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Abstract

Feline respiratory disease complex (FRDC) is caused by a wide range of viral and bacterial

pathogens. Both Influenza A virus (IAV) and Severe Acute Respiratory Syndrome Coronavi-

rus-2 (SARS-CoV-2) also induce respiratory diseases in cats. Two one-step multiplex

qPCR/RT-qPCR assays were developed and validated: FRA_1 (Feline respiratory assay 1)

for the detection of four viral targets and FRA_2 for the detection of three bacteria associ-

ated with FRDC. Both multiplex assays demonstrated high specificity, efficiency (93.51%–

107.8%), linearity (> 0.998), analytical sensitivity (� 15 genome copies/μl), repeatability

(coefficient of variation [CV] < 5%), and reproducibility (CV < 6%). Among the 63 clinical

specimens collected from FRDC-suspected cats, 92.1% were positive for at least one path-

ogen and co-infection was detected in 57.1% of samples. Mycoplasma felis (61.9%) was

the most found pathogen, followed by feline herpesvirus-1 (30.2%), Chlamydia felis (28.7%)

and feline calicivirus (27.0%). SARS-CoV-2 was detected in two specimens. In summary,

this new panel of qPCR/RT-qPCR assays constitutes a useful and reliable tool for the rapid

detection of SARS-CoV-2 and viral and bacterial pathogens associated with FRDC in cats.

Introduction

Feline respiratory disease complex (FRDC) is a contagious respiratory or ocular disease caused

by one or multiple viral and bacterial pathogens. FRDC is a major cause of morbidity and mor-

tality in cats, particularly in high density facilities, such as shelters [1]. While FRDC may occur

in adult cats, kittens are prone to develop more severe clinical signs [2]. Common clinical

manifestations include mucopurulent nasal discharge, sneezing, conjunctivitis and ocular
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discharge, coughing, fever, lethargy and inappetence of varying severity [3]. FRDC is the result

of a complex multifactorial interaction between respiratory pathogens, stress, and individual

animal susceptibility [2–4]. A wide array of viruses and bacteria are reported to induce FRDC

in cats. The two most prevalent viruses responsible for FRDC are feline herpesvirus-1 (FHV-1;

Varicellovirus felidalpha1, the causative agent of feline viral rhinotracheitis [FVR]) and feline
calicivirus (FCV). The bacteria Bordetella bronchiseptica, Chlamydia felis andMycoplasma felis
are also frequently detected in cats with FRDC [3–11]. Co-infections are also common

[3, 12, 13].

In the last two decades, Influenza A viruses (IAV: Alphainfluenzavirus influenzae) and

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) have been identified as

emerging infections in cats [14]. Recent outbreaks of IAV infection have been reported [15,

16], and five subtypes of IAV were identified as the cause of acute respiratory illness including

H5N1 [17–22], H1N1 [23–27], H5N6 [28–30], H7N2 [31, 32] and H3N2 [33, 34]. Depending

on the IAV subtype, clinical signs in cats may be subclinical, or develop mild to severe and

occasionally lethal respiratory disease [16, 20]. IAV seems to be transmitted to cats by birds,

humans, and dogs [16, 33–36]. Furthermore, during COVID-19 pandemic dogs, cats and

many other animal species were infected with SARS-CoV-2 [37–39]. Cats are susceptible to

SARS-CoV-2 following both experimental and natural infection, although natural cases have

been only sporadically reported [39–49]. Large wild felids including lions, tigers and pumas

are also susceptible to natural infection [50–53]. SARS-CoV-2-infected cats may remain

asymptomatic or display signs of respiratory disease clinically indistinguishable from other

respiratory pathogens. [14, 40, 43, 44, 54, 55]. Based on the public health importance of SARS--

CoV-2 and IAV (i.e., zoonotic potential), rapid laboratory diagnosis to differentiate these two

infections from other common viral and bacterial agents is critical in controlling outbreaks

and implementing appropriate public health measures.

Multiplex qPCR and RT-qPCR assays are commonly used in veterinary diagnostic settings

[56–62]. Multiplexing has several advantages including reduction of cost, reduction in the

amount of clinical sample needed, reduction of set-up and analysis time, and finally improved

precision by minimizing pipetting errors. In this study, we developed and evaluated the analyt-

ical performance of a panel of two multiplex one-step qPCR/RT-qPCR assays for simultaneous

detection and differentiation of viruses (Feline Respiratory Assay_1: FRA_1) and bacteria

(FRA_2) associated with FRDC in cats. This new panel was then used to test clinical specimens

collected from FRDC-suspected felines in Louisiana, USA, between 2020 to 2022. Overall, this

newly developed highly sensitive panel of multiplex qPCR/RT-qPCR assays can simulta-

neously detect all FRDC associated pathogens, as well as IAV and SARS-CoV-2 in feline clini-

cal specimens with high analytical sensitivity and specificity.

