

Citation: Brizuela M, Palermo MC, Alconada T, Sandoval MM, Ramirez Wierzbicki E, Cantos J, et al. (2024) Nasopharyngeal carriage of *Streptococcus pneumoniae* in Latin America and the Caribbean: A systematic review and metaanalysis. PLoS ONE 19(5): e0297767. https://doi. org/10.1371/journal.pone.0297767

Editor: Oriana Rivera-Lozada de Bonilla, Norbert Wiener University, PERU

Received: October 31, 2023

Accepted: January 11, 2024

Published: May 20, 2024

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0297767

Copyright: © 2024 Brizuela et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its <u>Supporting</u> information files.

RESEARCH ARTICLE

Nasopharyngeal carriage of *Streptococcus pneumoniae* in Latin America and the Caribbean: A systematic review and metaanalysis

Martín Brizuela¹*, María Carolina Palermo², Tomás Alconada², María Macarena Sandoval², Eugenia Ramirez Wierzbicki², Joaquín Cantos², Paula Gagetti³, Agustín Ciapponi^{2,4}, Ariel Bardach^{2,4}, Silvina Ruvinsky^{5,6}

 Unidad de Pediatría, Hospital General de Agudos Vélez Sarsfield, Buenos Aires, Argentina, 2 Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina, 3 Servicio Antimicrobianos, Laboratorio Nacional de Referencia (LNR), Instituto Nacional de Enfermedades Infecciosas (INEI)- ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina, 4 Centro de Investigaciones Epidemiológicas y Salud Pública (CIESP-IECS) CONICET, Buenos Aires, Argentina, 5 Coordinación de Investigación. Hospital de Pediatría Dr. Juan P. Garrahan, Buenos Aires, Argentina, 6 Departamento de Evaluación de Tecnologías Sanitarias y Economía de la Salud. Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina

* martin.brizuela1984@gmail.com

Abstract

Background

Streptococcus pneumoniae is a leading cause of morbidity and mortality globally, causing bacteremic pneumonia, meningitis, sepsis, and other invasive pneumococcal diseases. Evidence supports nasopharyngeal pneumococcal carriage as a reservoir for transmission and precursor of pneumococcal disease.

Objectives

To estimate the pneumococcal nasopharyngeal burden in all age groups in Latin America and the Caribbean (LAC) before, during, and after the introduction of pneumococcal vaccine conjugate (PVC).

Methods

Systematic literature review of international, regional, and country-published and unpublished data, together with reports including data from serotype distribution in nasopharyngeal carriage in children and adults from LAC countries following Cochrane methods. The protocol was registered in PROSPERO database (ID: CRD42023392097).

Results

We included 54 studies with data on nasopharyngeal pneumococcal carriage and serotypes from 31,803 patients. In children under five years old, carriage was found in 41% and in adults over 65, it was 26%. During the study period, children under five showed a

Funding: All authors have received funding by Pfizer Global Medical Grants (GMG) 76436251. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

colonization proportion of 34% with PCV10 serotypes and 45% with PCV13 serotypes. When we analyze the carriage prevalence of PCV serotypes in all age groups between 1995 and 2019, serotypes included in PCV10 and those included in PCV13, both showed a decreasing trend along analysis by lustrum.

Conclusion

The data presented in this study highlights the need to establish national surveillance programs to monitor pneumococcal nasopharyngeal carriage to monitor serotype prevalence and replacement before and after including new pneumococcal vaccines in the region. In addition, to analyze differences in the prevalence of serotypes between countries, emphasize the importance of approaches to local realities to reduce IPD effectively.

Introduction

Streptococcus pneumoniae is a significant cause of morbidity and mortality worldwide producing different types of infections such as bacteremic pneumonia, meningitis, sepsis and other invasive pneumococcal diseases (IPD). Evidence supports nasopharyngeal pneumococcal carriage as a reservoir for transmission and precursor of pneumococcal disease [1, 2].

Complex relationships between *S. pneumoniae* and the human host were described. The main reservoir of *S. pneumoniae* is the upper airway, allowing transmission. Host factors are essential for developing pneumococcal disease, mainly acute otitis media, pneumonia, bacteremia, and meningitis. The colonization, transmission, and invasion are related to the capacity to evade immune and inflammatory host responses [3, 4].

As with pneumococcal disease, the epidemiology of pneumococcal carriage varies by age; the highest rate among children < 5 years was reported [3].

Pneumococcal conjugate vaccines (PCVs) are safe and effective and have been used in high-income countries for many years. They have now been widely adopted worldwide. Vaccination with PCV provides herd immunity, reducing the transmission to households and others in the community, and preventing pneumococcal infection in the unvaccinated population [5].

Following the introduction of pneumococcal conjugate vaccines (PCVs) into national immunization programs (NIPs), IPD and nasopharyngeal carriage was reduced in upper-middle and high-income countries [6]. This reduction has been observed primarily among vaccinated children and all ages, including the elderly [7].

In LAC countries, PCVs have been introduced in their NIPs since 2007 with different strategies ("3+1" and "2+1") [8]. An impact in reducing pneumococcal vaccine-serotypes carriage and increasing non-vaccine serotypes was observed [9]. Despite evidence of almost complete replacement of serotypes in many settings, non-vaccine (NVT) serotypes have replaced vaccine-type (VT) serotypes in colonization and invasive diseases [10, 11].

Data on the epidemiology of pneumococcal carriage in children and adults after the introduction of PCV10 and PCV13 in the region are scarce. Understanding the dynamics of nasopharyngeal colonization in developing regions is crucial to predicting the public health implications of routine PCVs' use in these settings [12].

This systematic review and meta-analysis aimed to add epidemiological information about pneumococcal nasopharyngeal carriage distribution since PVCs introduction in all age groups in LAC.

Material and methods

We conducted this systematic literature review of international, regional, and country-published and unpublished data, together with reports of routinely recorded data such as registries and MoH, including data from serotype distribution in nasopharyngeal carriage in children and adults from LAC countries.

The Cochrane methods and the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were followed [13] and the established guidelines for Metaanalysis Of Observational Studies in Epidemiology (MOOSE). The protocol was registered in PROSPERO database (ID: CRD42023392097) [14, 15].

Eligibility criteria

We included cohort studies, case-control, cross-sectional studies, epidemiological surveillance reports, hospital-based surveillance studies, case series, control arms of randomized/quasi-randomized controlled trials, controlled before and after (CBA) and uncontrolled before and after (UBA) studies, interrupted time series (ITS), and controlled ITS (CITS), assessing serotyping of nasopharyngeal carriage in LAC. No language restriction was imposed. Studies with at least 20 nasopharyngeal swabs of patients of all ages, published or reported since January 2000, were included. Every Latin American and Caribbean country represented the geographical scope.

Systematic reviews and meta-analyses were considered a source of primary studies. In those cases where data or data subsets were reported in more than one publication, the one with the larger sample size was selected.

Data sources and search strategy

We searched the primary literature, international and regional databases, generic and academic internet searches, and meta-search engines. We searched records from the following databases up to 27 December 2022: MEDLINE (PubMed), EMBASE (Elsevier interface), LILACS/ Scielo, EconLIT (EBSCO Interface), Global Health (OVID), CINAHL (EBSCO Interface), and Web of Science. We also consult websites from the leading regional medical societies, experts, and associations related to the topic. An annotated search strategy for grey literature was included to retrieve information from relevant sources like regional MoH, PAHO, and reports from hospitals. This strategy comprises two blocks plus search limits (from 2000 onwards to cover ten years of pre-vaccination programs) and a geographical string block for LAC. The search had no language restrictions and was limited to humans. The reference lists of the articles were hand-searched for additional information. After consulting the principal investigator, we selected only the publication with the largest sample size. Highly cited authors were contacted to obtain missing or extra information.

Selection of studies, data extraction, and assessment of the risk of bias. Two researchers reviewed each identified record by title and abstract and obtained the full texts of potentially eligible studies. The full-text articles were reviewed for compliance with the inclusion criteria. The selection process was conducted via COVIDENCE [16, 17]. This form was piloted on ten papers to refine the process. If studies had multiple publications, we collated the various reports of the same study under a single study ID with multiple references. Data from eligible studies were extracted by two reviewers using a data extraction form. Two reviewers independently performed all steps. Any disagreements were resolved by discussion with the whole team.

We independently assessed the risk of bias in observational cohort, case-control, cross-sectional, and case-series studies with the National Institute of Health (NIH) Quality Assessment Tool. After answering the different signaling questions "Yes", "No", "Cannot determine", "Not applicable", or "Not reported", the raters classified the study quality as "Good", "Fair", or "Poor". For consistency with the other designs, we use the classifications "Low", "Unclear" or "High risk" of bias [18]. When the criteria are rated "uncertain," we obtained more information from the study authors. Pairs of independent reviewers assessed the risk of bias. Discrepancies were solved by consensus of the whole team. For the assessment of cohort studies and cross-sectional studies, the tool comprises 14 items, while nine items apply to the case series studies. For RCTs and quasi-RCTs, we evaluated the following domains: sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessors, incomplete outcome data, selective outcome reporting, and other possible threats to validity [19].

Data synthesis and analysis

Data were collected from observational, comparative, and non-comparative studies, including registries. We conducted a paired meta-analysis for outcomes for which studies were deemed comparable. To estimate the prevalence of pneumococcal serotypes, we conducted a proportional meta-analysis using R software version 4.2.2 [20, 21]. We applied an arc-sine transformation to stabilize the variance of proportions (Freeman-Tukey variant of the arc-sine square root of transformed proportions method) [22]. The pooled proportion was calculated as the back-transformation of the weighted mean of the transformed proportions, using inverse arc-sine variance weights for the fixed and random effects model. We applied DerSimonian-Laird weights for the random effects model where heterogeneity between studies was found. We calculated the I^2 statistic as a measure of the proportion of the overall variations in the proportion that was attributable to between-study heterogeneity. An I2 of 60–70% was considered significant heterogeneity, and below 30% was considered low heterogeneity [23].

