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Abstract

Purpose

The aim of this study was to evaluate the usability of a recently developed extracorporeally-

perfused cadaver model for training the angiographic management of acute arterial dis-

eases and periprocedural complications that may occur during endovascular therapy of the

lower extremity arterial runoff.

Materials and methods

Continuous extracorporeal perfusion was established in three fresh-frozen body donors via

inguinal and infragenicular access. Using digital subtraction angiography for guidance, both

arterial embolization (e.g., embolization using coils, vascular plugs, particles, and liquid

embolic agents) and endovascular recanalization procedures (e.g., manual aspiration or

balloon-assisted embolectomy) as well as various embolism protection devices were tested.

Furthermore, the management of complications during percutaneous transluminal angio-

plasty, such as vessel dissection and rupture, were exercised by implantation of endovascu-

lar dissection repair system or covered stents. Interventions were performed by two board-

certified interventional radiologists and one resident with only limited angiographic

experience.

Results

Stable extracorporeal perfusion was successfully established on both thighs of all three

body donors. Digital subtraction angiography could be performed reliably and resulted in

realistic artery depiction. The model allowed for repeatable training of endovascular recana-

lization and arterial embolization procedures with typical tactile feedback in a controlled

environment. Furthermore, the handling of more complex angiographic devices could be

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0297800 February 8, 2024 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hartung V, Augustin AM, Grunz J-P,

Huflage H, Hennes J-L, Kleefeldt F, et al. (2024)

Training for endovascular therapy of acute arterial

disease and procedure-related complication: An

extracorporeally-perfused human cadaver model

study. PLoS ONE 19(2): e0297800. https://doi.org/

10.1371/journal.pone.0297800

Editor: Ezio Lanza, Humanitas Clinical and

Research Center - IRRCS, ITALY

Received: August 19, 2023

Accepted: January 12, 2024

Published: February 8, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0297800

Copyright: © 2024 Hartung et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

https://orcid.org/0000-0002-6273-9172
https://orcid.org/0000-0002-4524-1620
https://orcid.org/0000-0002-2784-3257
https://orcid.org/0009-0007-7751-0403
https://orcid.org/0000-0002-2565-8111
https://doi.org/10.1371/journal.pone.0297800
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297800&domain=pdf&date_stamp=2024-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297800&domain=pdf&date_stamp=2024-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297800&domain=pdf&date_stamp=2024-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297800&domain=pdf&date_stamp=2024-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297800&domain=pdf&date_stamp=2024-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297800&domain=pdf&date_stamp=2024-02-08
https://doi.org/10.1371/journal.pone.0297800
https://doi.org/10.1371/journal.pone.0297800
https://doi.org/10.1371/journal.pone.0297800
http://creativecommons.org/licenses/by/4.0/


exercised. Whereas procedural success was be ascertained for most endovascular inter-

ventions, thrombectomies procedures were not feasible in some cases due to the lack of

inherent coagulation.

Conclusion

The presented perfusion model is suitable for practicing time-critical endovascular interven-

tions in the lower extremity runoff under realistic but controlled conditions.

Introduction

Digital subtraction angiography (DSA) is an established imaging procedure to guide endovas-

cular therapy during the management of acute and chronic vascular pathologies [1]. Angio-

graphic intervention allows both, endovascular recanalization and arterial embolization

procedures. While the former are used to treat acute limb ischemia [2], occluding procedures

are suitable to stop bleeding from parenchymal organs or after soft tissue trauma [3]. In many

cases, successful endovascular therapy renders surgical interventions unnecessary or the peri-

operative risk and subsequent morbidity can at least be reduced before definitive surgical ther-

apy [4]. Due to this, the number of interventionally treated hemorrhages has increased in

recent years [5, 6] and the mortality has been substantially reduced [7].

Angiographic treatment of time-critical emergencies requires rapid decision-making as

well as high levels of skill and experience. Therefore, the interventionalist needs profound

knowledge of treatment options and continuous training of their application [8, 9]. In addi-

tion, there is a large number of different devices with variable handling, which are often used

infrequently, resulting in a lack of expertise. Since emergent endovascular treatments are often

requested outside of the regular working hours, i.e. during on-call duty or weekend shifts [10,

11], support from more experienced colleagues may not be available all the time. Despite an

increasing number of simulation courses, training for these time-critical scenarios is still

largely limited to actual patient treatment under supervision. However, more in-depth training

before a real-life endovascular procedure would be desirable.