Materials and methods

Viruses and bacteria

The panel of reference pathogens (viruses and bacteria) used for evaluating specificity (inclu-

sivity/exclusivity) of each qPCR and RT-qPCR assay in singleplex and in multiplex format is

presented in Table 1. RNA derived from Canine Influenza A (CIV) H3N2 VSL-1355 and CIV

H3N8 A/Ca/FL/15592/04 were kindly provided by Dr. Diego Diel and Dr. Edward Dubovi

(Department of Population Medicine and Diagnostic Sciences, Cornell University College of

Veterinary Medicine, Ithaca, NY), respectively. All other prototype strains were obtained from

the American Type Culture Collection (ATCC1; Manassas, VA), or BEI Resources (Manassas,

VA).
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Clinical specimens

A total of 63 clinical specimens from 39 FRDC-suspected felines that were submitted for routine

diagnostic testing to the Louisiana Animal Disease Diagnostic Laboratory (LADDL) between

2020 and 2022 were included in this study (S1 Table). The specimens were submitted by practic-

ing veterinarians or the attending veterinarian from the LSU School of Veterinary Medicine

Shelter Medicine Program. The cats submitted through the Shelter Medicine Program came

from four shelters (Shelter 1 to 4) located in and around Baton Rouge, LA, in 2022. Nasal and

pharyngeal specimens were collected using sterile oropharyngeal/nasal swabs (VMRD, Pullman,

WA) and resuspended in either 2 ml of BHI Broth (Hardy Diagnostics, Santa Maria, CA) or

2 ml of PrimeStore1molecular transport medium (VMRD) and stored at 4˚C until used.

Nucleic acid extraction

Nasal swab samples were vortexed, spun down and total nucleic acid were extracted using the

taco™ mini nucleic acid automatic extraction system (GeneReach, Taichung, Taiwan) follow-

ing manufacturer’s recommendations. One-hundred microliters of nasal swab suspensions

were extracted and eluted in the same volume of elution buffer. The extracted nucleic acid

samples were stored at -80˚C until used.

Primers probes design

Specific forward and reverse primers and probes targeting the glycoprotein B (gB) of FHV-1

and open reading frame (ORF) 1 of FCV were designed using IDT’s PrimerQuest tool

Table 1. Panel of viruses and bacteria associated with feline respiratory disorders, related pathogens and SARS--

CoV-2 variants used to assess the specificity of each qPCR/RT-qPCR assay.

Pathogens Reference strain Source

Feline Calicivirus (FCV) VR-782™ ATCC1

SARS-CoV-2 USA-WA1/2020 NR-52281 BEI Resources

SARS-CoV-2 Alpha (B.1.1.7) NR-54020 BEI Resources

SARS-CoV-2 Beta (B.1.351) NR-55282 BEI Resources

SARS-CoV-2 Delta (B.1.617.2) NR-55671 BEI Resources

SARS-CoV-2 Omicron (B.1.1.529) NR-56461 BEI Resources

Feline Herpesvirus 1 (FHV-1) VR-814™ ATCC1

Canine Influenza A (CIV) H3N2 VLS-1355 Cornell Universitya

CIV H3N8 A/Ca/FL/15592/04 Cornell Universityb

Bordetella bronchiseptica E014 NR-44164 BEI Resources

Chlamydia felisEverett et al. VR-120™ ATCC1

Mycoplasma felisCole et al. 23391™ ATCC1

Mycoplasma cynos Rosendal 27544™ ATCC1

Mycoplasma canis NR-3865 BEI Resources

Feline Coronavirus (FCoV) L1911562 LADDLc

Feline Infectious Peritonitis Virus (FIPV) NR-43287 BEI Resources

Feline Panleukopenia Virus (FPlV) VR-648™ ATCC1

aKindly provided by Dr. Diego Diel
bKindly provided by Dr. Edward Dubovi
cLADDL: Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State

University, Louisiana, Inited States of America

https://doi.org/10.1371/journal.pone.0297796.t001
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(https://www.idtdna.com/Primerquest/home/Index) from sequences available on the Gen-

Bank nucleotide database (https://www.ncbi.nlm.nih.gov/nuccore/) (Table 2). The primers

and probe sequence specificity were further validated in silico using the NCBI Basic Local Alig-

ment Search Tool (BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=

blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome). Self-annealing sites, hairpin loop

formation and 3’ complementarity were verified using IDT’s OligoAnalyzer tool (https://www.

idtdna.com/calc/analyzer). Influenza A virus [63] primers and probe targeting the matrix (M)

gene were used as previously published [63, 64] with addition of degeneracies in the primers

sequences in order to match that of IAV sequences from cats available on the Influenza

Research Database (https://www.fludb.org) (Table 2). Sequences of primers and probes for

Table 2. Primers and probe sequences used for the detection of FRDC-associated pathogens and SARS-CoV-2.