We conducted subgroup analyses classifying the studies by five-year calendar period, country, and age group (0–5 years, 6–64 years, 65 or more years old). We included data on different *S. pneumoniae* serotypes obtained from nasopharyngeal swabs.

Results

We retrieved 8,600 records from seven different databases. Of these registries, 4,533 references remained for the screening phase after duplicates were removed, and 414 were eligible for full-text review.

Finally, we included 54 studies with data on nasopharyngeal pneumococcal carriage and serotypes from 31,803 patients. Fig 1 and S1 Table in S1 File. The search strategy is available in S1 Annex in S1 File, and the list of studies excluded during the extraction process in S2 Table in S1 File.

The characteristics of the 54 included studies are described in Table 1. We identified 43 studies that included participants below 18 years (n = 27,491), three with an adult population (n = 739), seven studies that included both pediatric and adults (n = 3,500), and one study did not report the age of participants (n = 73).

The studies were carried out in 17 countries; the most represented countries were Brazil (n = 22 with 14,234 participants), Venezuela (n = 7 with 2,453 participants) and Mexico (n = 6 with 4,340 participants). The inclusion period of participants was from 1990 to 2018.

In 47 studies, data provided was from outpatients, in one from inpatients, and in six studies it was not reported. Nineteen studies included asymptomatic and healthy participants and three included high-risk patients. Comorbidities were reported in 12 studies; respiratory chronic diseases, malnutrition, cardiac diseases, immunodeficiency, and cancer were the most frequent.

Fig 1. Study flowchart.

https://doi.org/10.1371/journal.pone.0297767.g001

All participants came from non-probability sampling. Immunization status was reported in 37 studies: 21 included not vaccinated participants, eight studies with completely vaccinated patients, eight both (complete and incomplete vaccination), and not reported in 17 studies. Immunization scheme was: PCV7 in 5 studies, PCV10 in 3 studies, and PCV13 in 8.

Regarding the methodological design, there were 46 cross-sectional studies, including nine epidemiological surveillance studies, followed by 4 cohort studies, 3 case- series, and one case-control study.

Meta-analysis of pneumococcal nasopharyngeal carriage

The global carriage proportion for all age groups was 38.3% (33% to 44%, CI 95%) from 1995 to 2019. In children under five years old, carriage was found in 41% (35% to 48%, CI 95%), and in adults over 65, 26% (19 to 35%, CI 95%) Figs 2 and 3. Brazil, Mexico, and Venezuela were the most representative countries with data about the nasopharyngeal carriage, including five or more studies. In Brazil, a pooled percentage of 37% (29–45%, CI 95%) was estimated, in Mexico, 34% (22–49%, CI 95%), and in Venezuela, 36% (27–47%, CI 95%). Fig 4.

When we analyzed the most representative age group to evaluate carriage, preschool children under five years old, we found a stable proportion (33–44%) among all study periods (1995–2019). In a subgroup analysis of children between 0 and 2 years old, a global nasopharyngeal carriage ratio of 40% (32–49%, CI 95%) was found. Fig 5. During the study period, children under five showed a colonization proportion of 34% (27–41%, CI 95%) with PCV10 serotypes and 45% (36–54%, CI 95%) with PCV13 serotypes. Fig 6. Only one study reported

Table 1. Characteristics of included studies (n = 54).

Author and year of publication	Country	Study start date dd/mm/ yyyy	Study ending date dd/ Study design mm/yyyy		Age range	Sample size
Wolf 2000* [24]	Brazil	15/03/1998	15/12/1998	Case control	<5y	435
Cullotta 2002* [25]	Peru	06/06/2000	21/08/2000	Case series		302
Gómez-Barreto 2002* [26]	Mexico	01/09/1997	30/09/1999	Cross sectional	NR	73
Rey 2002* [27]	Brazil	01/01/1998	31/12/1998	Cross sectional	<5y	911
Allen 2003* [28]	Jamaica	01/06/1999	30/06/1999	Cross sectional	<18y	276
Lucarevschi 2003* [29]	Brazil	29/06/1998	15/12/1998	Cross sectional	<5y	987
Ochoa 2005* [30]	Peru	01/09/1996	31/12/2003	Cross sectional/ Surveillance	<2y	666
Solorzano Santos 2005* [31]	Mexico	01/02/2002	31/01/2003	Cross sectional	<5y	573
Cardozo 2006* [32]	Brazil	01/11/2002	31/07/2003	Cross sectional	<18y	1,013
Laval 2006* [<u>33]</u>	Brazil	01/05/2000	31/08/2001	Cross sectional/ Surveillance	<5y	648
Quintero 2006* [34]	Venezuela	01/02/2000	31/07/2000	Cross sectional	<5y	125
Alturraza Hernaez 2007* [35]	Chile	20/08/1998	30/10/1998	Cross sectional	>65y	118
Berezin 2007* [<u>36</u>]	Brazil	01/06/1997	31/05/2001	Case series	<5y	520
Espinosa-de los Monteros 2007* [37]	Mexico	01/09/2002	31/12/2002	Cross sectional	<5y	2,777
Nicoletti 2007* [38]	Brazil	01/03/2000	31/12/2001	Cross sectional	≥18y	385
Rivera Olivero 2007* [39]	Venezuela	01/04/2004	31/01/2005	Cross sectional/ Surveillance	<5y	356
Neves Reis 2008* [40]	Brazil	01/07/2000	31/05/2001	Cross sectional	All ages	262
Reyna 2008* [41]	Mexico	01/01/2006	31/12/2006	Cross sectional	<5y	498
Bello González 2010* [42]	Venezuela	01/05/2008	31/05/2008	Cross sectional	All ages	148
Espinosa-de los Monteros 2010* [43]	Mexico	01/02/2002	28/02/2004	Prospective cohort	<2y	183
Franco 2010 [44]	Brazil	01/08/2005	31/12/2005	Cross sectional	<5y	1,192
Sisco 2010** [45]	Venezuela	NR	NR	Cross sectional/ Surveillance	All ages	488
Inverarity 2011* [46]	Bolivia	01/05/2007	30/06/2007	Cross sectional	<18y	601
Quintero 2011* [47]	Venezuela	01/01/2007	28/02/2007	Cross sectional	<5y	250
Rivera Olivero 2011* [48]	Venezuela	01/12/2006	31/01/2008	Cross sectional/ Surveillance	<5y	1,004
Lamaro Cardoso 2012* [49]	Brazil	01/07/2008	30/09/2008	Cross sectional	All ages	224
Lopes 2012* [50]	Brazil	01/05/2005	31/01/2006	Cross sectional	<1y	139
Mercado 2012* [51]	Peru	01/01/2007	31/12/2009	Cross sectional/ Surveillance	<2y	2,123
Méndez 2013* [52]	Panama	25/11/2008	19/12/2008	Cross sectional	<5y	397
Neves 2013* [53]	Brazil	01/03/2010	30/06/2010	Cross sectional	<5y	242
Parra 2013* [54]	Colombia	01/01/2005	31/12/2011	Cross sectional	<2y	443
Andrade 2014* [55]	Brazil	01/12/2010	28/02/2011	Cross sectional	<2y	1,287
Grijalva 2014* [56]	Peru	01/05/2009	30/09/2011	Cross sectional	<5y	309
Laranjeira 2014*** [57]	Brazil	01/01/2011	31/12/2011	Cross sectional	<5y	291
Rivera Olivero 2014* [58]	Venezuela	01/01/2007	31/12/2009	Cross sectional/ Surveillance	<5y	82
Menezes 2015* [59]	Brazil	01/01/2008	31/01/2009	Cross sectional	<5y	203
Brandileone 2016 [*] [60]	Brazil	22/03/2010	06/06/2013	Cross sectional	<2y	901
Melgar 2016* [61]	Guatemala	01/11/2012	31/01/2013	Case series	<5y	500
Gentile 2017** [62]	Argentina	01/06/2015	30/09/2015	Cross sectional	<5y	359
Neves 2017* [63]	Brazil	20/09/2014	05/12/2014	Cross sectional	<5y	522

(Continued)

Author and year of publication	Country	Study start date dd/mm/	Study ending date dd/	Study design	Age	Sample
		уууу	mm/yyyy		range	size
Toledo Romani 2017* [64]	Cuba	01/10/2013	30/11/2015	Cross sectional	<5y	2,115
Fernández 2018* [65]	Uruguay	01/01/2002	31/12/2015	Cross sectional/ Surveillance	<2y	831
Nelson 2018* [66]	Peru	01/05/2009	30/09/2011	Prospective cohort	<5y	1,015
Brandileone 2019* [67]	Brazil	16/08/2017	19/08/2017	Cross sectional	<2y	531
Cassiolato 2019 [68]	Brazil	01/01/2005	31/12/2017	Cross sectional	All ages	1,432
Chávez Amaro 2019* [69]	Cuba	01/05/2016	30/06/2017	Non-comparative cohort	<5y	555
Espinosa-de los Monteros-Pérez 2019* [70]	Mexico	01/12/2009	30/06/2010	Cross sectional	>50y	236
Pinto 2019* [71]	Brazil	01/01/1990	31/12/2014	Cross sectional	All ages	783
Kumar 2020** [72]	Barbados	01/01/2015	31/12/2016	Cross sectional	<5y	216
Dunn 2021 * [73]	Dominican Republic	01/11/2016	31/07/2017	Prospective cohort	<5y	125
Kumar 2021* [74]	Barbados	01/01/2016	31/12/2017	Cross sectional	<10y	198
Regalado 2021 * [75]	Ecuador	01/02/2018	30/04/2018	Cross sectional	All ages	163
Watkins 2021* [76]	Haiti	01/09/2015	31/01/2016	Cross sectional	<5y	685
Silva 2022* [77]	Brazil	01/02/2013	31/12/2013	Cross sectional/ Surveillance	<5y	660

Table 1. (Continued)

NR: Not Reported

*Full text;

**Abstract/Poster;

***Thesis

https://doi.org/10.1371/journal.pone.0297767.t001

pneumococcal nasopharyngeal carriage in the adult population more than 65 years old, and the proportion of serotypes was 51.5% (35% to 68% CI 95%) and 57.6% (41% to 73% CI 95%) for PCV10 and PCV13 respectively.