Mock circulatory loops allow for the training of catheter handling and hands-on exercises

with other interventional devices. Some larger centers even offer virtual angiography training

suites, which facilitate the simulation of various interventions, albeit with a limited degree of

realism and practical applicability due to the absence of human tissue properties and blood

flow [12]. Both of these aspects have recently been addressed in a human cadaveric model with

continuous extracorporeal perfusion [13]. While this model has previously been used for

image quality comparisons between CT angiography scan protocol, its application for endo-

vascular interventional training procedures has not been investigated yet.

Therefore, the aim of this study was to evaluate the perfusion model’s usability for the train-

ing of DSA-guided management of vascular emergencies and periprocedural complications in

a realistic but controlled environment.

Materials and methods

Cadaveric specimens and perfusion model

Three fresh-frozen cadavers were obtained from the local anatomical institute in accordance

with national and European law (fully and irreversible anonymized human biomaterials).
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Donors had authorized the usage of their bodies for education and research purposes with

written informed consent during their lifetime (responsibility and accountability by the ana-

tomical institute). The study received permission from the local institutional review board

(Ethic Committee of the University of Würzburg; protocol number: 20220413 01).

After thawing of the non-chemically preserved cadavers, accesses to the common femoral

artery (inguinal) and to the P3 segment of the popliteal artery (infragenicular) were surgically

established. To achieve this, the vessels were sectioned at the level of the junction with the

external iliac artery and the tibiofibular trunk, respectively. Remaining thrombotic material

was removed using a Fogarty catheter. Subsequently, introducer sheaths (Flexor1 sheath 8/6

French; Cook Medical, Bloomington, IN, USA) were inserted and fixated. The superficial fem-

oral artery (SFA) and popliteal artery were subsequently perfused with a cooled mixture of

Ringer’s solution and 20% glucose solution (50:50) by means of a peristaltic pump. A sche-

matic of the experimental setup is shown in Fig 1. Detailed explanations of the preparatory

work and the materials required can be found elsewhere [13].

Digital subtraction angiography

The cadavers were moved to the angiography suite and sterilely draped. Under continuous

perfusion, a working sheath was inserted using the Seldinger technique and afterwards transfe-

moral antegrade fluoroscopic series were acquired in posterior-anterior orientation after man-

ual injection of diluted contrast medium (50:50 mixture of Imeron1 350 mg/ml iodine and

0.9% sodium chloride solution). DSA was performed using a commercially available flat detec-

tor unit (Azurion 7 C20, Philips Healthcare, Best, The Netherlands) with vendor-recom-

mended settings for low-dose examinations and a frame rate of 1–2 images/second.

Interventional procedures

A representative selection of endovascular recanalization and arterial embolization procedures

was conducted using the aforementioned in-vitro model. Investigated endovascular recanaliza-

tion procedures included manual and balloon-assisted aspiration embolectomy. In addition,

insertion and retrieval of an embolic protection device with a Nitinol “basket” was performed.

In order to train vascular occlusion procedures, small muscle branches were intentionally per-

forated to simulate post-traumatic soft tissue bleeding or focal hemorrhages of parenchymal

organs. After selective catheterization, afferent vessel segments were occluded using coils,

Fig 1. Schematic of the experimental setup. Right: Body donor in the angiography suite. Left: Perfusion circuit. The fluid reservoir

(FLUID) compensates the loss of perfusion fluid during the examination. To perform digital subtraction angiography, contrast medium

(IODINE) is manually injected via the working sheath and the resulting iodinated perfusion fluid is drained in a bag (WASTE). The

WORKING SHEATH is used as vascular access to perform interventions.

https://doi.org/10.1371/journal.pone.0297800.g001
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particle embolization, and/or liquid embolic agents. Treatment strategies for larger vessel inju-

ries, e.g., in the context of a pelvic fracture, were also trained, including the deployment of a

vascular plaque for artery occlusion or a covered stent to treat a previously induced hemor-

rhage. Finally, the management of periinterventional complications was trained. In addition to

the above-mentioned treatment of a vessel rupture via a covered stent, the focus was on the

therapy of dissections by means of ordinary vascular stents and special dissection repair sys-

tems. A summary of the performed endovascular interventions is given in Table 1.