Target (gene) Oligonucleotide

ID

Primers and probe sequences (5’-3’) Nucleotide

position

Product

size (bp)

GenBank

accession #

Reference

SARS-CoV-2

(Nucleocapsid [ORF9a])

SARS-CoV-

2_N1-F

GACCCCAAAATCAGCGAAAT 28,287–

28,306

72 MN985325.1 [63]

SARS-CoV-

2_N1-R

TCTGGTTACTGCCAGTTGAATCTG 28,358–

28,335

SARS-CoV-

2_N1-P

FAM-ACCCCGCATTACGTTTGGTGGACC-QSY 28,309–

28,332

Influenza A virus (Matrix

protein)

IAV_M-F AGATGAGYCTTCTAACCGAGGTCG 24–47 101 MF978391.1 [61, 62] with

modificationsIAV_M-R1a TGCAAAGACATCTTCAAGTYTCTG 124–101

IAV_M-R2a TGCAAAGACACTTTCCAGTCTCTG 124–101

IAV_M-P VIC-TCAGGCCCCCTCAAAGCCGA-QSY 74–93

Feline calicivirus (ORF-1) FCV_ORF1-F CCGCCAATCAACATGTGGTA 2,427–2,446 114 L40021.1 This article

FCV_ORF1-R GCACATCATATGCGGCTCTG 2,540–2,521

FCV_ORF1-P ABY-TGATTTGGCCTGGGCTCTTCG-QSY 2,464–2,484

Feline herpesvirus 1

(Glycoprotein B [UL27])

FHV-1_gB-F GTTAATCCCGACGATCCGTTAC 77,404–

77,425

101 MH070348.1 This article

FHV-1_gB-R CAGGGACACAGTGGCTATTT 77,504–

77,485

FHV-1_gB-P Cy5-CTACTCGGT/TAO/ATTGCAGCGACTGGC-

3IAbRQSp

77,459–

44,436

Bordetella bronchiseptica
(Intergenomic region

between flaA and fliA B)

Fla2-F AGGCTCCCAAGAGAGAAAGGCTT 1,140,858–

1,140,880

118 CP019934.1 [64]

Fla12-R AAACCTGCCGTAATCCAGGC 1,140,975–

1,140,956

Fla-P FAM-ACCGGGCAGCTAGGCCGC-QSY 1,140,887–

1,140,904

Mycoplasma felis (tuf) Mfelis_tuf-F TAAATTAGCTCTTGATGGTGTTCCT 469–493 100 FJ896389.1 [65]

Mfelis_tuf-R TTCAAAGTCTTTTTCTGGAGTTTCA 568–544

Mfelis_tuf-P VIC-

TGAGAAGAAAAAGTTATGGAATTAATGGATGCA-

QSY

497–529

Chamydia felis (ompA) Cfelis_ompA-F TCGGATTGATTGGTCTTGCA 449–468 78 AY184290.1 [66]

Cfelis_ompA-R GCTCTACAATGCCTTGAGAAATTTC 526–502

Cfelis_ompA-P ABY-ACTGATTTCGCCAATCAGCGTCCAA-QSY 472–496

aIAV_M-R1 and IAV_M-R2 were used at equimolar amount (200 nM).

3IAbRQSp: 3’ Iowa Black1 RQ; ABY, ABY™ dye; Cy5: Cyanine-5 dye; F: forward primer; FAM, 6-carboxyfluorescein dye; P: probe; QSY, QSY™ quencher; R: reverse

primer; TAO: TAO™ quencher; VIC, VIC™ dye.

https://doi.org/10.1371/journal.pone.0297796.t002
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SARS-CoV-2 (US CDC SARS-CoV-2 N1 assay; Lu et al., 2020), Bordetella bronchiseptica [66],

Mycoplasma felis [67] and Chlamydia felis [68] were used as previously published (Table 2).

