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Abstract

Prediction of major arrhythmic events (MAEs) in dilated cardiomyopathy represents an

unmet clinical goal. Computational models and artificial intelligence (AI) are new technologi-

cal tools that could offer a significant improvement in our ability to predict MAEs. In this

proof-of-concept study, we propose a deep learning (DL)-based model, which we termed

Deep ARrhythmic Prevention in dilated cardiomyopathy (DARP-D), built using multidimen-

sional cardiac magnetic resonance data (cine videos and hypervideos and LGE images and

hyperimages) and clinical covariates, aimed at predicting and tracking an individual patient’s

risk curve of MAEs (including sudden cardiac death, cardiac arrest due to ventricular fibrilla-

tion, sustained ventricular tachycardia lasting�30 s or causing haemodynamic collapse in

<30 s, appropriate implantable cardiac defibrillator intervention) over time. The model was

trained and validated in 70% of a sample of 154 patients with dilated cardiomyopathy and

tested in the remaining 30%. DARP-D achieved a 95% CI in Harrell’s C concordance indices

of 0.12–0.68 on the test set. We demonstrate that our DL approach is feasible and repre-

sents a novelty in the field of arrhythmic risk prediction in dilated cardiomyopathy, able to

analyze cardiac motion, tissue characteristics, and baseline covariates to predict an individ-

ual patient’s risk curve of major arrhythmic events. However, the low number of patients,

MAEs and epoch of training make the model a promising prototype but not ready for clinical

usage. Further research is needed to improve, stabilize and validate the performance of the

DARP-D to convert it from an AI experiment to a daily used tool.

Introduction

Dilated cardiomyopathy (DCM) is characterized by left ventricular (LV) or biventricular dila-

tion and systolic dysfunction unexplained by coronary artery disease (CAD) or abnormal load-

ing conditions [1, 2]. The aetiology of DCM represents a tangle where a genetic predisposition

interacts with extrinsic factors, resulting in a wide spectrum of phenotypes with different
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natural histories and arrhythmic risks. Therefore, the true prevalence is difficult to evaluate,

estimated at 1 in 2700 individuals [3, 4]. The five-year mortality rate ranges between 21% and

28%, with a relevant amount of major arrhythmic events (MAEs), particularly sudden cardiac

death (SCD), the incidence of which stands at approximately 12%, accounting for 25–35% of

all deaths [5]. Discrimination between patients at a high or low risk for MAE is challenging.

Previously, clinicians took into account the value of LV ejection fraction (LVEF) and “New

York Heart Association” (NYHA) class for risk stratification [6]. At present, recent findings

suggest an important role of cardiac magnetic resonance (CMR), in particular regarding the

presence of late gadolinium enhancement (LGE), for the evaluation of arrhythmic risk [1, 7].

However, risk stratification in DCM still lacks accuracy, and a more integrated approach that

combines CMR findings with patient characteristics is needed [8]. Computational models and

artificial intelligence (AI) are new technological tools that could offer a significant improve-

ment in our ability to predict MAEs. For this purpose, AI algorithms were tested in ischaemic

heart disease, reaching good performance in event prediction [9, 10]. Although AI could repre-

sent a fundamental change in future decision-making about the aforementioned prediction

problem, such an approach has not been widely tested in DCM [11]. Wu et al. [12] first tested

a random forest statistical method for risk assessment for ventricular arrhythmias in a popula-

tion of ischaemic and nonischaemic cardiomyopathies by incorporating clinical covariates and

one-dimensional CMR variables. They identified the most predictive variables of MAEs, thus

enhancing how AI overperforms regression methods for risk prediction. However, CMR data

were manually extracted by two clinicians, and the model did not estimate individual patient

times to MAE. Recently, Popescu et al. [9] proposed a deep learning (DL) model that learns

from raw clinical imaging data (LGE CMR images only) as well as from clinical covariates,

offering a patient-specific probability of MAEs at all times up to 10 years.