Results

Digital subtraction angiography

Puncture of the femoral artery and insertion of a working sheath could by practiced in all

cadaveric specimens. Correct intra-arterial needle position was indicated by realistic backflow

of perfusion fluid. It may be noted that the femoral artery is uncovered after preparation and

therefore easy to detect even with weak perfusion pressure. Manual DSA was performed as

usual and appeared visually realistic. Smaller peripheral muscle branches were sufficiently con-

trasted (e.g., see Fig 2B).

Arterial embolization procedures

A muscle branch of the SFA was catheterized using a selective microcatheter (ProgreatTM,

2.7F; Terumo, Tokyo, Japan). Of note, practicing the handling and positioning of this catheter

is also relevant for the management of hemorrhages in parenchymatous organs. Afterwards, a

hemorrhage was intentionally caused using a high tip load 0.014” wire (Astato XS; Asahi

Intecc, Aichi, Japan) with subsequent placement of vascular coils (ConcertoTM Detachable

Coil System, Helix 4 mm x 8 cm; Medtronic, Minneapolis, MN, USA) to stop the contrast

extravasation (Fig 2). In the DSA control, the vascular branch distal of the coils was mostly

occluded.

Two other hemorrhages caused in the same manner were also occluded successfully after

selective catheterization using combinations of coils (AZUR™ CX, 3 mm x 8 cm, Terumo), liq-

uid embolic agents (Histoacryl1; B. Braun, Melsungen, Germany) as well as pushable coils

(Nester1 Embolization Coils, 3 mm x 7 cm; Cook Medical) and tri-acryl gelatin microspheres

(Embosphere1microspheres, 700–900 μm; Merit Medical Systems, South Jordan, UT, USA)

as alternative therapeutic options. Images of both techniques are shown in Fig 3.

To simulate the treatment of larger vessel hemorrhages, e.g., of the internal iliac artery, a

vascular plaque (AmplatzerTM Vascular Plaque II, 6 mm; Abbott Laboratories, North Chicago,

IL, USA) was placed in the proximal SFA, repositioned several times for training purposes,

and released after corrected positioning (Fig 4).

In another specimen, a vascular transection, which can occur periinterventionally or be of

traumatic origin, was simulated. For this purpose, an oversized cutting balloon (Cutting Bal-

loon WolverineTM, 2/6 mm; Boston Scientific, Marlborough, MA, USA) was expanded in the

middle third of the SFA and the injured vessel segment was intentionally distended using an

even more oversized angioplasty balloon (AtlasTM Gold, 18/20 mm; Becton Dickinson, Frank-

lin Lakes, NJ, USA) until major vessel injury occurred. The rupture was already visible in DSA

while the balloon was still expanded. Treatment was performed with a self-expanding covered

stent (CoveraTM, 7/60 mm; Becton Dickinson). Subsequent DSA showed complete exclusion

of the rupture, while remaining perivascular contrast agent was visible in the control angio-

gram (Fig 5).
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Endovascular recanalization procedures

For manual aspiration embolectomy, a 6F aspiration catheter (BigLumen Aspiration Catheter,

straight, 6F; OptiMed, Mannheim, Germany) was inserted. An artificial occlusion simulated

Table 1. Overview of endovascular interventions.

Type Procedures Material Manufacturer Comment/Limitation

arterial embolization coil embolization (solo) ConcertoTM Detachable Coil

System,

Helix 4 mm x 8 cm

Medtronic,

Minneapolis, MN,

USA

almost complete occlusion despite lack of clotting

coil embolization

+ liquid embolic

AZUR™ CX, 3mm x 8cm,

Histoacryl1 tissue adhesive

Terumo,

Tokyo, Japan

B. Braun,

Melsungen,

Germany

almost complete occlusion despite lack of clotting

coil embolization

+ particle embolization

Nester1 Embolization Coils, 3

mm x 7 cm

Embosphere1 microspheres,

700–900 μm

Cook Medical,

Bloomington, IN,

USA

Merit Medical

Systems,

South Jordan, UT,

USA

almost complete occlusion despite lack of clotting

vascular plaque AmplatzerTM Vascular Plaque

II, 6 mm

Abbott

Laboratories,

North Chicago, IL,

USA

only visual flow occlusion, visual control of

placement

covered stent occlusion CoveraTM, 7/60 mm Becton Dickinson,

Franklin Lakes, NJ,

USA

minor residual leakage hardly detectable due to

remaining extravasation of dye

temporary balloon occlusion AtlasTM Gold, 18/20 mm Becton Dickinson,

Franklin Lakes, NJ,

USA

(provoked arterial rupture)

endovascular

recanalization

aspiration embolectomy (manual

—catheter based)