Multiplex TaqMan1 quantitative PCR (qPCR) and reverse transcription

PCR (RT-qPCR) assays for feline respiratory pathogens

A 4-plex RT-qPCR assay and a 3-plex qPCR assay were developed and designated as FRA_1

(targeting SARS-CoV-2, IAV, FCV and FHV-1) and FRA_2 (targeting B. bronchiseptica,M.

felis and C. felis). Both assays were performed in a total volume of 25 μl containing 12.5 μl of

2X QuantiTect™ Multiplex RT-PCR Master Mix, 0.25 μl of QuantiTect™ RT Mix (QIAGEN,

Hilden, Germany), 1.25 μl of primers (200 nM) and fluorogenic probes (200 nM) mix, 6 μl of

RNase free water and 5 μl of template DNA/RNA. All reactions were run on a 7500 Fast Real-

Time PCR System (Applied Biosystems, Waltham, MA) with the following thermal profile: a

reverse transcription step (20 min at 50˚C) following by an initial activation step (15 min at

95˚C) and 40 cycles of denaturation & annealing/extension (45 sec at 94˚C & 75 sec at 60˚C).

The complete step-by-step protocol has been deposited on the protocols.io platform (https://

dx.doi.org/10.17504/protocols.io.ewov1q4z2gr2/v1).

Synthesis of in vitro transcribed RNA and DNA

Specific plasmid DNA and in vitro transcribed (IVT) RNA were synthesized in order to deter-

mine the analytical sensitivity of each multiplex qPCR/RT-qPCR assay as previously described

[56], with minor modifications. Two inserts, containing the target regions of each assay

flanked by PstI and HindIII restriction sites, were chemically synthesized and cloned into the

pGEM1-3Z vector (Promega, Madison, WI) downstream the T7 promoter (pGEM−-

3Z_FCV_FHV1_IAV_SCoV2 and pGEM−3Z_Bbron_ Mcynos_Mfelis_Cfelis) by GeneArt

Gene Synthesis (Thermo Fisher Scientific, Waltham, MA). Transformed Escherichia coli
DH10β cells were incubated overnight at 37˚C with agitation (270 rpm). Plasmid DNA was

extracted using the QIAprep Spin Miniprep kit (QIAGEN). Both plasmids were linearized

usingHindIII restriction enzyme and plasmid DNA concentration was measured using Qubit

dsDNA BR Assay Kit (Thermo Fisher Scientific). pGEM−3Z_FCV_FHV1_IAV_SCoV2 plas-

mid was subjected to in vitro transcription using the Megascript1 T7 Transcription Kit

(Thermo Fisher Scientific) following manufacturer’s recommendations. Subsequently, DNase

treatment was performed with TURBO™ DNase (Thermo Fisher Scientific) for 15 min at 37˚C.

The IVT RNA products were purified using MEGAclear™ Transcription Clean-Up Kit

(Thermo Fisher Scientific) and quantified using Qubit RNA BR Assay Kit (Thermo Fisher Sci-

entific). The number of plasmid DNA and IVT RNA copies/μl were calculated according to

the following formula [56, 60–62, 69–72]:

Number of plasmid DNA and IVT RNAmolecules=ml ¼

Avogadro0snumber 6:022 � 1023
� �

� Plasmid DNA=IVTRNA concentration
g
ml

� �

Plasmid DNA=IVT RNAmolecular weight
g
mol

� �

Plasmid DNA and IVT RNA molecular weight were calculated using Molbiotools website

(https://molbiotools.com/dnacalculator.php) and concentrations were adjusted to 107 copies/

μl in nuclease-free water containing 40 ng/μl of yeast tRNA (Thermo Fisher Scientific) and

stored at -80˚C until use.. Ten-fold serial dilutions of plasmid DNA/IVT RNA was directly

used for determining the analytical sensitivity of the qPCR assay targeting the DNA viruses

and bacteria.
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Analytical parameter determination and statistical analysis

Analytical parameters were determined as previously described [56] with minor modifications.

Standard curves were generated using a ten-fold dilution series of plasmid DNA or IVT RNA

(107 to 102 copies/μl) in triplicate. Coefficients of determination (R2) were used to assess curve

fitness. Amplification efficiency [E (%)] was calculated after regression analysis using the fol-

lowing formula: E = [10−1/slope -1] × 100. Limit of detection with 95% confidence (LOD95%) of

each assay was determined by statistical probit analysis (non-linear regression model) using

SPSS 14.0 software (SPSS Inc., Chicago, IL) from twelve replicates per dilution ranging from

103 to 100 copies/μl. Cycle threshold (Ct) cut-off values were determined using the following

formula: Ct cut-off = Average replicate values of the endpoint dilution + (3 × standard devia-

tion (SD) [73]. Intra-run and inter-run imprecision were determined by performing 12 repli-

cates on the same run or three replicates on two independent runs of plasmid DNA/IVT RNA

containing 105 to and 103 copies/μl, respectively. The coefficient of variation (%CV) was calcu-

lated using the following formula: %CV = 100 × (standard deviation of replicates [log10 copies/

μl]� average of replicates [log10 copies/μl]). All graphs were created using GraphPad Prism

v9.3.1 statistical analysis software (GraphPad, San Diego, CA).