To the best of our knowledge, we present here a DL technology extending all the current

survival models for the prediction of MAE risk in patients with DCM, which we termed Deep

ARrhythmic Prevention in DCM (DARP-D). Our approach embeds dense, convolutional, and

convolutionally recurrent neural networks (NNs) [13, 14], learning directly from nonunder-

sampled original raw 2D standard, 3D space-series, 3D time-series, and 4D space-time-series

images, together with flat 1D clinical baseline covariates to estimate individual patient risk

scores for MAEs.

Methods

Study cohort

We retrospectively collected data from consecutive patients referred to the Cardiology Depart-

ment of the University Hospital of Padua from June 2002 to November 2019 with a diagnosis

of DCM. The diagnosis was based on the 1995 World Health Organization/International Soci-

ety and Federation of Cardiology criteria [15]. Inclusion criteria were as follows: depressed

LVEF systolic function (<50%); an angiographic study showing the absence of flow-limiting

CAD (defined as�50% luminal stenosis on coronary angiography); the absence of either val-

vular or hypertensive heart disease and congenital heart disease; and patients who had under-

gone a CMR examination. Exclusion criteria were acute myocarditis in the previous 6 months,

other cardiomyopathies (hypertrophic, arrhythmogenic, Takotsubo, restrictive, peripartum),

and infiltrative heart disease.

This study was conducted in accordance with the principles of the Declaration of Helsinki

and was approved by the Ethics Committee for Clinical Trials of the Province of Padua—Italy

(CESC code: 356n/AO/23). Data collection started on 17th of April 2023. Given the retrospec-

tive, observational, non-interventional, nature of the study, patients were not asked for a
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specific informed consent. All personal identifiers have been removed or disguised to protect

the confidentiality and privacy of the participants.

Baseline features

Baseline data on demographics, clinical characteristics, medical history, medications, lifestyle

habits and cardiac test results were collected.

Follow-up

The follow-up data were obtained by reviewing medical records, routine device interrogation

for patients who underwent device implantation, direct interviews during office visits, and

telephone contact with the patient or a close family member. The study outcome was a com-

bined endpoint of MAEs, including SCD, cardiac arrest due to ventricular fibrillation, sus-

tained ventricular tachycardia lasting�30 s or causing haemodynamic collapse in<30 s, and

appropriate implantable cardiac defibrillator (ICD) intervention. SCD was defined, according

to the most recent recommendations, as a sudden natural death presumed to be of cardiac

cause that occurs within 1h of onset of symptoms in witnessed cases and within 24h of last

being seen alive when it is unwitnessed [1]. Event data were censored at 8 years after enrol-

ment or at the time of death, MAE, cardiac transplant or LV assist device implantation or loss

to follow-up.

CMR examination

The CMR images were acquired using a 1.5-T scanner (Magnetom Avanto, Siemens Healthi-

neers, Erlagen, Germany) using dedicated cardiac software, phased-array surface receiver coil

and electrocardiogram triggering. The exact software version for the device cannot be precisely

ascertained retroactively. For our purpose, we considered steady-state free precession sequence

cine and T1-weighted LGE images, which were acquired in multiple short-axis (SAx) and 3

long-axis (LAx) planes. Owing to the retrospective nature of the data collection, for each

patient, a different number of images for each plane were obtained, resulting from different

repetition times and slice thicknesses. The contrast agent used was 0.20 mmol/kg gadobutrol

(GadovistTM), and the scan was captured 8 to 15 min after injection. The most commonly used

sequence was inversion recovery fast gradient echo pulse, with an inversion recovery time typi-

cally starting at 250 ms and adjusted iteratively to achieve maximum nulling of normal myo-

cardium. The images were evaluated separately by 2 observers (M.C., M.P.M.), and those with

extensive artefacts were excluded. LGE-LAx images were collected in standard image format

as png files, and multiple LGE-SAx images, cine-LAx, and multiple cine-SAx sequences of

images were collected in standard video format as avi files.

Data preparation

The inputs to our model were the unprocessed CMR images, either LGE-SAx, cine-LAx, and

cine-SAx sequences, LGE-LAx images, and the clinical covariates listed in Table 1. The train-

ing target was the individual log-risk score component for the Cox proportional hazard func-

tion [16].

For a fully detailed description of the preprocessing phase, see S1 Appendix.