Serotypes included in PCV10 and PCV13 vaccines among nasopharyngeal carriage were analyzed by age (0- 5y, 6- 64y, and more than 65y), lustrum, and country. See S1-S8 Figs in S1 File.

We analyze the carriage prevalence of PCV serotypes in all age groups between 1995 and 2019. Serotypes included in PCV10 were 34% (28% to 40%, CI 95%), and those included in PCV13 serotypes were 45% (38% to 55%, CI 95%). Both showed a decreasing trend along analysis by five-year period. S3 Table in S1 File.

Risk of bias in included studies

Among 46 cross-sectional and four cohorts, 31 studies (62%) were evaluated with a moderate risk of bias; 14 (28%) with a high risk, and 5 (10%) with a low risk of bias. The domains that presented the most significant inconvenience in their evaluation were those related to the sample selection, the calculation of sample size, and the measurements of the results according to different exposures. Likewise, other drawbacks in the evaluation were associated with the validation domains of the results regarding the blinding of the observers and the adjustment for possible confounding variables. Of note, other domains could not be assessed due to the nature of the studies, such as repeated measurements and follow-up in cross-sectional studies S4 Table in S1 File. The only three case series studies had a moderate risk of bias with significant inconvenience in the case definition and statistical results management. The studies did not report if the cases

Study	Events	Total			F	roportion	95%-CI	Weight
Age = 0-5				I.				
Andrade 2014 Brazil <2v	528	1287		100		0.41	(0.38: 0.44)	2.4%
Berezin 2007 Brazil <5v	181	520	-111	-		0.35	[0.31: 0.39]	2.3%
Brandileone 2016 Brazil 1-2v	397	901		100		0.44	10.41: 0.471	2.4%
Brandleone 2019 Brazil 1-2v	331	531				0.62	10.58: 0.661	24%
Cassiolato 2019 Brazil <2v	753	1432		100		0.53	[0.50; 0.55]	2.4%
Chaver Amaro 2019 Cuba 1-5v 2016	180	555	121			0.34	10 30: 0 381	2.4%
Cullotta 2002 Dani 45v	146	302	100	1000		0.48	[0.43: 0.54]	2 396
Dunn 2021 Dominican Republic <5v	77	125		100		0.40	[0.43, 0.34]	2.3%
Essiness de les Mesteres 2007 Mexico «Sy	000	2777	191	858		0.02	[0.32, 0.70]	2.576
Espinosa-de-los-Monteros 2007 Mexico <6y	029	102	101			0.30	[0.26, 0.32]	2.470
Esphosa-de-los-monteros 2010 Mexico < ty	460	024	104	200		0.52	[0.25, 0.59]	2.370
Fernandez 2018 Oruguay <2y	450	031		100		0.55	[0.51; 0.56]	2.4%
Pranco 2010 Brazil <5y	080	1192		10.0		0.58	[0.55; 0.60]	2.4%
Gentile 2017 Argentina <5y	221	359		809	100	0.62	[0.56; 0.67]	2.3%
Gomez-Barreto 2002 Mexico <5y	45	53		-	1000	0.85	[0.72; 0.93]	2.0%
Grijalva 2014 Peru <5y	254	309			100	0.82	[0.77; 0.86]	2.3%
Kumar 2020 Barbados <6y	25	216	1010	and a		0.12	[0.08; 0.17]	2.3%
Laranjeira 2014 Brazil 2-5y	165	291				0.57	[0.51; 0.62]	2.3%
Laval 2006 Brazil <5y	232	648				0.36	[0.32; 0.40]	2.4%
Lopes 2012 Brazil <1y	24	139	- 120			0.17	[0.11; 0.25]	2.2%
Lucarevschi 2003 Brazil <6y	209	987	-			0.21	[0.19; 0.24]	2.4%
Melgar 2016 Guatemala <5y	158	500		1		0.32	[0.28; 0.36]	2.3%
Méndez 2013 Guatemala <5y	163	397	-			0.41	[0.36; 0.46]	2.3%
Menezes 2015 Brazil <5y	103	203	-			0.51	[0.44; 0.58]	2.3%
Mercado 2012 Peru <2y	573	2123	1.0			0.27	[0.25; 0.29]	2.4%
Nelson 2018 Peru <5y	918	1015			12	0.90	[0.88; 0.92]	2.3%
Neves 2013 Brazil <6y	121	242		-121-		0.50	[0.44; 0.56]	2.3%
Neves 2017 Brazil <6y	118	522				0.23	[0.19; 0.26]	2.3%
Ochoa 2005 Brazil <2y	272	666	1	11		0.41	[0.37; 0.45]	2.4%
Parra 2013 Colombia 1-2y	224	443				0.51	[0.46; 0.55]	2.3%
Quintero 2006 Venezuela (Bolivarian Republic of) <5y	30	125				0.24	[0.17; 0.32]	2.3%
Quintero 2011 Venezuela 2-5y	71	250				0.28	[0.23; 0.34]	2.3%
Rey 2002 Brazil <5y	499	911				0.55	[0.51; 0.58]	2.4%
Reyna 2008 Mexico <5y	176	498		H		0.35	[0.31: 0.40]	2.3%
Rivera-Olivero 2007 Venezuela <5y	161	356				0.45	[0.40; 0.51]	2.3%
Rivera-Olivero 2011 Venezuela <5y	271	1004	100			0.27	[0.24; 0.30]	2.4%
Rivera-Olivero 2014 Venezuela <5y	23	82	-10	-		0.28	[0.19; 0.39]	2.2%
Silva 2022 Brazil <6y	59	660	10			0.09	[0.07: 0.11]	2.3%
Solorzano-Santos 2005 Mexico <5y	122	573				0.21	[0.18; 0.25]	2.3%
Toledo-Romaní 2017 Cuba <5v	564	2115	23			0.27	[0.25: 0.29]	2.4%
Watkins 2021 Haiti <2v	308	685				0.45	[0.41: 0.49]	2.4%
Wolf 2000 Brazil <5v	205	435				0.47	10.42: 0.521	2.3%
Random effects model		27443	<	-		0.41	10.35: 0.481	95.4%
Heterogeneity: $l^2 = 98\%$, $\tau^2 = 0.7799$, $p = 0$								
Age = 6-64								
Cardozo 2006 Brazil 10-19y	83	1013				0.08	[0.07; 0.10]	2.3%
Age = 65-100								
Alturraza-Hernaez 2007 Chile ≥65y	31	118	-11-			0.26	[0.19; 0.35]	2.3%
Random effects model		28574	<	>		0.40	[0.33; 0.46]	100.0%
Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.8523$, $p = 0$			-	1 1				
Test for subgroup differences: $\chi_2^2 = 136.16$, df = 2 ($p < 0.01$)			0.2 0	0.4 0.6	0.8			

Fig 2. Meta- analysis of nasopharyngeal carriage ratio by age group.

https://doi.org/10.1371/journal.pone.0297767.g002

were included consecutively S5 Table in <u>S1 File</u>. Finally, one case-control study was classified with a moderate risk of bias. The study showed the most inconvenience in the statistical management of data, sample size calculation, and blindness of observations S6 Table in <u>S1 File</u>.

Discussion

Streptococcus pneumoniae nasopharyngeal carriage could be a precondition for pneumococcal disease and community transmission [78]. There are approximately one hundred serotypes, several producing invasive pneumococcal disease (IPD). The prevalence of nasopharyngeal