Results

Analytical specificity of singleplex and multiplex qPCR/RT-qPCR assays

for the detection of feline respiratory pathogens

The analytical specificity (inclusivity/exclusivity) of all singleplex and multiplex qPCR/RT-

qPCR assays were first evaluated using a panel of reference viruses and bacteria associated

with respiratory, systemic, and enteric diseases in cats, as well as different SARS-CoV-2

variants of concern (VOC). All assays used and developed in this study showed exclusive

specificity for their respective targets and did not cross-react between each other under

multiplex conditions (S1 Fig). The specificity of theM. felis (tuf) assay was confirmed by

absence of amplification ofM. canis andM. cynos DNA extracts. Additionally, none of the

assays amplified nucleic acids extracted from other feline viruses, including feline coronavi-

rus (FCoV), feline infectious peritonitis virus (FIPV), and feline panleukopenia virus

(FPLV).

Analytical sensitivity of singleplex and multiplex qPCR/RT-qPCR assays

for the detection of feline respiratory pathogens

The analytical sensitivity of all assays in singleplex and in multiplex format were determined

using ten-fold serial dilutions (107 copies/μl to 102 copies/μl) of plasmid DNA/IVT RNA

containing the target sequences. Linear standard curves were generated for each assay in sin-

gleplex and multiplex with a coefficient of linear regression (R2)� 0.998 (Fig 1A, Table 3, S2

and S3 Figs). Amplification efficiency for each singleplex assay was between 97.31% and

108.49%. When tested in multiplex, a similar amplification efficiency was observed with val-

ues comprised between 93.51% and 107.81% (Table 3). The lower limit of detection

(LOD95%) varied between 6 to 15 RNA/DNA copies/μl for each singleplex and multiplex

assays (Fig 1B). A similar detection rate limit (100%) was calculated for each assay when used

in both singleplex and multiplex conditions (10 to 100 copies/μl). Altogether, these results

demonstrate the high analytical sensitivity of our panel of qPCR/RT-qPCR assays for the

detection of feline respiratory pathogens, without loss of sensitivity when used in multiplex

conditions.
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Fig 1. Analytical parameters of singleplex and multiplex qPCR/RT-qPCR assays for the detection of FRDC-associated pathogens and SARS-CoV-2. A)

Comparison of analytical sensitivity of each singleplex and multiplex qPCR/RT-qPCR assays for the detection of pathogens associated with FRDC. B) Analytical

sensitivity determination of singleplex and multiplex qPCR/RT-qPCR assays. Each assay was performed using 12 replicates ranging from 103 to 100 copies/μl of

IVT DNA/RNA. Each circle and square indicate the Ct value of one replicate obtained by singleplex and multiplex amplification, respectively. Short solid lines

indicate the median Ct value and dashed lines indicate the detection limit. Ct: Cycle threshold; IVT RNA: in vitro transcribed RNA; R2: linearity; E: Efficiency; ND:

not detected; NTC: no template control.

https://doi.org/10.1371/journal.pone.0297796.g001
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Repeatability and reproducibility of multiplex qPCR/RT-qPCR assays for

detection of feline respiratory pathogens

The repeatability and reproducibility of both multiplex assays was measured by determining

the intra-run and inter-run imprecision, respectively. A range of three concentrations; 105

copies/μl (high target concentration), 104 copies/μl (medium target concentration) and 103

copies/μl (low target concentration), of plasmid DNA/IVT RNA was used to determine the

coefficient of variability (CV) of each assay. For all assays the intra-run imprecision

was < 1.5% at high target concentration, < 4% at medium target concentration and < 5% at

low target concentration (Table 4). Similarly, the inter-run imprecision was < 3% at high

target concentration, < 2.5% at medium target concentration and < 6% at low target con-

centration. While the CV increases with lower target concentrations, these data indicate

that all multiplex assays have a high repeatability and reproducibility at high to low

concentrations.

Table 3. Analytical sensitivity of singleplex and multiplex qPCR/RT-qPCR assays for the detection of FRDC-associated pathogens and SARS-CoV-2.

