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Abstract

Therapeutic options for managing Pancreatic ductal adenocarcinoma (PDAC), one of the

deadliest types of aggressive malignancies, are limited and disappointing. Therefore,

despite suboptimal clinical effects, gemcitabine (GEM) remains the first-line chemothera-

peutic drug in the clinic for PDAC treatment. The therapeutic limitations of GEM are primarily

due to poor bioavailability and the development of chemoresistance resulting from the

addiction of mutant-K-RAS/AKT/ERK signaling-mediated desmoplastic barriers with a hyp-

oxic microenvironment. Several new therapeutic approaches, including nanoparticle-assis-

ted drug delivery, are being investigated by us and others. This study used pH-responsive

nanoparticles encapsulated ERK inhibitor (SCH772984) and surface functionalized with

tumor-penetrating peptide, iRGD, to target PDAC tumors. We used a small molecule,

SCH772984, to target ERK1 and ERK2 in PDAC and other cancer cells. This nanocarrier

efficiently released ERKi in hypoxic and low-pH environments. We also found that the free-

GEM, which is functionally weak when combined with nanoencapsulated ERKi, led to signifi-

cant synergistic treatment outcomes in vitro and in vivo. In particular, the combination

approaches significantly enhanced the GEM effect in PDAC growth inhibition and prolonged

survival of the animals in a genetically engineered KPC (LSL-KrasG12D/+/LSL-

Trp53R172H/+/Pdx-1-Cre) pancreatic cancer mouse model, which is not observed in a sin-

gle therapy. Mechanistically, we anticipate that the GEM efficacy was increased as ERKi

blocks desmoplasia by impairing the production of desmoplastic regulatory factors in PDAC

cells and KPC mouse tumors. Therefore, 2nd generation ERKi (SCH 772984)-iRGD-pHNPs
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are vital for the cellular response to GEM and denote a promising therapeutic target in

PDAC with mutant K-RAS.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common and deadliest pancre-

atic neoplasms because it remains a disease with a poor prognosis [1, 2]. PDAC is the third

leading cause of cancer-associated death in the United States and is expected to be the second

leading cause of cancer-related deaths globally by 2030 [2]. All Surveillance, Epidemiology,

and End Results (SEER) combined analysis indicated that roughly 11 percent of PDAC

patients survive over five years.

Previously, our studies and other genome analyses have shown that about 95 percent of

PDAC patients contain mutations in codons 12, 13, or 16 in a small GTPase protooncogene

K-RAS [3–8], leading to uncontrolled activation of the K-RAS protein [9, 10]. As a result, most

PDAC growth, progression, and survival are addicted to mutant K-RAS [11]. The studies in

genetically engineered mouse models (GEMMs) have confirmed the tumor initiation role of

oncogenic KrasG12D in PDAC, which is present in more than one in three human pancreatic

cancers [12, 13]. Recently, independent studies found that selective KrasG12D inhibitors are

efficacious in a preclinical setup [14–17]. However, targeting the KrasG12D mutation through

inhibitors to treat PDAC successfully is still challenging [18, 19]. Thereby, Gemcitabine

(GEM), which has weak therapeutic efficacy in PDAC, is still the first-line therapy and is

administered alone or in combination with platinum analog, cisplatin (GemCis) [20], nab-pac-

litaxel [21], capecitabine (GemCap) [22], Abraxane or FOLFIRINOX [23–25]. These drug

combinations halt PDAC progression in some patients for a while, but cancer cells eventually

develop drug resistance. Thus, the patients experience disease progression [26], and that could

be due to the therapy’s inability to kill the pancreatic cancer stem cells (PCSCs) or tumor-initi-

ating cells (TICs), leading to the relapse of the disease [27–29]. Furthermore, weak drug pene-

tration into the targeted tissue through desmoplasia, a dense fibrotic stromal barrier at the

core of the tumor ecosystem, is also a critical obstacle to the therapies in PDAC [30]. In addi-

tion, the studies indicated that PCSCs might be essential in stromal differentiation to form the

desmoplastic barrier in the PDAC [31].

The extracellular signal-regulated kinases (ERKs), which are Mitogen-activated protein

kinase cascades (MAPKs) [32, 33], contribute to the enhancement of CSC/TICs formation,

cell survival, suppression of apoptosis, desmoplasia, and the disease’s progression. These

kinases also block the anti-tumor immunity and GEM action in PDAC with K-RAS mutations

[34–38]. Thus, ERK was initially considered a potential therapeutic target for PDAC. However,

due to the high toxicity, low penetration, and bioavailability of ERK-inhibitor (ERKi) to the

PDAC, the therapeutic implication was unsuccessful, and consequently, the clinical trial was

discontinued [39]. Recently, we found in vitro and in vivo assays in xenograft models that tox-

icity and weak penetration of an ERKi inhibitor (SCH772984) and GEM can be surmounted if

the ERKi and GEM are encapsulated in pH-responsive nanocarriers, with the capacity to

release the encapsulated drugs into the low pH environment of cancers [40]. However, the

combination encapsulation of ERKi and GEM for therapy has difficulties adjusting the doses

of the two drug combinations.

Furthermore, the efficacy of a combination therapy consisting of GEM and ERKi encapsu-

lated in nanoparticles has not been reported in the GEMM. Thus, in this study, we investigated
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whether encapsulated ERKi treatment promotes GEM activity via weakening desmoplasia

using relevant autochthonous mouse models of PDAC. Furthermore, hypoxic niches in

tumors create an acidic extracellular setting that favors tumor progression and creates GEM

resistance in PDAC [41, 42]. In this study, we thus, aimed to synthesize iRGD-based pH-sensi-

tive nanocarriers to investigate the ERKi delivery and its functional efficacy under a hypoxic

environment in vitro and in vivo. We tagged the iRGD [9 amino acid cyclic peptide sequence

(CRGDKGPDC)] to pegylated pH-responsive block copolymeric nanoparticles as a tumor cell

surface binding and penetrating peptide for tumor-targeted drug delivery [43–45]. Our studies

showed that the iRGD conjugated, targeted SCH772984 nanoformulation, combined with free

GEM, may be highly effective in killing K-RAS-mutated pancreatic cancer cells due to the con-

trolled and selective drug delivery within the hypoxic and low pH areas of desmoplastic PDAC

microenvironment and reduces the production of desmoplastic regulatory proteins in PDAC

cells.