Study	Events	Total		Proportion	15%-CI	Weight
Lustrum = 1995-1999			_			
Allen 2003 Jamaica <18y	90	276		0.34	[0.28; 0.40]	1.6%
Aturaza-Hernaez 2007 Chile 265y	31	118		0.26	[0.19; 0.35]	1.6%
Berezin 2007 Brazil <5y 1997-1998	139	440	-	0.32	[0.27; 0.36]	1.7%
Gomez-Barrets 2002 Mexico AA	220	/3		0.71	10.59, 0.81]	1.5%
Lucarevischi 2003 Brazil «By	200	100	-	0.21	[0.19, 0.24]	1.7%
Octobe 2000 Peru 42y 1990-1997	/5	1/0	100	0.44	10.37, 0.521	1.074
Wolf 2000 Brazil edu	205	475		0.55	10.51; 0.56]	1.776
Random effects model	499	1410	1 100	0.40	10 29: 0 521	13.15
Heterogeneity: J ² = 97%, z ² = 0.4643, p < 0.01					fares, ereal	
Lustown # 2003-2004						
Berezin 2007 Brazil +5y 2000-2001	42	80		0.52	10.41:0.641	1.6%
Cardozo 2006 Brazil 10-19v	83	1013	1	0.05	10.07:0.101	1.7%
Culotta 2002 Peru <5v	146	302	-00-	0.43	10.43: 0.541	1.6%
Espinosa-de-los-Monteros 2007 Mexico	829	2777		0.30	10,28: 0.321	1.7%
Espinosa-de-los-Monteros 2010 Mexico <1y	58	183		0.32	10.25: 0.391	1.6%
Fernández 2018 Uruguay <2y 2002-2003	177	356	*	0.50	(0.44; 0.55]	1.7%
Laval 2006 Brazil <5y	232	648		0.36	[0.32; 0.40]	1.7%
Neves-Reis 2008 Brazil AA	95	262		0.36	0.30, 0.42]	1.6%
Nicoletti 2007 Brazil ≿18y	64	385	-	0.17	[0.13; 0.21]	1,6%
Ochoa 2005 Peru <2y 2001	75	226		0.33	0.27; 0.40]	1.6%
Ochoa 2005 Peru <2y 2003	122	270		0.45	[0.39, 0.51]	1.6%
Quintero 2006 Venezuela (Bolivarian Republic of) <5y	30	125		0.24	[0.17; 0.32]	1.6%
Rivera-Olivero 2007 Venezuela <5y	161	356		0.45	[0.40; 0.51]	1.7%
Solorzano-Santos 2005 Mexico <5y	122	573	-	0.21	0.18; 0.25]	1.7%
Random effects model		7556	~	0.32	[0.25; 0.41]	23.0%
Heterogeneity: J* = 97%, r* = 0.4765, p < 0.01						
Lustrum = 2005-2009						
Bello-González 2010 Venezuela AA	65	148		0.44	0.36; 0.52]	1.6%
Cassiolato 2019 Brazil <2y 2005-2009	207	501	*	0.41	0.37; 0.45]	1.7%
Franco 2010 Brazil <5y	686	1192	=	0.58	[0.55; 0.60]	1.7%
Inveranti 2011 Bolivia <18y	202	601		0.34	10.30, 0.38]	1.7%
Lamaro-Cardoso 2012 Brazil AA	111	224		0.50	10.43; 0.56]	1,6%
Lopes 2012 Brazil <1y	24	139		0.17	[0.11: 0.25]	1.6%
Méndez 2013 Guatemala <5y	103	397	*	0,41	[0.36; 0.46]	1,7%
Menezes 2015 Brazil <5y	103	203		0.51	[0.44; 0.58]	1.6%
Mercado 2012 Peru <2y	573	2123		0.27	[0.25; 0.29]	1.7%
Nelson 2018 Peru <5y 2009	467	505		0.92	[0.90; 0.94]	1.6%
Para 2013 Colombia 1-29 2005-2009	137	246	- 10	0.56	10.49, 0.62]	1.0%
Quintero 2011 Venezuela 2-by	.71	250		0.25	[0.23, 0.34]	1,076
Poryna 2006 MERCO 409	170	490		0.35	10.31, 0.401	1.7 76
Plance Officers 2014 Venezuela 45y	27	82		0.28	10 19 0 391	1.075
Pandom effects model	2.3		100	0.43	10.19, 0.39	1.076
Heterogeneity: J ² = 96%, t ² = 0.8341, p < 0.01				0.44	formation or over	
Lustom a 2010-2014						
Arvirade 2014 Brazil s/2v	528	1287	-	0.41	10.35 0.441	1.2%
Brandiacoa 2016 Brazil 1-2v	397	901	and a	0.44	12.41: 0.471	1.2%
Cassiciato 2019 Brazil «2v 2011-2013	108	400		0.49	10.44 0.551	1.7%
Espinosa-de-los-Monteros-Prinez 2019 Mexico >50y	51	236		0.22	10.17:0.271	1.6%
Fernández 2018 Uruguay <2v 2012-2013	35	101		0.35	10.25: 0.451	1.6%
Grialva 2014 Peru <5y	254	309		0.82	10.77: 0.861	1.6%
Laranjeira 2014 Brazil 2-5y	165	291	-10-	0.57	10.51; 0.62]	1.6%
Melpar 2016 Quaternala <5y	158	500		0.32	0.28; 0.36]	1.7%
Nelson 2018 Peru +5y 2011	451	509		0.89	10.86; 0.91]	1.6%
Neves 2013 Brazil <0y	121	242	-#-	0.50	[0.44; 0.56]	1.6%
Neves 2017 Brazil <0y	118	522		0.23	[0.19, 0.26]	1.7%
Parra 2013 Colombia 1-2y 2010-2011	87	197		0.44	[0.37; 0.51]	1.6%
Silva 2022 Brazil <0y	59	660	1	0.09	[0.07; 0.11]	1.6%
Toledo-Romani 2017 Cuba <2y 2013	212	900	E2	0.22	[0.19, 0.24]	1.7%
Random effects model		7135	-	0.42	[0.29; 0.57]	23.0%
Lustrum = 2015-2019			_			
Brandileone 2019 Brazil 1-2y	331	631		0.62	[0.58; 0.66]	1.7%
Cassiolato 2019 Brazil <2y 2014-2017	348	531		0.66	0.61; 0.70]	1.7%
Chavez-Amaro 2019 Cuba 1-5y 2016	189	005	-	0.34	10.30, 0.38]	1.7%
Durin 2021 Dominican-Republic <5y	11	125		0.62	0.52 0.70	1.6%
Genue 2017 Argentina Koy	221	389		0.62	0.56(0.67)	1.7%
Kumar 2020 Darbados Hoy	25	210		0.12	10.00(0.17)	1.075
Paralada 2021 Exceder AA	40	103		0.13	10.06, 0.18	1.676
Tolado Romani 2017 Cuba de 2014-2016	00	1155		0.40	10.32, 0.46	1.079
Warking 2024 Malk 220	322	4.05		0.31	10.41:0.40	1.776
Random affects model	346	4495	100	0.43	10 27: 0 553	16.45
Heterogeneity: I ² = 96%, r ² = 0.9235, p < 0.01		4435		0.40	[n.e., n.so]	10.476
Kandom effects model		30713		0.39	[0.34; 0.45]	100.0%
Test for suborous differences: - 2 01 of = 4 (n = 0.57)			02 04 04 04			
······································			VX VA V0 V8			

Fig 3. Meta- analysis of nasopharyngeal carriage ratio by lustrum.

https://doi.org/10.1371/journal.pone.0297767.g003

carriage reported varies between 20–40% in healthy children and ranges from 5 to 10% among adults less than 65 years old, similar to our finding [4, 79]. While several studies showed colonization data among young children, fewer studies were performed in the elderly population. Almeida S, *et al.* [80] found a low global nasopharyngeal carriage (2.3%) in the elderly population living in Portugal. In our study, the data about adults older than 65 in the LAC region was found to have a higher prevalence rate of nasopharyngeal colonization, probably due to only one study being included. Pneumococcal carriage is highest during the first five years of life, peaking in the first two years in most developed countries [3].

