercised when interpreting associations between area-

level SDOH proxies and health outcomes.

Limitations

Several limitations should be acknowledged. Firstly, we utilized data from the BioMe Biobank,

which comprises individuals recruited from the Mount Sinai Health System, and the clinical

outcomes were assessed in a single center, potentially limiting the generalizability. Secondly,

although we aimed to include all participants in the BioMe biobank, many participants did not

complete the questionnaire and were excluded from the study, potentially leading to selection

bias. Thirdly, we focused on education, which is only one specific aspect of SDOH. This limita-

tion exists due to the lack of information in our database regarding additional SDOH measures

that may be associated with education and health outcomes, such as household income, health

insurance, and housing characteristics. While our results provide valuable insights, further

studies are necessary to explore the extension of our findings to other SDOH measures. Addi-

tionally, examining their impact across various demographic subgroups and other health out-

comes is warranted. Although our model improved the accuracy of educational attainment

prediction for all racial/ethnic subgroups, its performance was still lower in Black and His-

panic individuals. Lastly, we did not conduct a full PRISMA literature review, and therefore

may not include all relevant studies.

Conclusions

The concordance of survey-derived and ZIP code-derived educational attainment in NYC was

low. Our ML model significantly improved individual education prediction. In terms of CVD

hospitalization prediction, the model utilizing survey-derived education achieved the highest

performance. The model incorporating our ML model-predicted education outperformed the

model relying on simple ZIP code-derived education. These findings suggest that the applica-

tion of ML techniques has the potential to enhance the accuracy of SDOH data and conse-

quently increase the predictive ability of CVD hospitalization prediction models.
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