CMR images

CMR images were differentiated according to the number of dimensions that characterized

them: hypervideo cine-SAx sequences were composed of 3 spatial dimensions (i.e., width,
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height, and slice) and 1 time dimension; standard video cine-LAx sequences were composed

of 2 spatial dimensions (i.e., width and height) and 1 time dimension; standard LGE-LAx

images were composed of 2 spatial dimensions (i.e., width and height); hyperimages LGE-SAx

sequences were composed of 3 spatial dimensions (i.e., width, height, and slice). Because of the

heterogeneity in number of time frames (temporal dimension) and number of slices (spatial

dimensions), “null” frames and slices were added to obtain homogeneous hypervideos

sequences of 4 dimensions.

Clinical covariates

Clinical covariates included in the DARP-D are listed in Table 1, and all of them are well

known to be independent risk factors for MAEs in DCM [1, 6]. They concern information

about demographic features, cardiovascular risk factors, comorbidities, blood tests, functional

status and electrocardiographic characteristics.

Table 1. Clinical covariates.

Covariate Overall (n = 154) Train Validation Train + Validation Test p value

(n = 76) (n = 32) (n = 108) (n = 46)

Age, y 48.0(38.0–58.0) 45.0(37.0–57.5) 49.0(41.0–60.2) 48.0(38.0–59.0) 49.0(36.0–57.0) 0.591

Male, n (%) 108(70) 52(68) 22(69) 34(31) 34(74) 0.789

Height, m 1.7(1.7–1.8) 1.7(1.6–1.8) 1.7(1.7–1.8) 1.7(1.7–1.8) 1.7(1.7–1.8) 0.480

Weight, kg 79(67.0–88.0) 83.0(61.0–88.5) 78.0(70.7–86.2) 79.0(65.0–87.0) 80.0(72.0–94.0) 0.504

Dyslipidaemia, n (%) 35(26) 19(29) 4(14) 23(24) 12(29) 0.243

Arterial hypertension, n (%) 52(38) 22(34) 13(45) 35(37) 17(41) 0.539

Smoker 0.066

Current smoker, n (%) 31(23) 17(26) 7(24) 24(25) 7(17)

Ex-smoker 17(13) 13(20) 1(3) 14(15) 3(7)

Diabetes mellitus, n (%) 18(13) 4(6) 4(14) 8(8) 10(24) 0.027

Familial history

CAD, n (%) 18(13) 7(10) 4(14) 11(11) 7(17) 0.578

Cardiomyopathy, n (%) 22(16) 16(24) - 16(17) 6(15) 0.013

SCD, n (%) 7(5) 5(7) - 5(5) 2(5) 0.318

COPD, n (%) 3(2) 2(3) - 2(2) 1(2) 0.646

Creatinine, mmol/l 81.0(69.0–91.2) 82.0(66.5–91.5) 84.0(67.7–101.2) 82.0(69.0–93.0) 79.0(71.0–89.0) 0.406

NYHA 0.826

I, n (%) 85(56) 41(55) 16(50) 57(53) 28(61)

II, n (%) 14(9) 6(8) 4(12) 10(9) 4(9)

III, n (%) 50(33) 27(36) 11(34) 38(35) 12(26)

IV, n (%) 4(3) 1(1) 1(3) 2(2) 2(4)

NT-proBNP, pg/l 923(593–2309) 845(610–2442) 880(309–1786) 845(466–1949) 1009(646–2523) 0.947

Sinus rhythm, n (%) 113(86) 58(88) 21(78) 79(85) 34(87) 0.428

Atrial fibrillation, n (%) 20(15) 8(12) 7(13) 15(16) 5(13) 0.215

LBBB, n (%) 56(36) 36(47) 9(28) 45(42) 11(24) 0.018

CAD: coronary artery disease; COPD: chronic obstructive pulmonary disease; LBBB: left bundle branch block; NYHA: New York Heart Association; SCD: sudden

cardiac death. Data are reported as median (1st– 3rd quartile) for continuous variables and as total number (%) for categorical variables. Differences between “train”,

“validation” and “test” groups were assessed using the Mann–Whitney test for continuous variables and the Pearson chi square test of Fisher exact test for categorical

variables. P values < 0.05 were considered statistically significant.

https://doi.org/10.1371/journal.pone.0297793.t001
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Neural network architecture

DARP-D is a supervised multi-input deep neural regression network. It is composed of three

main branches trained synergically. Two of them use CMR sequences as input data, while the

third one processes clinical data. All three are injected in the main path of the network. CMR

branches are mainly powered by pooling, convolutions, and convolutional recurrent architec-

tures, while the clinical and main branches are basically sequences of fully connected dense layers.