Study	Events	Total		Proportion	95%-CI	Weight
Country = Jamaica Allen 2003 Jamaica <18y	93	276		0.34	[0.28; 0.40]	1.9%
Country = Chile Alturraza-Hernaez 2007 Chile ≥65y	31	118		0.26	[0.19; 0.35]	1.8%
Country = Brazil Andrade 2014 Brazil -2y Berezin 2007 Brazil -2y Brandileone 2016 Brazil 1-2y Cardozo 2006 Brazil 1-2y Cassiolat 2019 Brazil 1-2y Cassiolat 2019 Brazil 1-2y Cassiolat 2019 Brazil -2y Franco 2010 Brazil -5y Lamaro-Cardoso 2012 Brazil AA Laranjeira 2014 Brazil -5y Lopes 2012 Brazil -5y Lucarevschi 2003 Brazil -6y Menezes 2015 Brazil -6y Neves 2013 Brazil -6y Neves 2013 Brazil -6y Neves 2013 Brazil -6y Neves 2013 Brazil -6y Neves 2018 Brazil -5y Brita 2022 Brazil -5y Wolf 2000 Brazil -5y Wolf 2000 Brazil -5y Random effects model Heterogeneity; I [#] = 98%, z ⁴ = 0.8827, p < 0.01	528 181 397 331 83 753 686 111 165 232 24 209 103 121 118 95 64 272 355 499 59 205	1287 520 901 531 1432 21192 224 291 648 139 987 203 242 522 262 385 666 666 666 783 911 660 435 14234	* ** ** ** * ** ** **	0 41 0 35 0 44 0 62 0 08 0 53 0 53 0 56 0 57 0 36 0 17 0 21 0 51 0 50 0 23 0 36 0 17 0 41 0 45 0 55 0 59 0 44 0 45 0 59 0 44 0 45 0 59 0		1.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.9%
Country = Venezuela Bello-González 2010 Venezuela AA Quintero 2006 Venezuela (Bolivarian Republic of) <5y Quintero 2011 Venezuela <5y Rivera-Olivero 2011 Venezuela <5y Rivera-Olivero 2014 Venezuela <5y Sisco 2010 Venezuela AA Random effects model Heterogeneity: <i>I</i> ² = 97%, τ ² = 0.3213, <i>p</i> < 0.01	65 30 71 161 271 23 294	148 125 250 356 1004 82 488 2453	++++ +++ ↓	0.44 0.28 0.45 0.27 0.28 0.60 0.36	[0.36; 0.52] [0.17; 0.32] [0.23; 0.34] [0.40; 0.51] [0.24; 0.30] [0.19; 0.39] [0.56; 0.65] [0.27; 0.47]	1.9% 1.8% 1.9% 1.9% 1.8% 1.8% 1.9% 13.1%
Country = Peru Cullotta 2002 Peru <5y Grijalva 2014 Peru <5y	146 254 573 918	302 309 2123 1015 3749		0.48 0.82 0.27 0.90 0.66	[0.43; 0.54] [0.77; 0.86] [0.25; 0.29] [0.88; 0.92] [0.32; 0.89]	1.9% 1.9% 1.9% 7.6%
Country = Dominican-Republic Dunn 2021 Dominican-Republic <5y	77	125		- 0.62	[0.52; 0.70]	1.8%
Country = Mexico Espinosa-de-los-Monteros 2007 Mexico <6y Espinosa-de-los-Monteros 2010 Mexico <1y Espinosa-de-los-Monteros-Pérez 2019 Mexico >50y Gomez-Barreto 2002 Mexico AA Reyna 2008 Mexico <5y Solorzano-Santos 2005 Mexico <5p Random effects model Heterogenety; /² = 94%, τ² = 0.5792, p < 0.01	829 58 51 52 176 122	2777 183 236 73 498 573 4340	* -	0.30 0.32 0.22 0.71 0.35 0.21 0.34	[0.28; 0.32] [0.25; 0.39] [0.17; 0.27] [0.59; 0.81] [0.31; 0.40] [0.18; 0.25] [0.22; 0.49]	1.9% 1.9% 1.9% 1.8% 1.9% 1.9% 11.2%
Country = Uruguay Fernández 2018 Uruguay <2y	456	831	-	0.55	[0.51; 0.58]	1.9%
Country = Argentina Gentile 2017 Argentina <5y	221	359	+	0.62	[0.56; 0.67]	1.9%
Country = Bolivia Inverariti 2011 Bolivia <18y	202	601	-	0.34	[0.30; 0.38]	1.9%
Country = Barbados Kumar 2020 Barbados <6y Kumar 2021 Barbados <10y Random effects model Heterogeneity: $l^2 = 0\%$, $s^2 = 0$, $p = 0.74$	25 25	216 198 414	≠ ⇒	0.12 0.13 0.12	[0.08; 0.17] [0.08; 0.18] [0.09; 0.16]	1.8% 1.8% 3.6%
Country = Guatemala Melgar 2016 Guatemala <5y Méndez 2013 Guatemala <5y Random effects model Heterogeneity: $l^2 = 88\%$, $r^5 = 0.0745$, $p < 0.01$	158 163	500 397 897	**	0.32 0.41 0.36	[0.28; 0.36] [0.36; 0.46] [0.27; 0.46]	1.9% 1.9% 3.8%
Country = Colombia Parra 2013 Colombia 1-2y	224	443	-	0.51	[0.46; 0.55]	1.9%
Country = Ecuador Regalado 2021 Ecuador AA	65	163		0.40	[0.32; 0.48]	1.9%
Country = Cuba Toledo-Romaní 2017 Cuba <5y	564	2115		0.27	[0.25; 0.29]	1.9%
Country = Haiti Watkins 2021 Haiti <2y	308	685	-	0.45	[0.41; 0.49]	1.9%
Random effects model Heterogeneity: $l^2 = 98\%$, $r^2 = 0.7470$, $p = 0$ Test for subgroup differences: $\chi_{15}^2 = 473.10$, df = 15 ($p < 0.01$)		31803	0.2 0.4 0.6	0.38	[0.33; 0.44]	100.0%

Fig 4. Meta-analysis of S. pneumoniae carriage proportion by country.

https://doi.org/10.1371/journal.pone.0297767.g004

0.2 0.4 0.6 0.8 Proportion

0.52 0.21 0.54 0.50 0.06 0.33 0.42 0.50 0.24 0.35

0.27 [0.16; 0.42]

95%-CI Weight

[0.00; 0.03] [0.38; 0.65] [0.16; 0.27] [0.33; 0.74] [0.46; 0.54] [0.23; 0.63] [0.23; 0.63] [0.01; 0.99] [0.18; 0.30] [0.30; 0.41]

8.3% 7.3% 8.0% 8.3% 7.5% 8.4% 7.9% 8.3% 7.6% 3.4% 8.3% 8.3%

100.0%

Nasopharyngeal carriage ratio (PCV13 serotypes)

Fig 5. Meta- analysis nasopharyngeal carriage ratio among children <2 years old.

0.2

04 06 08

https://doi.org/10.1371/journal.pone.0297767.g005

Regev-Yochay 2004 [81] found that the rate of S. pneumoniae carriage was higher among children than adults in the same community. Hadinegoro 2016 [82] examined healthy children in Indonesia and identified several prevalent serotypes of S. pneumoniae. León 2019 [83] focused on indigenous communities in Ecuador and highlighted the need for studies on respiratory pathogen colonization in high-risk groups. Gámez 2020 [84] investigated nasopharyngeal colonization in children in southwestern Colombia and found a high frequency of S. pneumoniae carriage, including strains resistant to multiple antimicrobial agents.

As was described in developed and undeveloped countries, an inverse relationship between age and carriage exists [85, 86]. In line with those findings, we observed that patients under five have the highest proportion of carriage.

Disparities in the prevalence of carriage between different countries, ranging from relatively low prevalence in countries such as Barbados, Chile, and Cuba to high prevalence in Peru, Argentina, and the Dominican Republic, call for further exploration of underlying factors, such as socioeconomic conditions, health care infrastructure, and vaccination policies.

Regarding the serotype distribution in the nasopharyngeal carriage, the analysis considered the serotypes included in the PCV10 and PCV13 vaccines in the region. Previous studies have shown that the introduction of PCV10 and PCV13 in the NIP led to a decrease in pneumococcal carriage, transmission, and circulation, resulting in a reduction of IPD [87-92]. Introducing pneumococcal conjugated vaccines (PCV) in national immunization programs has increased the nasopharyngeal colonization by serotypes not included in vaccines, with a reduction of vaccine serotypes by replacement [9]. When we analyze the distribution of serotypes in pneumococcal carriage, serotypes included in PCV10 and PCV13 decreased during the last lustrum (2015–2019), probably related to serotype replacement. However, non-PCV10/

Nasopharyngeal carriage ratio (PCV13 serotypes)

https://doi.org/10.1371/journal.pone.0297767.g006

PCV13 serotypes in nasopharyngeal carriage predominate in all age groups in the region, similar to those reported by Rybak A et al. [93] The effect of vaccination on carriage offers herd protection mediated through a reduction in nasopharyngeal carriage of vaccine serotypes and pneumococcal transmission in the community.

Our study has some limitations; the heterogeneity and risk of bias of study settings and the absence of active nor passive pneumococcal nasopharyngeal carriage surveillance programs in countries in our region. Data about underlying diseases, environmental factors, or pneumo-coccal vaccination status of studies included were unavailable. In assessing the risk of bias, sample selection, size, and outcome measurement were the most critical aspects. Case series were mostly low or medium risk, with selection and statistical methods concerns.

Fig 6. Meta- analysis nasopharyngeal carriage ratio among children <5 years old.

The present systematic review, which includes 54 studies and covers data from 31,803 patients, offers a novel, detailed, and exhaustive panorama of the nasopharyngeal carriage of *S. pneumoniae* in the Latin American region. This extensive database provides valuable information on the epidemiology and prevalence of this pathogen, providing data on its impact on public health and possible implications for vaccination strategies. Our study contributes a baseline that could be useful to monitor the impact of new pneumococcal vaccine introduction on nasopharyngeal carriage in LAC.

In conclusion, the data presented in this study highlights the need to establish national surveillance programs to monitor pneumococcal nasopharyngeal carriage to monitor serotype prevalence and replacement before and after including new pneumococcal vaccines in the region. In addition, to analyze differences in the prevalence of serotypes between countries, emphasize the importance of approaches to local realities to reduce IPD effectively.

Supporting information

S1 File. (DOCX)

Acknowledgments

The authors thank Mr.Daniel Comande, the Institute for Clinical Effectiveness and Health Policy librarian, for contributing to the bibliographic searches.

Author Contributions

Conceptualization: Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.

- **Data curation:** Martín Brizuela, Tomás Alconada, María Macarena Sandoval, Eugenia Ramirez Wierzbicki, Joaquín Cantos, Paula Gagetti, Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.
- Formal analysis: Martín Brizuela, Tomás Alconada, Paula Gagetti, Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.
- Funding acquisition: Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.
- Investigation: María Carolina Palermo, María Macarena Sandoval, Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.

Methodology: Ariel Bardach, Silvina Ruvinsky.

Project administration: Ariel Bardach.

Resources: Agustín Ciapponi.

Software: Joaquín Cantos.

Supervision: Paula Gagetti, Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.

- Validation: Martín Brizuela, María Carolina Palermo, Tomás Alconada, María Macarena Sandoval, Eugenia Ramirez Wierzbicki, Joaquín Cantos, Paula Gagetti, Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.
- Visualization: Martín Brizuela, María Carolina Palermo, Tomás Alconada, María Macarena Sandoval, Eugenia Ramirez Wierzbicki, Joaquín Cantos, Paula Gagetti, Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.

- Writing original draft: Martín Brizuela, María Carolina Palermo, Tomás Alconada, María Macarena Sandoval, Eugenia Ramirez Wierzbicki, Joaquín Cantos, Paula Gagetti, Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.
- Writing review & editing: Martín Brizuela, María Carolina Palermo, Tomás Alconada, María Macarena Sandoval, Eugenia Ramirez Wierzbicki, Joaquín Cantos, Paula Gagetti, Agustín Ciapponi, Ariel Bardach, Silvina Ruvinsky.