BigLumen Aspiration Catheter,

straight, 6F

OptiMed,

Mannheim,

Germany

artificial embolus (gelatine sponge)

balloon embolectomy SyntelTM, 4F 80 cm, 0.8 ml

balloon

LeMaitre Vascular

Inc.,

Burlington, MA,

USA

embolism protection Nitinol “basket” filter SpiderFXTM, 6 mm Medtronic,

Minneapolis, MN,

USA

dissection

management

self-expanding stents E-LuminexxTM, 8/30 mm

AbsoluteProTM, 9/80 mm

Becton Dickinson,

Franklin Lakes, NJ,

USA

Abbott

Laboratories,

North Chicago, IL,

USA

in principle;

no dissection present;

practice correct placement and release of different

models

balloon-expanding stent Herkulink EliteTM, 7/18 mm Abbott

Laboratories,

North Chicago, IL,

USA

in principle;

no dissection present

endovascular dissection repair

system

Tack1 6F, 6 x 8 mm Philips Healthcare,

Best, The

Netherlands

in principle;

no dissection present

multiple stent system VascuFlex1 Multi-LOC, 6 x 13

mm

B. Braun,

Melsungen,

Germany

in principle;

no dissection present

https://doi.org/10.1371/journal.pone.0297800.t001
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with hemostatic absorbable gelatine sponge material (CuraSpon1; Cura Medical, Assendelft,

The Netherlands) was aspirated and retrieved. After complete retrieval, DSA showed an unre-

markable vascular runoff (Fig 6). In addition to manual aspiration embolectomy, a balloon-

assisted mechanical embolectomy using a silicone embolectomy catheter (SyntelTM, 4F 80 cm,

0.8 ml balloon; LeMaitre Vascular Inc., Burlington, MA, USA) was performed.

To train the application of periprocedural embolic prophylaxis, the insertion and retrieval

of an embolic protection device comprised of a Nitinol "basket" (SpiderFXTM, 6 mm; Medtro-

nic) was tested. This tool prevents thrombotic material loosened during thrombectomy/embo-

lectomy (or atherectomy) and can be retrieved together with the captured emboli (Fig 7).

Dissection management

Dissections can occur after angioplasty and immediate management is often mandatory to

maintain vessel patency. Three different options for dissection management were practiced:

First, the established scaffolding technique is characterized by the deployment of stents

adapted to the dissection length. The exact stent placement was trained by releasing a selection

of stents from different manufacturers (E-LuminexxTM, 8/30 mm; Becton Dickinson | Herku-

link EliteTM, 7/18 mm; Abbott | AbsoluteProTM, 9/80 mm; Abbott). Second, a dedicated endo-

vascular dissection repair system (Tack1 6F, 6 x 8 mm; Philips Healthcare) was used to treat

another artificially-induced superficial femoral artery dissection. Third, multi-stent systems

comprise several shorter stents with lower radial force. In this study, a system for spot stenting

(VascuFlex1Multi-LOC, 6 x 13 mm; B. Braun) was tested in the cadaveric perfusion model

(Fig 8).

Discussion

The recently developed, continuous extracorporeally perfused human cadaver model allows

for reliable establishment of vascular access and execution of digital subtraction angiographies.

It enables the training of endovascular recanalization and arterial embolization procedures as

well as practicing periprocedural complication management such as dissection and rupture

Fig 2. Catheterization and treatment of a small vessel hemorrhage by coil embolization. A Intentional penetration

of a perforator vessel. B Visualization of hemorrhage using digital subtraction angiography. C Deposition of detachable

coils (ConcertoTM, Helix 4 mm x 8 cm; Medtronic). D Occlusion of contrast extravasation after coil embolization.

https://doi.org/10.1371/journal.pone.0297800.g002
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repair under realistic conditions with characteristic tactile feedback using the real angiographic

equipment.