Assay Target Parameter Slope Linearity (R2) Efficiency (%) LOD95% (copies/μl) Detection rate limit (copies/μl) Ct cut-off

FRA_1 SARS-CoV-2 (N1 (ORF9a]) Singleplex -3.335 0.9999 99.46 8 10 35

Multiplex -3.329 1.0000 99.71 15 100 35

IAV (M) Singleplex -3.388 0.9998 97.31 15 100 34

Multiplex -3.488 0.9984 93.51 15 100 34

FCV (ORF-1) Singleplex -3.343 0.9998 99.13 8 10 35

Multiplex -3.311 0.9999 100.46 8 10 37

FHV-1 (gB [UL27]) Singleplex -3.317 0.9996 100.21 6 10 37

Multiplex -3.390 0.9996 97.24 8 10 33

FRA_2 B. bronchiseptica (flaA—fliA-B) Singleplex -3.171 0.9997 106.71 9 100 39

Multiplex -3.159 0.9998 107.28 11 100 38

M. felis (ompA) Singleplex -3.140 0.9995 108.20 15 100 40

Multiplex -3.151 0.9994 107.66 9 100 37

C. felis (tuf) Singleplex -3.134 0.9992 108.49 15 100 40

Multiplex -3.148 0.9990 107.81 7 100 37

FRA: Feline respiratory assay; R2: Linearity; LOD95%: Limit of detection 95%; Ct: Cycle threshold.

https://doi.org/10.1371/journal.pone.0297796.t003

Table 4. Precision assessment of the feline respiratory assays 1 (FRA_1) and FRA_2.

Assay Target Intra-run variability CV (%)# Inter-run variability CV (%)#

105 copies/μl 104 copies/μl 103 copies/μl 105 copies/μl 104 copies/μl 103 copies/μl

FRA_1 SARS-CoV-2 (N) 0.66 0.70 1.28 0.88 1.45 2.55

IAV (M) 0.71 0.91 2.78 1.42 1.15 2.58

FCV (ORF-1) 0.60 0.98 1.17 0.78 0.98 2.27

FHV-1 (gB) 0.55 0.50 1.33 1.07 2.12 3.08

FRA_2 B. bronchispetica (flaA—fliA-B) 0.85 2.48 4.09 0.59 1.25 3.27

M. felis (tuf) 1.27 3.53 4.88 2.86 2.09 5.41

C. felis (ompA) 1.00 2.782 4.483 0.67 2.05 2.24

#CV (%): Coefficient of variation = (standard deviation of replicates [log10 copies/μl]� Average of replicates [log10 copies/μl]) × 100

https://doi.org/10.1371/journal.pone.0297796.t004
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Screening of clinical specimens collected from FRDC-suspected cats

The panel of multiplex assays was used to test 63 clinical samples collected from domestic cats

and exotic felids that displayed respiratory disease between 2020 and 2022 in Louisiana, USA.

Among the 63 samples, 58 (92.1%) were positive for at least one of the seven pathogens

screened.M. felis (61.9%) was the most commonly identified agent, followed by FHV-1

(30.2%), C. felis (28.7%) and FCV (27.0%) (Fig 2 and Table 5). B. bronchiseptica and SARS--

CoV-2 were detected in four (6.3%) and two (3.2%) samples, respectively. None of the samples

were positive for IAV. Both SARS-CoV-2 positive samples were collected from two 6-year-old

female African lions with cough in 2021 within the same zoo. Partial sequencing of the Spike

protein gene (ORF 2) performed by the National Veterinary Services Laboratories, Ames, IA,

indicated that both SARS-CoV-2 isolates were consistent with the Delta variant (clade

Fig 2. UpSet plot summarizing the number of feline respiratory pathogens and SARS-CoV-2 detected in felids using the newly developed multiplex qPCR/RT-

qPCR panel. The number of samples with single agents detected or with multiple agents detected (co-infection) are shown as vertical bars. The bottom left horizontal

bar graph labeled Set Size shows the total number of samples positives for each specific feline respiratory pathogen and SARS-CoV-2.

https://doi.org/10.1371/journal.pone.0297796.g002
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B.1.617.2). The complete sequences were previously deposited in GISAID database under

accession numbers EPI_ISL_9046672 and EPI_ISL_9046673.

Single infections and co-infections were observed in 22 (34.9%) and 36 (57.1%) samples,

respectively (Fig 2 and Table 6), demonstrating that infections with more than one FRDC-

associated pathogen can occur more often. Except for the co-infection of FHV-1 with FCV in

one sample, all other co-infected samples consisted of a combination ofM. felis with FHV,

FCV or C. felis (Fig 2 and Table 6). Co-infection ofM. felis with C. felis was also commonly

observed in the clinical specimens tested (16/36; 44.5%).

Discussion

The most common pathogens reported to induce feline respiratory disease include FCV,

FHV-1, B. bronchiseptica,M. felis and C. felis [3, 8]. The emergence of new pathogens (e.g.

IAV and SARS-CoV-2) and the continuous circulation of common etiological agents in the

feline population has made feline FRDC more complex and challenging its clinical diagnosis

Table 5. Detection rate of FRDC-associated pathogens in the clinical specimens used to evaluate the FRA_ and

FRA_2 assays.