References

- GBD 2019 Meningitis Antimicrobial Resistance Collaborators. Global, regional, and national burden of meningitis and its aetiologies, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2023; 22: 685–711. https://doi.org/10.1016/S1474-4422(23)00195-3 PMID: 37479374
- O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009; 374: 893–902. https://doi.org/10.1016/S0140-6736(09)61204-6 PMID: 19748398
- Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O'Brien KL, et al. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012; 11: 841–855. <u>https://doi.org/10.1586/erv.12.53</u> PMID: 22913260
- Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 2018; 16: 355–367. <u>https://doi.org/10.1038/s41579-018-0001-8</u> PMID: 29599457
- Klugman KP. Herd protection induced by pneumococcal conjugate vaccine. Lancet Global Health. 2014. pp. e365–6. https://doi.org/10.1016/S2214-109X(14)70241-4 PMID: 25103373
- Chan J, Nguyen CD, Dunne EM, Kim Mulholland E, Mungun T, Pomat WS, et al. Using pneumococcal carriage studies to monitor vaccine impact in low- and middle-income countries. Vaccine. 2019; 37: 6299–6309. https://doi.org/10.1016/j.vaccine.2019.08.073 PMID: 31500968
- Hammitt LL, Bruden DL, Butler JC, Baggett HC, Hurlburt DA, Reasonover A, et al. Indirect effect of conjugate vaccine on adult carriage of Streptococcus pneumoniae: an explanation of trends in invasive pneumococcal disease. J Infect Dis. 2006; 193: 1487–1494. https://doi.org/10.1086/503805 PMID: 16652275
- de Oliveira LH, Shioda K, Valenzuela MT, Janusz CB, Rearte A, Sbarra AN, et al. Declines in Pneumonia Mortality Following the Introduction of Pneumococcal Conjugate Vaccines in Latin American and Caribbean Countries. Clin Infect Dis. 2021; 73: 306–313. https://doi.org/10.1093/cid/ciaa614 PMID: 32448889
- Fortuna LBDP, Miranda FM, Antunes IMF, Silva AB, Cabral AS, Dolores ÍM, et al. Prevalence, capsular types, antimicrobial resistance and risk factors associated with pneumococcal carriage among children after long-term 10-valent pneumococcal conjugate vaccine use in Brazil. Vaccine. 2023; 41: 3111– 3118. https://doi.org/10.1016/j.vaccine.2023.04.023 PMID: 37061371
- Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet. 2011; 378: 1962–1973. https://doi.org/10.1016/S0140-6736(10)62225-8 PMID: 21492929
- Fitzwater SP, Chandran A, Santosham M, Johnson HL. The worldwide impact of the seven-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2012; 31: 501–508. https://doi.org/10.1097/INF. 0b013e31824de9f6 PMID: 22327872
- Isaacman DJ, McIntosh ED, Reinert RR. Burden of invasive pneumococcal disease and serotype distribution among Streptococcus pneumoniae isolates in young children in Europe: impact of the 7- valent pneumococcal conjugate vaccine and considerations for future conjugate vaccines. Int J Infect Dis. 2010; 14:e197–209 https://doi.org/10.1016/j.ijjd.2009.05.010 PMID: 19700359
- 13. Moher D, Stewart L, Shekelle P. Implementing PRISMA-P: recommendations for prospective authors. Syst Rev. 2016; 5: 15. https://doi.org/10.1186/s13643-016-0191-y PMID: 26822481
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000; 283: 2008–2012. https://doi.org/10.1001/jama.283.15.2008 PMID: 10789670
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. <u>https://doi.org/ 10.1136/bmj.n71</u> PMID: 33782057

- Babineau J. Product Review: Covidence (Systematic Review Software). J Can Health Libr Assoc. 2014; 35: 68–71.
- 17. Better systematic review management. In: Covidence. [cited 1 May 2023]. http://www.covidence.org
- EPOC. Cochrane Effective Practice Organisation of Care Group. Suggested risk of bias criteria for EPOC reviews. http://epoc.cochrane.org/sites/epoc.cochrane.org/files/uploads/14%20Suggested% 20risk%200f%20bias%20criteria%20for%20EPOC%20reviews%202013%2008%2012.pdf. 2014.
- Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Ms C, Li T, Page MJ, et al., editors. Cochrane Handbook for Systematic Reviews of Interventions version 60 (updated July 2019). Cochrane; 2019.
- 20. Website. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
- Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019; 22: 153–160. https://doi.org/10.1136/ebmental-2019-300117 PMID: 31563865
- 22. Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat. 1950; 21: 607–611.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7: 177–188. <u>https://</u> doi.org/10.1016/0197-2456(86)90046-2 PMID: 3802833
- Wolf B, Rey LC, Brisse S, Moreira LB, Milatovic D, Fleer A, et al. Molecular epidemiology of penicillinresistant Streptococcus pneumoniae colonizing children with community-acquired pneumonia and children attending day-care centres in Fortaleza, Brazil. J Antimicrob Chemother. 2000; 46: 757–765. https://doi.org/10.1093/jac/46.5.757 PMID: 11062195
- Cullotta AR, Kalter HD, Delgado J, Gilman RH, Facklam RR, Velapatino B, et al. Antimicrobial susceptibilities and serotype distribution of Streptococcus pneumoniae isolates from a low socioeconomic area in Lima, Peru. Clin Diagn Lab Immunol. 2002; 9: 1328–1331. <u>https://doi.org/10.1128/cdli.9.6.1328-1331.2002</u> PMID: 12414769
- Gomez-Barreto D, Calderon-Jaimes E, Rodriguez RS, Espinosa LE, Vina-Flores L, Jimenez-Rojas V. Carriage of antibiotic-resistant pneumococci in a cohort of a daycare center. Salud Publica Mex. 2002; 44: 26–32. https://doi.org/10.1590/s0036-36342002000100004 PMID: 11910716
- Rey LC, Wolf B, Moreira JLB, Milatovic D, Verhoef J, Farhat CK. Antimicrobial susceptibility and serotypes of nasopharyngeal Streptococcus pneumoniae in children with pneumonia and in children attending day-care centres in Fortaleza, Brazil. Int J Antimicrob Agents. 2002; 20: 86–92. <u>https://doi.org/10. 1016/s0924-8579(02)00128-0 PMID: 12297356</u>
- Allen UD, Thomas S, Carapetis J, Henry S, Wasfy S, Lovgren M, et al. Serotypes of respiratory tract isolates of Streptococcus pneumoniae from Jamaican children. Int J Infect Dis. 2003; 7: 29–34. <u>https://doi.org/10.1016/s1201-9712(03)90039-7 PMID</u>: 12718807
- Lucarevschi BR, Baldacci ER, Bricks LF, Bertoli CJ, Teixeira LM, Mendes CMF, et al. Oropharyngeal carriage of Streptococcus pneumoniae by children attending day care centers in Taubate, SP: Correlation between serotypes and the conjugated heptavalent pneumococcal vaccine. J Pediatr. 2003; 79: 215–220.
- Ochoa TJ, Rupa R, Guerra H, Hernandez H, Chaparro E, Tamariz J, et al. Penicillin resistance and serotypes/serogroups of Streptococcus pneumoniae in nasopharyngeal carrier children younger than 2 years in Lima, Peru. Diagn Microbiol Infect Dis. 2005; 52: 59–64. <u>https://doi.org/10.1016/j.diagmicrobio.</u> 2004.12.014 PMID: 15878444
- Solorzano-Santos F, Ortiz-Ocampo LA, Miranda-Novales Ma G, Echaniz-Aviles G, Soto-Nogueron A, Guiscafre-Gallardo H. Prevalence of Streptococcus pneumoniae serotypes on nasopharyngeal colonization in children of Mexico City. Salud Publica Mex. 2005; 47: 276–281.
- 32. Cardozo DM, Nascimento-Carvalho CM, Brandao MA, Santos Azevedo GM, De Souza FR, Silveira Silva NM, et al. Antimicrobial resistance and serotypes of nasopharyngeal strains of Streptococcus pneumoniae in Brazilian adolescents. Microb Drug Resist. 2006; 12: 29–32. <u>https://doi.org/10.1089/mdr.2006.12.29 PMID: 16584305</u>
- 33. Laval CB, de Andrade ALSS, Pimenta FC, de Andrade JG, de Oliveira RM, Silva SA, et al. Serotypes of carriage and invasive isolates of Streptococcus pneumoniae in Brazilian children in the era of pneumo-coccal vaccines. Clin Microbiol Infect. 2006; 12: 50–55. https://doi.org/10.1111/j.1469-0691.2005. 01304.x PMID: 16460546
- **34.** Quintero B, Araque M. Perfil serológico y antibiotipia de cepas de Streptococcus pneumoniae aisladas de portadores nasales pediátricos. Invest Clin. 2006; 47: 17–26.
- Altuzarra Hernaez R, Valenzuela BMT, Trucco AO, Inostroza SJ, Granata SP, Fleiderman VJ. Nasal carriage of Streptococcus pneumoniae in elderly subjects according to vaccination status. Rev Med Chil. 2007; 135: 160–166.