The frequency of endovascular and thus minimally invasive treatment procedures have

steadily increased in recent years [5, 6]. In Germany, over 300.000 percutaneous interventions

were conducted in 2021 with numbers doubled from 2005 [14]. Of these, a substantial percent-

age comprise emergency procedures in patients with acute, potentially life-threatening condi-

tions. For example, every tenth to every third polytraumatized patient presents with a

peripheral vascular injury [15, 16]. While endovascular therapy procedures have been shown

to be effective alternatives to open surgical treatment [7], the pressure to provide an appropri-

ate expertise around the clock has markedly increased. In addition to growing numbers of

Fig 3. Treatment of a small vessel hemorrhage by combinations of coil, liquid tissue adhesive, and particle

embolization. A Selective catheterization of a muscle branch in the upper leg. B Visualization of the induced

hemorrhage in DSA. C Deposited coils (AZUR™ CX, 3mm x 8cm, Terumo) in the perforated vessel. D Stagnant

bleeding in DSA after additional application of liquid embolic (Histoacryl1; B. Braun) E Another intentionally caused

bleeding visualized over a selective catheter (ProgreatTM; Terumo). F Fractional application of particle embolisate

(Embosphere1microspheres, 700–900 μm; Merit Medical) visible as contrast defects inside the catheter. G Additional

deposition of two coils (Nester1 Embolization Coils, 3 mm x 7 cm; Cook Medical). H Cessation of bleeding in the

DSA control.

https://doi.org/10.1371/journal.pone.0297800.g003
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interventions outside regular working hours [10, 11, 17], this also increases the need for appro-

priately specialized interventionalists as well as in-depth training in the angiographic skills

required for such procedures.

Besides supervised learning from experienced colleagues during actual procedures, which is

generally associated with a non-negligible risk for the patient [8], model-based learning

Fig 4. Placement and release of a vascular plaque. A Insertion of a vascular plaque (AmplatzerTM Vascular Plaque II,

6 mm; Abbott) via the working sheath. B Release of the plaque by turning the thread. C Vascular plaque in

intravascular position. Note: Circumscribed hemorrhage adjacent to the inflow sheath after preparation. Working

sheath and inflow sheath aligned parallelly.

https://doi.org/10.1371/journal.pone.0297800.g004

Fig 5. Treatment of a simulated vessel rupture using a covered stent. A Intentional injury of the vessel wall by

expanding an oversized cutting balloon (Cutting Balloon WolverineTM, 2/6 mm; Boston Scientific). B Vessel rupture

induced via balloon angioplasty (AtlasTM Gold, 18/20 mm; Becton Dickinson). C Verification of major hemorrhage

after balloon deflation. D Implantation of a covered stent (CoveraTM, 7/60 mm; Becton Dickinson). E Successful

exclusion of the vascular transection.

https://doi.org/10.1371/journal.pone.0297800.g005
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Fig 6. Manual aspiration embolectomy of artificial embolus. A Aspiration catheter (BigLumen Aspiration Catheter,

straight, 6F; OptiMed) filled with contrast agent for improved visibility. Note the attached artificial embolus

(CuraSpon1; Cura Medical) marked with an arrowhead. B Empty aspiration catheter. C Unremarkable vessel

delineation after the artificial embolus was successfully retrieved.

https://doi.org/10.1371/journal.pone.0297800.g006

Fig 7. Balloon-assisted embolectomy and embolic protection. A Silicone balloon embolectomy catheter (SynthelTM,

4F 80 cm, 0.8 ml; LeMaitre) in intravascular position B/C Embolic protection device with Nitinol “basket”

(SpiderFXTM, 6 mm; Medtronic) depicted in two different angulations.

https://doi.org/10.1371/journal.pone.0297800.g007
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approaches have emerged as a potential alternative in recent years [18]. Expectedly, multiple

studies have shown that training generally contributes to a reduction in patient morbidity and

mortality from interventional procedures [19–22]. Hseino et al. [23] and Patel et al. [24],

among others, demonstrated a positive learning curve for model-based training of procedures

such as treatment of the aorta, renal arteries, the carotid artery, and intracranial vessels. In

addition, dedicated exercises reduced the total treatment and fluoroscopy time [25, 26] with

less contrast agent administered during the procedures [24, 25, 27, 28]. Apart from objective

criteria, a subjective increase in knowledge was also demonstrated in self-assessment assays

[18]. Model-based training allows for controlled honing of skills [29, 30] without a risk to

patients [31]. In particular, the option to perform interventions in a protected environment

under supervision [32] with frequent repetition of individual steps leads to a reduction of peri-

procedural errors [18]. While evidence shows that the translation of skills to patient care is

generally successful [23, 33], it must be stated that model-based learning can only be a supple-

ment for actual training in real-world patients [34, 35].