Pathogens No. of positives (n = 58/63)* % positive (92.1%)*
SARS-CoV-2 2 3.2

IAV 0 0

FCV 17 27.0

FHV-1 19 30.2

B. bronchiseptica 4 6.3

M. felis 39 61.9

C. felis 18 28.7

*Positive samples for at least one pathogen

https://doi.org/10.1371/journal.pone.0297796.t005

Table 6. Detection rate of single agent infections and co-infections associated with FRDC in the clinical specimens

evaluated with FRA_1 and FRA_2 assays.

Pathogens No. of Positive samples % of Positive samples

Respiratory infections associated with one pathogen 22/63* 34.9

SARS-CoV-2 2 3.2

FCV 4 6.3

B. bronchiseptica 4 6.3

M. felis 4 6.3

FHV-1 8 12.7

Respiratory infections associated with two pathogens 31/63* 49.2

FHV-1 + FCV 1 1.6

FHV-1 +M. felis 7 11.1

FCV + M. felis 7 11.1

C. felis +M. felis 16 25.4

Respiratory infections associated with three pathogens 5/63* 7.9

FCV + C. felis +M. felis 2 3.2

FHV-1 + FCV +M. felis 3 4.8

*5/63 (7.9%) specimens were negative for the pathogens tested.

https://doi.org/10.1371/journal.pone.0297796.t006
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[14]. Additionally, co-infections by two or more viral and/or bacterial pathogens is commonly

observed in cats suffering from FRDC, making the treatment challenging [74, 75]. The tradi-

tional methods for infectious agent identification, such as bacterial culture, viral isolation and

conventional PCR are time consuming, have low sensitivity and are not suitable for easy iden-

tification of co-infections. Multiplex qPCR/RT-qPCR is a rapid and sensitive technique now

commonly used in veterinary diagnostic laboratories [56–59]. However, there were no multi-

plex qPCR/RT-qPCR assays available for detection of infectious agents associated with FRDC.

To overcome this, we developed a panel of two multiplex qPCR/RT-qPCR for the detection of

the most prevalent feline respiratory pathogens as well as the detection of two emerging viruses

of cats, IAV and SARS-CoV-2.

In this study two multiplex qPCR/RT-qPCR assays were developed, namely FRA_1 and

FRA_2, for the detection of viruses (i.e., FCV, FHV-1, IAV and SARS-CoV-2) and bacteria

(i.e., B. bronchiseptica,M. felis and C. felis), respectively. These multiplex assays were designed

using a combination of well-established qPCR/RT-qPCR assays [63–68] and adding two new

primers/probe combinations for the detection of FCV and FHV-1. These new primer/probe

sets were developed targeting the highly conserved ORF1 and gB of FCV and FHV-1, respec-

tively [76]. Both assays, as well as previously published assays showed high specificity for their

targets alone and in combination, confirming the absence of non-specific amplification. Ana-

lytical sensitivity of each multiplex qPCR/RT-qPCR assays were evaluated in this study and

compared to singleplex assays. The nearly perfect linearity (R2 > 0.998) and high amplification

efficiency (> 93%) denotes the overall excellent analytical performance of each assay. In addi-

tion, no difference in analytical performance was observed between singleplex and multiplex

formats of the assays. Detection of low genomic copy numbers is critical to assay’s sensitivity.

Here, with a LOD95%� 15 copies/μl, a high analytical sensitivity was observed for all our prim-

ers and probe sets when multiplexed. The LOD95% determined here showed a three to four

log10 improvement compared to the recently published multiplex conventional PCR assays for

the detection of FHV-1, FCV, IAV and C. felis (LOD were 1 × 104 to 1 × 105 copies/μL) [77].

Measuring both intra-run and inter-run assay variability is important to assess the assay’s qual-

ity and reproducibility. Here, a low intra-run and inter-run assay variabilities were observed

for all assays when run in multiplex. This indicated that the qPCR/RT-qPCR assays are robust

and consistent, providing confidence in the results obtained in this study. Overall, excellent

analytical parameters were determined for both FRA_1 and FRA_2 multiplex assays.

It is worth noting that a single nucleotide degeneracy was introduced to the forward and

reverse primers of the IAV assay, respectively, in order to empirically guarantee annealing to

IAV strains derived from cats (n = 37) and retrieved from the Influenza Research Database.