The last linearly activated single-node output layer of the network takes the role of the individ-

ual nonlinear log-risk score, which is used to evaluate the patient-individual risk curve of MAE.

All the code was developed in R 4.2.2 using the TensorFlow and keras R packages as inter-

faces to the corresponding TensorFlow and Keras Python deep-learning platforms [17–19].

The targets R-package is utilized to orchestrate and automate the pipeline dependencies and

computations [20].

Images and covariates analysis

Two types of NNs were used together to build DARP-D. Long short-term memory (LSTM)

network, a particular type of recurrent neural network (RNN) is able to maintain complex

relevant information such as temporal correlations [21–23]. Convolutional neural network

(CNN) allows to model complex spatial correlations from the input data [24–26]. In our

model, to process 4D and 3D cine-CMRs, we adopted ConvLSTM architectures [14]. The

final architecture proposed concatenated all four cine-CMRs in a multidimensional array of

fixed dimensions and then processed with a ConvLSTM. At the same time, all four

LGE-CMRs were concatenated in another multidimensional array of fixed dimensions, and

then processed with a CNN. Afterwards, all multidimensional arrays received a progressive

reduction of dimensions until they were merged and flattened to a linear (1 dimension)

array. A similar process of flattening was applied to the clinical covariates, and the two

arrays were concatenated together. The resulted array was processed in order to obtain on

output (x), which was used as a coefficient of the Cox hazard function ðĥDARP� DðxÞÞ [27, 28].

Survival model

We propose an innovative per-patient survival model that expands the family of so-called non-

linear Cox models powered by modern DL techniques [9, 29, 30]. The DL architecture permits

processing in a unique heterogeneous network the uncompressed not-interpolated raw time-

dependent 4D (cine-SAx) hypervideos, 3D (cine-LAx) videos, 3D (LGE-SAx) hyperimages,

and 2D (LGE-LAx) images, together with baseline patient covariates. The process allows direct

end-to-end estimation from CMRs and clinical data to the individual nonlinear log-risk func-

tion h(x) as ĥDARP� DðxÞ) [16].

Performance metrics

The performances of the models were evaluated using two measures. To evaluate the model’s

risk discrimination ability, Harrell’s C-index is used, considering predicted network outputs as

patient-specific log-risk scores [31]. The second was the area under the curve (AUC) for the

model to be considered as a classification for a within 5-year MAE binary outcome.

Training and testing

Out of 154 patients, the model was trained on a random sample of 76 patients and optimized

using a validation subset of 32 (~30% of the 108 used training data). Performance was tested in

the out-of-training test set, counting the other 46 patients (approximately 30% of the total).
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Considering the proof-of-concept nature of the study, DARP-D was implemented with 5

epochs of training in the first training vs. validation set stage to set the base hyperparameters,

i.e., batch size, regularization, to allow the computation to fit in memory, converges, and

trends to improve on validation set, in order to evaluate the feasibility of that kind of model

without exceeding in computational time. Next, we continued to train the model from both

training and validation for the other 25 epochs, validated on the hold-out test set. For further

technical information, see S1 Text.

Statistical analysis

Baseline characteristics are summarized as the median (1st– 3rd quartile) for continuous vari-

ables and n (%) for categorical variables.

Baseline covariates were reported as median values for continuous variables and as frequen-

cies for categorical variables. Time to first MAE event, loss to follow-up or death was calculated

from the baseline CMR to compute the follow-up time for survival analyses.