- Berezin EN, Cardenuto MD, Ferreira LL, Otsuka M, Guerra ML, Brandileone MCC. Distribution of Streptococcus pneumoniae serotypes in nasopharyngeal carriage and in invasive pneumococcal disease in Sao Paulo, Brazil. Pediatr Infect Dis J. 2007; 26: 643–645. <u>https://doi.org/10.1097/INF.</u> 0b013e3180616d0f PMID: 17596810
- 37. Espinosa-De Los Monteros LE, Jimenez-Rojas V, Aguilar-Ituarte F, Cashat-Cruz M, Reyes-Lopez A, Rodriguez-Suarez R, et al. Streptococcus pneumoniae isolates in healthy children attending day-care centers in 12 states in Mexico. Salud Publica Mex. 2007; 49: 249–255. <u>https://doi.org/10.1590/s0036-36342007000400004</u> PMID: 17710273
- Nicoletti C, Brandileone MC, Guerra ML, Levin AS. Prevalence, serotypes, and risk factors for pneumococcal carriage among HIV-infected adults. Diagn Microbiol Infect Dis. 2007; 57: 259–265. https://doi. org/10.1016/j.diagmicrobio.2006.08.021 PMID: 17292578
- Rivera-Olivero IA, Bogaert D, Bello T, Del Nogal B, Sluijter M, Hermans PWM, et al. Pneumococcal carriage among indigenous Warao children in Venezuela: Serotypes, susceptibility patterns, and molecular epidemiology. Clin Infect Dis. 2007; 45: 1427–1434. <u>https://doi.org/10.1086/522984</u> PMID: 17990224
- Reis JN, Palma T, Ribeiro GS, Pinheiro RM, Ribeiro CT, Cordeiro SM, et al. Transmission of Streptococcus pneumoniae in an urban slum community. J Infect. 2008; 57: 204–213. https://doi.org/10.1016/j. jinf.2008.06.017 PMID: 18672297
- Reyna J, Limon AE. High Prevalence of Serotype 11B of Streptococcus pneumoniae Isolated in the Nasopharynx of Mexican Children. Arch Med Res. 2008; 39: 629–630. https://doi.org/10.1016/j. arcmed.2008.03.003 PMID: 18662597
- Bello González T, Rivera-Olivero IA. Estado de portador nasofaríngeo de Streptococcus pneumoniae en madres e hijos de la población indígena Panare del estado Bolívar, Venezuela. Rev Argent Dermatosifilol. 2010.
- 43. Espinosa-de los Monteros LE, Aguilar-Ituarte F, Jimenez-Juarez RN, Rodriguez-Suarez RS, Gomez-Barreto D. Serotype replacement of Streptococcus pneumoniae in children with pneumococcal conjugate vaccine 7V in Mexico. Salud Publica Mex. 2010; 52: 4–13.
- Franco CM, Andrade ALS, Andrade JG, Almeida e Silva S, Oliveira CRM, Pimenta FC, et al. Survey of nonsusceptible nasopharyngeal Streptococcus pneumoniae isolates in children attending day-care centers in Brazil. Pediatr Infect Dis J. 2010; 29: 77–79. <u>https://doi.org/10.1097/INF.0b013e3181af7e90</u> PMID: 19935117
- 45. Sisco MC, Rivera-Olivero IA, Rodriguez M, Del Nogal B, Hermans P, De Waard J. Pneumococcal carriage in the Warao Amerindians from Venezuela: High colonization rates and frequent serotype sharing among mothers and children. Clin Microbiol Infect. 2010; 16: S385.
- 46. Inverarity D, Diggle M, Ure R, Johnson P, Altstadt P, Mitchell T, et al. Molecular epidemiology and genetic diversity of pneumococcal carriage among children in Beni State, Bolivia. Trans R Soc Trop Med Hyg. 2011; 105: 445–451. https://doi.org/10.1016/j.trstmh.2011.04.013 PMID: 21714978
- Quintero B, Araque M, Van Der Gaast-De Jongh C, Escalona F, Correa M, Morillo-Puente S, et al. Epidemiology of Streptococcus pneumoniae and Staphylococcus aureus colonization in healthy Venezuelan children. Eur J Clin Microbiol Infect Dis. 2011; 30: 7–19. https://doi.org/10.1007/s10096-010-1044-6 PMID: 20803226
- Rivera-Olivero IA, Del Nogal B, Sisco MC, Bogaert D, Hermans PWM, De Waard JH. Carriage and invasive isolates of Streptococcus pneumoniae in Caracas, Venezuela: The relative invasiveness of serotypes and vaccine coverage. Eur J Clin Microbiol Infect Dis. 2011; 30: 1489–1495. https://doi.org/ 10.1007/s10096-011-1247-5 PMID: 21499972
- 49. Lamaro-Cardoso J, de Lemos APS, Carvalho MDG, Pimenta FC, Roundtree A, Motta L, et al. Molecular epidemiological investigation to determine the source of a fatal case of serotype 22F pneumococcal meningitis. J Med Microbiol. 2012; 61: 686–692. https://doi.org/10.1099/jmm.0.040790-0 PMID: 22286925
- Lopes CC, Berezin EN, Scheffer D, Huziwara R, Sliva MI, Brandao A, et al. Pneumococcal nasopharyngeal carriage in infants of mothers immunized with 23V non-conjugate pneumococcal polysaccharide vaccine. J Trop Pediatr. 2012; 58: 348–352. https://doi.org/10.1093/tropej/fmr107 PMID: 22238137
- Mercado EH, Egoavil M, Horna SG, Torres N, Velásquez R, Castillo ME, et al. Serotipos de neumococo en niños portadores antes de la vacunación antineumocócica en el Perú. Rev Peru Med Exp Salud Publica. 2012; 29: 53–60.
- Méndez D, de Bolaños R, Ramos R, Moreno J, Fernández M. Prevalencia del Streptococcus pneumoniae en cultivos nasofaríngeos de niños que asisten a guarderías en Panamá. Pediátr Panamá. 2013; 42: 6–13.
- Neves FP, Pinto TC, Corrêa MA, dos Anjos Barreto R, de Souza Gouveia Moreira L, Rodrigues HG, et al. Nasopharyngeal carriage, serotype distribution and antimicrobial resistance of Streptococcus

pneumoniae among children from Brazil before the introduction of the 10-valent conjugate vaccine. BMC Infect Dis. 2013; 13: 318. https://doi.org/10.1186/1471-2334-13-318 PMID: 23849314

- 54. Parra EL, De La Hoz F, Díaz PL, Sanabria O, Realpe ME, Moreno J. Changes in Streptococcus pneumoniae serotype distribution in invasive disease and nasopharyngeal carriage after the heptavalent pneumococcal conjugate vaccine introduction in Bogotá, Colombia. Vaccine. 2013; 31: 4033–4038.
- Andrade AL, Ternes YM, Vieira MA, Moreira WG, Lamaro-Cardoso J, Kipnis A, et al. Direct effect of 10valent conjugate pneumococcal vaccination on pneumococcal carriage in children in Brazil. PLoS One. 2014; 9: e98128.
- 56. Grijalva CG, Griffin MR, Edwards KM, Williams JV, Gil AI, Verastegui H, et al. The role of influenza and parainfluenza infections in nasopharyngeal pneumococcal acquisition among young children. Clin Infect Dis. 2014; 58: 1369–1376. https://doi.org/10.1093/cid/ciu148 PMID: 24621951
- 57. Laranjeira BJ. Resistência antimicrobiana, genotipagem capsular e detecção de genes de resistência de Streptococcus pneumoniae isolados de crianças não vacinadas usuárias de creches em Fortaleza. 2014 [cited 12 Jul 2023]. Available: https://repositorio.ufc.br/handle/riufc/15459
- Rivera-Olivero IA, del Nogal B, Fuentes M, Cortez R, Bogaert D, Hermans PWM, et al. Immunogenicity of a 7-valent pneumococcal conjugate vaccine (PCV7) and impact on carriage in Venezuelan children at risk of invasive pneumococcal diseases. Vaccine. 2014; 32: 4006–4011. https://doi.org/10.1016/j. vaccine.2014.04.027 PMID: 24837505
- Menezes APDO, Azevedo J, Leite MC, Campos LC, Cunha M, Carvalho MDGS, et al. Nasopharyngeal carriage of Streptococcus pneumoniae among children in an urban setting in Brazil prior to PCV10 introduction. Vaccine. 2016; 34: 791–797. https://doi.org/10.1016/j.vaccine.2015.12.042 PMID: 26742946
- 60. Brandileone MC, Zanella RC, Almeida SCG, Brandao AP, Ribeiro AF, Carvalhanas TMP, et al. Effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae among children in São Paulo, Brazil. Vaccine. 2016; 34: 5604–5611.
- Melgar M, Perez I, Ordonez R, Paniagua I, Vargas C. Streptococcus pneumoniae nasopharyngeal carriage rates, serotype distribution and vaccine effectiveness in vaccinated and non-vaccinated healthy children in Guatemala City. Open Forum Infectious Diseases. 2016; 3. https://doi.org/10.1093/ofid/ ofw172.638
- 62. Gentile A, Rearte A, Von Spetch M, Laban C, Papucci SL, Badano A, et al. Streptococcus pneumoniae (SPN) nasopharyngeal carriage in children under 3 years old, attending day care centers in Argentina. Open Forum Infectious Diseases. 2017; 4: S462.
- 63. Neves FPG, Cardoso NT, Snyder RE, Marlow MA, Cardoso CAA, Teixeira LM, et al. Pneumococcal carriage among children after four years of routine 10-valent pneumococcal conjugate vaccine use in Brazil: The emergence of multidrug resistant serotype 6C. Vaccine. 2017; 35: 2794–2800. <u>https://doi.org/10.1016/j.vaccine.2017.04.019 PMID: 28431817</u>
- 64. Toledo-Romaní ME, Chávez Amaro D, Casanova González MF, Toraño Peraza G, Linares-Pérez N. Colonización nasofaríngea por neumococos en la población infantil cubana, evidencias basadas en estudios de prevalencia. Rev Cubana Pediatr. 2017; 89: 86–97.
- 65. Fernández C, García G, Camou T, Albini M, Hortal M. Colonización nasofaríngea por serotipos de Streptococcus pneumoniae en niños uruguayos antes y después de la introducción de las vacunas antineumocócicas conjugadas. Arch Pediatr Urug. 2018; 89: 235–241.
- Nelson KN, Grijalva CG, Chochua S, Hawkins PA, Gil AI, Lanata CF, et al. Dynamics of colonization of Streptococcus pneumoniae strains in healthy Peruvian children. Open Forum Infectious Diseases. 2018; 5: ofy039. https://doi.org/10.1093/ofid/ofy039 PMID: 29588913
- Brandileone MCDC, Zanella RC, Almeida SCG, Cassiolato AP, Lemos APSD, Salgado MM, et al. Long-term effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae in children in Brazil. Vaccine. 2019; 37: 5357–5363. https://doi.org/10.1016/j. vaccine.2019.07.043 PMID: 31351796
- 68. de Pós- em Ciências da TA ao P, concentração: D. Características fenotípicas e moleculares de cepas de Streptococcus pneumoniae do sorotipo 19A isoladas de doenças invasivas e de portadores antes e após a introdução da vacina conjugada 10-valente no Brasil. [cited 11 Jul 2023]. https://docs. bvsalud.org/biblioref/2022/09/1395390/ana-paula-cassiolato-tese-apc-defesa-final-ana-paula-cassiolato-1.pdf
- 69. Chávez Amaro DM, Linares-Pérez N, Casanova González MF, Toledo-Romaní ME, Rodríguez Valladares NN, Rodríguez Noda LM, et al. Nasopharyngeal colonisation by Streptococcus pneumoniae in Cuban preschool children: Cross-sectional surveys before/after pneumococcal vaccination. Vacunas (English Edition). 2019; 20: 3–11.
- 70. Espinosa de los Monteros-Pérez LE, Jimenez-Juarez RN, Gomez-Barreto D, Navas-Villar CF. Streptococcus pneumoniae: prevalence in nasopharyngeal carriers of more than 50-years-old, in a Mexican rural community. Enferm Infecc Microbiol Clin. 2019; 37: 41–44.