Prior studies indicate that both novices [23, 25, 36–38] and more experienced intervention-

alists [27, 39] benefit from training on models. However, models must be adapted to the

appropriate level of knowledge or skills and increase in complexity. While simple synthetic

models are sufficient for beginners to learn how to use a guide wire or catheter, more refined

models are required for complex procedures. The use of large animal models, while anatomi-

cally realistic, requires expensive resources such as animal housing and laboratory [33, 40].

Moreover, Berry et al. could show that the translation of skills from animal models is worse

compared to virtual angiography simulations [33]. Finally, there is ongoing debate on the ethi-

cal adequacy of large animal models, since alternatives are available [41].

Currently, the best training options are arguably endovascular simulators and models based

on human body donors [12]. Virtual simulators are comparatively expensive to set up, require

maintenance, and may have recurring costs like software licenses and support. In turn, exami-

nations can be repeated infinitely and the range of interventions that can be simulated is wide.

Since no x-ray exposure is required, protective garment such as lead aprons can be omitted.

However, while simulators only generate virtual catheters, balloons, and stents, human cadaver

models can be used to train the handling of actual devices, some of which are difficult to oper-

ate. This also applies to procedures with increased complication rates, such as particle or coil

embolization, the use of liquid embolic agent, mechanical embolectomy systems or the use of

Fig 8. Variations of vascular dissection treatment options. A Intravascular stent positioning (top: E-LuminexxTM, 8/

30 mm; Becton Dickinson | middle: Herkulink EliteTM, 7/18 mm; Abbott | bottom: AbsoluteProTM, 9/80 mm; Abbott).

B/C Endovascular dissection repair system (Tack1 6F, 6 x 8 mm; Philips) before (B) and after (C) stent release D/E

Multiple stent system (VascuFlex1Multi-LOC, 6 x 13 mm; B. Braun) before (D) and after (E) stent release.

https://doi.org/10.1371/journal.pone.0297800.g008
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closure systems, among others. Contrary to models described in the literature [28, 42, 43], our

cadaveric model provides a continuous perfusion circuit with the option of realistic DSA of

the peripheral arterial runoff in a real-life angiography suite. Various angiographic procedures

can be trained in a controlled environment with an entire team to reinforce and deepen work-

flows, which has been shown to improve teamwork and therefore patient care [44].

Several limitations of the proposed model have to be mentioned. First, cadavers are a

resource with limited availability imposing recurring costs as opposed to the one-time pur-

chase of a simulator. This availability problem can primarily be solved through close coopera-

tion with the providing institutes, and the possibility of multiple use of a single donor for

different procedures is particularly valuable. In the long term, the shortage of suitable body

donors can probably only be overcome by raising awareness and thus increasing the willing-

ness to donate. Second, assistance from surgically experienced colleagues is required for the

preparation of vascular access and only non-preserved fresh-frozen cadavers are suitable for

establishment of the model. After thawing, these can be used for a maximum of 48 hours,

hence only a limited number of procedures per donor is feasible, especially if vascular injuries

are provoked and/or stents are inserted. Since the perfusion fluid has no intrinsic coagulation,

efficiency of pro-thrombotic procedures is limited. Third, in this feasibility study, endovascu-

lar interventions were only performed on three body donors. It may be noted, however, that

the perfusion model has been successfully established in more than ten body donors in the

meantime, suggesting good reproducibility. Fourth, a real educational situation was tested

with one resident performing a coil embolization as a pilot trial. While no structured evalua-

tion was conducted, further studies are planned to investigate the training potential in compar-

ison to existing alternatives like virtual angiography suites. Finally, due to the effort and

resources required to set up the continuous extracorporeal perfusion, we advocate that the

model should be reserved for advanced training and practice of complex angiographic proce-

dures and material.

Conclusion

The presented perfusion model is suitable for practicing time-critical endovascular interven-

tions in the lower extremity runoff under realistic but controlled conditions.
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