Results

Cohort characteristics and follow-up

The overall cohort consisted of 154 patients, with a median age of 49 years and a median fol-

low-up time of 60 months. The baseline characteristics of the cohort are shown in Table 1. In

summary, males were more represented (71%), and the most common risk factor was arterial

hypertension (37%), followed by smoking habits (35%). A positive familial history of cardio-

myopathy and SCD was present in 17% and 5% of patients, respectively. The majority of

patients presented few symptoms (NYHA I, 88%) and were in sinus rhythm (86%). All patients

took heart failure (HF) medication, mainly β-blockers and angiotensin-converting enzyme

inhibitors. CMR measurements showed a median left ventricular end diastolic volume index

(LVEDVi) of 137 ml/m2 and a LVEF of approximately 28%, while the median right ventricle

(RV) end-diastolic volume index (RVEDVi) and ejection fraction (RVEF) were 56 ml/m2 and

52%, respectively. Data about medication use, CMR measurements and follow-up are listed in

S1 Table. Overall, after a median of 6 years of follow-up, MAE occurred in 20 patients, with an

incidence rate of 12% at 6 years after enrolment. Concerning the non-MAE endpoint, there

were 12 all-cause deaths, 12 patients sustained a heart transplant, and one received an LV assist

device (incidence rate of 22% at 6 years). No differences were observed between the validation

and test subgroups, except for a family history of cardiomyopathy, which was more frequent in

the validation subgroup, and of left bundle branch block, which was more frequent in the test

subgroup. Fig 1 reports event-free survival at 8 years of the overall population and of the train-

ing, validation, and test subgroups. By the end of follow-up, 15% of all patients had experi-

enced a MAE. The log rank test of the three curves showed that they were not significantly

different (p = 0.088).

DARP-D overview

The arrhythmia risk assessment algorithm in DARP-D consists of a supervised multi-input

deep neural regression network ingesting multidimensional CMRs and baseline clinical infor-

mation trained synergically to predict patient-specific probabilities of MAE at future time

points. As shown in Fig 2, the model consists of three main branches of a common network,

which implements the MAE log-hazard individual function and returns the current individual

MAE log-hazard score based on current CMRs and clinical situation as output. Subsequently,
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Cox survival analysis uses the patient network outputs to estimate the time-dependent popula-

tion base hazard function to obtain a patient-specific probability of MAE at any time point.

DARP-D risk prediction performance

The DAPR-D was developed, internally validated, and tested using data from our cohort of

154 patients with DCM. Its performance was evaluated using Harrell’s concordance index (c-

index) [31]—range is [0, 1], higher scores are better—and areas under the receiver operator

characteristic curve (AUROC) evaluated at years 1, 2, 3, 5 and 8. Currently, the DARP-D still

has a quite low and unstable concordance index on the hold-out test set (0.12–0.68) (Table 2).

On the other hand, learning curves report both training and validation performances in a high

improving phase, showing that overfitting is still under control and far from being an issue,

meaning that further training epochs and data would critically improve the model (Fig 3).

The model risk discrimination abilities at all times, represented by the AUROC evaluated at

years 1, 2, 3, 5, and 8, were 84%, 84%, 64%, 64% and 53%, respectively, on the test set (S1 Fig).

Discussion

General considerations

We present an innovative approach to predict MAEs, termed DARP-D, which uses a deep NN

“survival” model for the risk assessment of fatal arrhythmia in DCM. The model was trained

using two types of input data, CMR sequences and clinical covariates. The choice of the clinical

variables was made considering the current knowledge about risk factors and comorbidities

associated with MAEs. In fact, all variables are well recognized independent factors of MAEs

in DCM [32]. Moreover, our cohort showed baseline characteristics that were similar to other

cohorts represented in clinical trials and prospective registers of DCM [33–35]. This similarity

was marked by the outcome analysis, with an analogue percentage of MAEs and overall mor-

tality occurring during the follow-up. Concerning CMR sequences, the rationale for including

cine videos and hypervideos comes from the well-established knowledge that LVEF, consid-

ered a surrogate of cardiac contractility, strongly correlates with arrhythmic prognosis; thus,

Fig 1. Event-free survival from major arrhythmic events. Event free survival at 96 months from major arrhythmic event, defined as sudden cardiac death,

cardiac arrest due to ventricular fibrillation, sustained ventricular tachycardia lasting�30s or causing hemodynamic collapse in<30s, appropriate implantable

cardiac defibrillator intervention. Tick marks indicate censored data. A. Overall event free survival. B. Event free survival for train, validation and test

subgroups and log-rank test. C. Event free survival and log-rank test for patient at high and low risk of event in the test set. Risk of event is directly estimated by

the model from the individual nonlinear log-risk function
^h^

DARP� DðxÞ, where x is the output of the single-neuron last layer output of the neural network.

https://doi.org/10.1371/journal.pone.0297793.g001
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an analysis of the entire cardiac cycle allows us to take into account systolic function [1, 36].