While it has been demonstrated that >4 degenerate nucleotides can lead to amplification bias

and a reduction of the sensitivity (10-fold) [78–80], the introduction of one degenerate nucleo-

tide per primer in this case did not seemingly affected the sensitivity of this or other targets

combined (LOD95% for IAV = 15 copies/μl in singleplex and multiplex conditions). The

absence of IAV in any of the samples collected during the period of this study could be associ-

ated with the limited number of available samples during the study period as well as to the epi-

demiological occurrence of IAV in cats, which typically occur within distinct temporal and

geographic locations. Hence, IAV infection in cats is relatively rare [16]. but their impact in

cat populations and potential public health impact [15, 16], makes its diagnosis highly

relevant.

To our knowledge, this study is the first reporting on the development of a complete panel

of multiplex qPCR/RT-qPCR for the detection of feline respiratory pathogens along with

SARS-CoV-2. Our panel was then used to evaluate clinical specimens collected from FRDC-

suspected cats in different shelters, veterinary practices, and a zoo in Baton Rouge and the
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surrounding area between 2020 and 2022. As only a small number of samples were tested in

this study, no conclusions can be made concerning the prevalence of the feline respiratory

pathogens in this area. Nevertheless, a high rate of co-infections (57.1%) was detected in the

samples collected here, supporting the need for simultaneous detection of multiple pathogens

involved in FRDC. The most common infectious agent detected in this study wasM. felis
(61.9%), as consistently reported [12, 74, 81, 82]. A meta-analysis demonstrated thatM. felis
and FRDC were significantly associated [83], suggesting thatM. felismay act as the initial path-

ogen that may predispose the cats to other viral and bacterial pathogens. However, the hypoth-

esis that this bacterium may overgrow following damage as a consequence of FRDC needs to

be considered, especially, because it was detected in almost all co-infected samples (35/36;

97.2%). However, further studies are still needed to determine the role ofM. felis in feline

FRDC. FCV, FHV-1 and C. felis were detected in approximately 30% of the tested samples,

which is consistent with previous reports [8, 12, 74, 75, 81]. The detection of SARS-CoV-2

Delta VOC (B.1.617.2) in nasal swabs of two lions from the same premise by the CDC-devel-

oped RT-qPCR test [65] confirm that it can be multiplexed with other qPCR/RT-qPCR assays,

as previously demonstrated [61, 62]. The use of SARS-CoV-2-positive nasal swabs from lions

in this study was for the sole purpose of evaluating the performance of the panels developed.

While domestic cats are susceptible to natural and experimental SARS-CoV-2 infections

[39–49], SARS-CoV-2 has not, at least yet, established as a relevant pathogen in cats responsi-

ble for FRDC. However, screening for SARS-CoV-2 in cats with FRDC is relevant from a pub-

lic health standpoint.

While the assays developed here demonstrated optimal analytical performance, one of the

main limitations of this study is the limited number of available samples to perform thorough

clinical performance evaluation. Thus, continued evaluation of clinical specimens to assess the

assay’s performance in the field is warranted. In conclusion, this study highlights the strength

of our new qPCR/RT-qPCR panel for the detection of SARS-CoV-2, IAV and the most impor-

tant FRDC-associated pathogens. Therefore, this panel is suitable for routine diagnostics and

rapid identification of pathogens associated with feline respiratory disease outbreaks in catter-

ies, shelters, and pet shops where they house a large number of cats.

Supporting information

S1 Fig. Assessment of the specificity of each qPCR/RT-qPCR assay using reference viral

and bacterial DNA and RNA. Each column corresponds to one specific qPCR/RT-qPCR

assay and each row corresponds to one specific reference strain of virus or bacteria. Specificity

was assessed for each assay in singleplex and in multiplex formats. White cases correspond to

the absence of detection while black cases correspond to DNA/RNA amplification in both sin-

gleplex and multiplex assays.

(TIF)

S2 Fig. Amplification curves generated under singleplex and multiplex conditions for a

ten-fold serial dilution series of each target included in the FRA_1 assay. Each dilution was

performed using three replicates ranging from 107 to 101 IVT RNA copies/μl. The X-axis rep-

resents the cycle number and the Y-axis represents the delta Rn value.

(TIF)

S3 Fig. Amplification curves generated under singleplex and multiplex conditions for a

ten-fold serial dilution series of each target included in the FRA_2 assay. Each dilution was

performed using three replicates ranging from 107 to 101 plasmid DNA copies/μl. The X-axis
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represents the cycle number, and the Y-axis represents the delta Rn value.

(TIF)

S1 Table. Origin and type of samples collected from URTD-suspected cats during this

study. Thirty-nine nasal swabs and 24 pharyngeal swabs were collected from 39 felines from

2020 and 2022.

(DOCX)

S1 File. Original data used to determine the analytical specificity, sensitivity, repeatability,

and reproducibility of FRA_1 and FRA_2 assays.

(PDF)
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Resources: Côme J. Thieulent.
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