- Pinto TCA, Neves FPG, Souza ARV, Oliveira LMA, Costa NS, Castro LFS, et al. Evolution of penicillin non-susceptibility among Streptococcus pneumoniae isolates recovered from asymptomatic carriage and invasive disease over 25 years in Brazil, 1990–2014. Front Microbiol. 2019; 10: 486. <u>https://doi.org/ 10.3389/fmicb.2019.00486</u> PMID: 30930879
- 72. Kumar A, Krishnamurthy K, Morris E, Gittens-St Hillair M, Foster ANS. Nasopharyngeal pneumococcal carriage among healthy children in Barbados ten years post introduction of universal conjugate pneumococcal vaccination. West Indian Med J. 2020; 68: 70.
- 73. Dunn MG, Lessa FC, Sánchez J, Cordero R, Feris-Iglesias J, Cedano D, et al. Impact of 13-Valent Pneumococcal Conjugate Vaccine on Nasopharyngeal Carriage Rates of Streptococcus pneumoniae in a Rural Community in the Dominican Republic. J Infect Dis. 2021; 224: S237–S247. https://doi.org/ 10.1093/infdis/jiab172 PMID: 34469551
- 74. Kumar A, Krishnamurthy K, Morris E, Hilair MG-S. Nasopharyngeal carriage, serotype pattern and antimicrobial non-susceptibilities of Streptococcus pneumoniae among healthy children in the 13-valent pneumococcal conjugate vaccine era in Barbados, one of the Caribbean countries. Vacunas (Engl Ed). 2021; 22: 150–157.
- 75. Regalado LD, Rivera-Olivero IA, Garcia-Bereguiain MA, Tana L, Hernandez I, Zurita J, et al. Pneumococcal Carriage among Indigenous Kichwa Children from the Ecuadorian Andes after the 10-Valent Pneumococcal Vaccine Introduction. Pediatr Infect Dis J. 2021; 40: E427–E433. <u>https://doi.org/10.1097/INF.00000000003291</u> PMID: 34609109
- 76. Watkins LKF, Milucky JL, McGee L, St.-Surin FS, Liu P, Tran T, et al. Nasopharyngeal Carriage of Streptococcus pneumoniae Among Young Children in Haiti Before Pneumococcal Conjugate Vaccine Introduction. J Infect Dis. 2021; 224: S248–S257. https://doi.org/10.1093/infdis/jiab119 PMID: 34469560
- Silva MEP, Oliveira JR, Carvalho AG, Santos DG, Lima NCS, Santos FAG, et al. Colonization by Streptococcus pneumoniae among children in Porto Velho, Rondônia, Western Brazilian Amazon. Braz J Biol. 2022; 82: e260617.
- Bogaert D, De Groot R, Hermans PWM. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004; 4: 144–154. <u>https://doi.org/10.1016/S1473-3099(04)00938-7</u> PMID: 14998500
- Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: Invasion and Inflammation. Microbiol Spectr. 2019; 7. https://doi.org/10.1128/microbiolspec.GPP3-0004-2018 PMID: 30873934
- Almeida ST, Nunes S, Santos Paulo AC, Valadares I, Martins S, Breia F, et al. Low prevalence of pneumococcal carriage and high serotype and genotype diversity among adults over 60 years of age living in Portugal. PLoS One. 2014; 9: e90974. https://doi.org/10.1371/journal.pone.0090974 PMID: 24604030
- Regev-Yochay G, Raz M, Dagan R, Porat N, Shainberg B, Pinco E, et al. Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin Infect Dis. 2004; 38: 632–639. https://doi.org/10.1086/381547 PMID: 14986245
- Hadinegoro SR, Prayitno A, Khoeri MM, Djelantik IGG, Dewi NE, Indriyani SAK, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in healthy children under five years old in Central Lombok Regency, Indonesia. Southeast Asian J Trop Med Public Health. 2016; 47: 485–493. PMID: 27405132
- León R, Alejandra D. Streptococcus pneumoniae nasopharyngeal carriage in indigenous Kichwa communities of Otavalo, Ecuador serotypes, risk factors, and associated respiratory pathogens. 2019 [cited 13 Oct 2023]. Available: https://www.lareferencia.info/vufind/Record/EC_9b04e353462b3e12e4d9741a0518266e/Description
- Gámez G, Rojas JP, Cardona S, Castillo JD, Palacio MA, Mejía LF, et al. Nasopharyngeal colonization, associated factors and antimicrobial resistance of Streptococcus pneumoniae among children under 5 years of age in the southwestern Colombia. bioRxiv. medRxiv; 2020. <u>https://doi.org/10.1101/2020.04</u>. 09.20058529
- 85. Sanchez Picot V, Keovichith I, Paboriboune P, Flaissier B, Saadatian-Elahi M, Rudge JW. Epidemiology and serotype distribution of Streptococcus pneumoniae carriage among influenza-like illness cases in metropolitan Vientiane, Lao PDR: a community-based cohort study. Front Public Health. 2023; 11: 1124016. https://doi.org/10.3389/fpubh.2023.1124016 PMID: 37151588
- 86. Bennett JC, Emanuels A, Heimonen J, O'Hanlon J, Hughes JP, Han PD, et al. Streptococcus pneumoniae nasal carriage patterns with and without common respiratory virus detections in households in Seattle, WA, USA before and during the COVID-19 pandemic. Front Pediatr. 2023; 11: 1198278. https://doi.org/10.3389/fped.2023.1198278 PMID: 37484765
- Katzow MW, Steinway C, Jan S. Telemedicine and Health Disparities During COVID-19. Pediatrics. 2020; 146:e20201586 https://doi.org/10.1542/peds.2020-1586 PMID: 32747592
- Angoulvant F, Ouldali N, Yang DD, Filser M, Gajdos V, Rybak A, et al. Coronavirus Disease 2019 Pandemic: Impact Caused by School Closure and National Lockdown on Pediatric Visits and Admissions

for Viral and Nonviral Infections-a Time Series Analysis. Clin Infect Dis. 2021; 72: 319–322. https://doi.org/10.1093/cid/ciaa710 PMID: 33501967

- Williams TC, MacRae C, Swann OV, Haseeb H, Cunningham S, Davies P, et al. Indirect effects of the COVID-19 pandemic on paediatric healthcare use and severe disease: a retrospective national cohort study. Arch Dis Child. 2021; 106: 911–917. https://doi.org/10.1136/archdischild-2020-321008 PMID: 33451994
- 90. Cohen R, Ashman M, Taha M-K, Varon E, Angoulvant F, Levy C, et al. Pediatric Infectious Disease Group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap? Infect Dis Now. 2021; 51: 418–423. https://doi.org/10.1016/j.idnow.2021.05.004 PMID: 33991720
- Perniciaro SR, van der Linden MPG, Weinberger DM. Re-emergence of invasive pneumococcal disease in Germany during the Spring and Summer of 2021. Clin Infect Dis. 2022; 75:1149–1153. https://doi.org/10.1093/cid/ciac100 PMID: 35136983
- 92. Janapatla RP, Chen C-L, Dudek A, Li H-C, Yang H-P, Su L-H, et al. Serotype transmission dynamics and reduced incidence of invasive pneumococcal disease caused by different serotypes after implementation of non-pharmaceutical interventions during COVID-19 pandemic. Eur Respir J. 2021; 58:2100978 https://doi.org/10.1183/13993003.00978-2021 PMID: 34289978
- Rybak A, Levy C, Ouldali N, Bonacorsi S, Béchet S, Delobbe J-F, et al. Dynamics of Antibiotic Resistance of Streptococcus pneumoniae in France: A Pediatric Prospective Nasopharyngeal Carriage Study from 2001 to 2022. Antibiotics (Basel). 2023; 12:1020 <u>https://doi.org/10.3390/</u> antibiotics12061020 PMID: 37370339