Furthermore, LGE images were included because of the growing evidence that the extent, loca-

tion and pattern of LGE correlate with MAE in a nonlinear relationship [8, 35].

The relevance, in terms of outcome prediction, of merging CMR images and clinical covari-

ates in a DL model was enhanced in a recent study by Popescu et al. [9]. They showed that the

Fig 2. Schematic overview of DARP-D. Top panel (grey) shows the first two branches of the model, which use, respectively, unprocessed cine- and LGE-

CMR data. Cine-CMR hypervideos are taken as input by a 4D and 3D convolutional long term short memory network constructed using an encoder

architecture. LGE-CMR hyperimages are taken as input by a 3D and 2D convolutional neural network. These two branches convey in a common network

(shared convolutional neural network) determining a one dimensional output of shape 8. Left bottom panel (yellow) shows the covariate branch, which

consists of two consecutive sets of 8 fully connected networks producing a tensor of shape 8. Bottom central panel (orange) shows the final single fully

connected network that uses as inputs the tensors from CMR and covariate networks to give a one dimensional output of shape 1. Right bottom (red) panel

shows the survival model, where the output of shape 1 is used to directly estimate the individual nonlinear log-risk function
^h^

DARP� DðxÞ.

https://doi.org/10.1371/journal.pone.0297793.g002
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accuracy of a survival DL-based model increased by adding clinical covariates to CMR acquisi-

tions, resulting in a better prediction of MAEs in ischaemic cardiomyopathy. Starting from

this assumption, we built the DARP-D with the aim of improving the risk stratification of

MAEs in DCM, a problem that currently represents a clinical unmet goal. In this study, our

model fit together CMR sequences and clinical covariates, where we used both cine and LGE

sequences for training. Our approach represents the first examples of a DL architecture where

motion (cine videos and hypervideos), tissue characterization (LGE images and hyperimages),

and clinical variables concur to the risk stratification of MAEs in DCM. The analysis of cine

hypervideos represents a novelty in the prognostic field of cardiomyopathies. Indeed, the

state-of-the-art DL analysis of cine sequences consists of a multiview motion estimation net-

work for 3D myocardial motion tracking [37]. In contrast, our work started with a different

aim, that is, to consider cardiac motion as a patient characteristic that concurs with other char-

acteristics (LGE and clinical variables) in the arrhythmic prognosis.

DARP-D achieved unstable performance possibly because of the use of a relatively small

dataset and the low training epochs reached. A concern with DL on smaller datasets is overfit-

ting, which manifests itself as high performance during training (good fit) but poor perfor-

mance when applied to a new test set. To speed up the training, control the overfitting, and

protect from exploding and vanishing weights, after each layer of the network is described,

stacked batch normalization, activity regularization, and drop-out are performed. The efficacy

of this approach is reflected in the uniform improvement trends on the validation set, as

shown by the learning curves in Fig 3. Nonetheless, the supposed improvement in perfor-

mance is theoretical and needs to be proven with further research before translation into clini-

cal practice.

Table 2. Performance of DARP-D.

Set Harrell’s C SD Lower 95% CI Upper 95% CI

Training 0.558 0.228 0.330 0.786

Validation 0.325 0.195 0.130 0.520

Test 0.399 0.278 0.121 0.677

https://doi.org/10.1371/journal.pone.0297793.t002

Fig 3. DARP-D learning curve. Epoch-series (x-axis) vs. performance (y-axes) learning curves for the DARP-D first

stage of training (30 epochs): training (red) vs. validation (green) sets. C (below) reports Harrell’s C concordance

index, loss (above) reports the progression for the log partial likelihood for the Cox survival model.

https://doi.org/10.1371/journal.pone.0297793.g003
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The performance of DARP-D needs to be contextualized in the proof-of-concept nature of

our study. On the one hand, considering the model from a clinical point of view, DARP-D is

not ready for clinical practice because of its low performance, as shown by Harrell’s C and

AUROCs. On the other hand, considering DARP-D from a technical point of view, its potenti-

ality is unquestionable. In fact, we built a model that was able to analyze different kinds of data

(i.e., regarding nature, dimensionality and frequency of the data), and the process below (i.e.,

data acquisition, dimension flattening, convolutional recurrent NNs and per-patient survival

model) works straightforwardly, such as the training-validation-test processes. Building a

model able to be directly translated into clinical practice was beyond the scope of this research,

which is the reason why the training process was conducted up to 30 epochs only, and more

advanced and tailored network components were not considered. A follow-on working proto-

type, ready to be translated into clinical practice, will be the object of future research and the

subject of stronger validation stages.

Survival analysis and patient-specific survival curves

We propose a per-patient survival model based on modern deep-learning techniques capable

of processing conjointly uncompressed noninterpolated raw time-dependent 4D hypervideos,

3D videos, 3D hyperimages, 2D images and baseline patient covariates to estimate the individ-

ual nonlinear log-hazard function.

DARP-D opens perspectives in patient-specific differential MAE risk analyses directly com-

paring both CMRs and clinical factors from an integrated model, expanding to video and

image tools such as odds ratios, reserved to clinical data only up to now. With DARP-D, it

would be possible to set direct comparisons for patient evolution of MAE risk across successive

follow-up, empowering the synergistic evolution of both heart dynamics, as captured by the

CMRs, and the corresponding changes in the other clinical measures.

Limitations

Our study has several limitations. The first concern is regarding the study cohort, which con-

sisted of only 154 patients utilized for training, validation, and testing. When developing a DL

model, it is advisable to ensure that the sample size suffices to enable reliable prediction in new

individuals. While a pre-specified sample size cannot be calculated a priori, it should be large

enough to develop a model that proves reliable when applied to new individuals. From a gen-

eral perspective, the minimally required sample size for a prediction model is higher than that

needed for a regression-based model and it depends on the prevalence in the target population,

the predictive value of the features, and the complexities of the features [38, 39]. Practically

speaking, several hundreds of patients are usually required. This remarks that DARP-D, at

present, is a prototype and needs testing in a larger dataset capable of representing the wide

heterogeneity of the DCM population. Moreover, an external validation is needed to confirm

the potential impact of the DARP-D in predicting MAEs in different cohorts of patients.

Second, our project aimed to develop a future model capable of supporting clinicians to

improve therapeutic strategies for fatal arrhythmic event prevention, such as device implanta-

tion. It is important to consider that, for DCM, current guidelines recommend ICD implanta-

tion for primary prevention of SCD after 3 months of optimal medical therapy (OMT). OMT

is considered as the using of all the “four pillars” suggested by HF guidelines (i.e. beta-blockers,

angiotensin converting enzyme inhibitor or angiotensin receptors blockers or angiotensin

receptor/neprilysin inhibitor, mineralocorticoid receptor antagonist and gliflozin) and, when

appropriate, the implant of a cardiac resynchronization therapy device [6]. Our cohort encom-

passes patients evaluated in a substantial period of time (from 2002 to 2019); during this
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period, new drug therapies were introduced in the HF treatment strategy, such as sacubitril

and gliflozin, but a very low percentage of patients in our cohort took any of these medications.

This suggests the need for external validation to enhance the performance of the DARP-D in a

more recent cohort.

Third, the preprocessing step focuses on a dimensional reduction of hypervideos and

hyperimages but not on cardiac segmentation. CMR images taken as input by the CMR-NNs

were not automatically segmented to include myocardium-only raw intensity values. Theoreti-

cally, this does not represent a true limit itself, even if many previous studies applied such a

preprocessing step. It would be interesting to determine if image segmentation increases the

accuracy of the model. Further research will follow to investigate this possibility.

Fourth, the number of epochs of training was low compared to other research in the fields

of DL application in cardiology. In this proof-of-concept study, we did not aim to build a

model ready for large-scale use or with high performance. Instead, our study showed that a

more detailed risk stratification, based on a DL analysis of cine hypervideos, LGE images and

clinical covariates, is feasible and offers critically promising results in terms of risk score con-

cordance and accuracy of event prediction. If confirmed by further research, a similar

approach could be used for other forms of cardiomyopathies, such as hypertrophic and

arrhythmogenic cardiomyopathy. Therefore, DARP-D was implemented with a maximum of

30 epochs, and more robust training will follow in the future.

Fifth, the DARP-D was trained only to predict MAEs without considering competing risk.

Other possible causes of death may be related to a non-MAE event (e.g., death due to heart fail-

ure) or to other MAE not directly associated with the condition under investigation. In our

study, the cohort was selected based on the presence of specific structural abnormalities (LV

dilation and reduction of EF) and the absence of other structural abnormalities (other forms of

cardiomyopathies). It is well known that there are other conditions associated with MAE that

do not usually exhibit detectable structural abnormalities with CMR. Brugada syndrome (BS)

and catecholaminergic polymorphic ventricular tachycardia (CPVT) can be considered as two

significant examples. Both syndromes can cause SCD, and their diagnosis can be challenge as

they typically present no alteration on CMR [40, 41]. In our study, we retrospectively selected

our cohort by reviewing anamnestic reports, and all patients with DCM that we analyzed did

not have any mention of a concurrent diagnosis of BS or CPVT, nor did they have a previous

period of monitoring with implantable device such as loop recorder. Nevertheless, no other

diagnostic tests were reported to have been performed to exclude these form of channelopa-

thies, and this bias could have influenced the result.

Considering the aim of our study, this does not represent an obstacle to our purpose. How-

ever, this aspect needs to be taken into consideration in further studies, where the clinical use-

fulness of the DARP-D will be the core of the research. In fact, this is a crucial clinical point

because the benefit of preventing an arrhythmic event (maybe implanting an ICD) should be

balanced with the life expectancy of patients with DCM, who are at high risk of other non-

MAE causes of death.

Another consideration pertains to the evaluated endpoint. We considered a composite end-

point of SCD and SCD equivalents, including appropriate ICD intervention. All patients with

an ICD enrolled in this study had a transvenous device, and therefore, the presence of appro-

priate antitachycardia pacing (ATP) therapy was included in the MAE endpoint. Currently,

the increasing use of subcutaneous ICDs (S-ICD) raises questions about the efficacy of such

devices in cardiomyopathies and how to evaluate clinical arrhythmic endpoints. Although no

clinical trial was conducted specifically in the setting of cardiomyopathies, substantial evidence

suggests that S-ICD efficacy appears non-inferior to transvenous ICDs in terms of preventing

SCD and all-cause mortality [42, 43]. Moreover, the inability of S-ICD to perform ATP was
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not associated with a higher risk of MAE. This implies that assuming a composite endpoint

including ATP-appropriate intervention could correspond to a lower incidence of endpoints

in future cohorts with patients with S-ICD.

The last limitation regards the interpretability of the DARP-D. This field of AI algorithms is

paramount to their broad adoption, and concerns surrounding it are particularly prevalent in

healthcare. We did not perform any analysis that could provide more understandable results.

Such an analysis will be scheduled to render transparency to the algorithm “black box”.

Altogether, the aforementioned limitations do not reduce the value of DARP-D. Rather,

they pave the way for further research to improve its prediction ability, to confirm its strength

in external cohorts and to make the results more understandable.

Conclusion

In this study, we presented a DL technology, DARP-D, trained on a cohort of patients with

DCM and capable of learning from clinical covariables and CMR hypervideos and hyperi-

mages, returning a specific per-patient time-dependent risk of MAEs. Our approach could

represent a fundamental change in the prevention of arrhythmic death in DCM. However, the

low number of patients, MAEs and epoch of training make the model a promising prototype

but not ready for clinical usage. Further research is needed to improve, stabilize, and validate

the performance of the DARP-D to convert it from an AI experiment to a daily used tool.
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