Materials and methods

Materials

All chemicals were purchased from Sigma-Aldrich, and anhydrous solvents were obtained

from VWR and EMD Millipore. A Bruker 400 MHz spectrometer was used to record 1H

NMR spectra using tetrmethylsilane (TMS) as the internal standard. An attenuated total reflec-

tance (ATR) diamond tip was used to record IR Spectra in a Thermo Scientific Nicolet 8700

FTIR instrument. The ’ number and weight average molecular weight of the synthesized poly-

mers were characterized by gel permeation chromatographic using the GPC EcoSECsystem

using polystyrene (Agilent EasiVial PS-H 4 ml) as the standard. As a mobile phase, THF was

used at a flow rate of 0.35 mL/min, maintaining the column temperature at 40˚C. Malvern

zetasizer (Malvern ZS 90) instrument was used to measure the hydrodynamic diameter of

nanoparticles. In addition, a UV-vis spectrophotometer and a fluorescent Fluoro-Log3 spec-

trophotometer were used to record UV-visible and fluorescence spectra of samples, respec-

tively. The MitoProbe JC-1 assay kit was purchased from Thermo Fisher Scientific (Waltham,

MA, USA).

Cell lines and maintenance of cell lines

Pancreatic cancer cell lines, Panc-1 and MIA-PaCa-2, were procured from the American Type

Culture Collection (ATCC). Panc-1 cells were cultured in high glucose DME medium, and

MIA PaCa-2 cells were grown in regular DMEM (Thermo Fisher Scientific) containing 10%

fetal bovine Serum (FBS) and 1% v/v Penicillin-Streptomycin. The cell lines were subcultured

using enzymatic digestion of 0.25% trypsin/1mM (Thermo Fisher Scientific) upon reaching 70

percent confluency.

Generation of autochthonous KPC pancreatic cancer mouse model

We generated a preclinical KPC mouse model of PDAC, which recapitulates human PDAC

biology, as described earlier [46, 47]. Briefly, we crossed an LSL-KrasG12D/+ (K) mouse with an

LSL-Trp53R172H/+ (P) mouse to generate a KP mouse that was then crossed with Pdx-1-Cre to

generate KPC mice (Fig 1). The Pdx-1-Cre expressed Cre recombinase protein in pancreatic

cells under the expression of the pancreas-specific Pdx-1 promoter.

The maintenance of KPC mice is challenging as their lifespan is short (average 10–20

weeks) due to fast tumor growth and progression [47]. Therefore, we considered 10–15 weeks

of tumor-bearing in this study. K-, P-, and Pdx-1-Cre mice were obtained for the National
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Institute of Health (NIH), USA. All studies performed on mice were approved by the Animal

Care and Use Committee (IACUC) of Kansas City VA hospital facilities per NIH guidelines

for the care and use of laboratory animals.

For endpoint detection, behavioral analyses were critically performed. These included

weight loss, hair loss, lack of movement due to perineural invasion (PNI) pain, and food

consumption.

Polymer synthesis of diblock / PEG conjugated pH-responsive diblock

polymer synthesis

The synthesis of the pH-responsive diblock copolymers has been described earlier [40, 48, 49].

Briefly, pentaflourophenol and bis (methoxy propionic acid) was used to synthesize the poly-

mer precursor PEG-b-poly(carbonate) via a ring-opening polymerization reactions [50]. The

synthesized copolymer was further modified with 2-pyrrolidine-1- yl-ethyl-amine (pka = 5.4)

to render the macromolecule pH-responsive [40]. Finally, the synthesized block copolymer,

abbreviated as PEG-py, was primarily characterized by 1H NMR and FTIR spectroscopy

(S1 Fig).

Fig 1. Generation of KPC mice. KPC mice are generated by crossing K, P, and Pdx-1-Cre mice. K mice, activating point mutation

(G12D) in K-Ras gene, P-mice, dominant mutation (R172H) in P53 tumor suppressor gene, and Pdx-1-Cre, Cre recombinase expressed

in the pancreas under the influence of pancreas-specific Pdx-1 promoter.

https://doi.org/10.1371/journal.pone.0297749.g001
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Nanoparticle preparation

The hydrophobic drug ERKi was nano-encapsulated within the pH-responsive block copoly-

mer PEG-py by the nanoprecipitation method following our earlier published protocols. The

copolymer (PEG-py) and ERKi were dissolved in DMSO and added to PBS buffer (pH-7.4)

dropwise under stirring conditions. The nanoparticles were further dialyzed using a float-a-

layer (with molecular weight cutoff of 12k g/mol) followed by filtration through a 2μm PES fil-

ter to remove unencapsulated drugs. Characterization of drug-loaded nanoparticles has been

carried out following our earlier reports [48]. The filtered nanoparticle suspension was charac-

terized by measuring the particle size and surface charge (zeta potential) using dynamic light

scattering (DLS) experiments. Alexa Fluor-647 was co-encapsulated within the block copoly-

mer during the nanoprecipitation method to prepare the dye-loaded nanoparticles. For the

preparation of dye-conjugated trafficking nanoformulation, Alexa Fluor 647 dye was conju-

gated within the copolymeric nanoformulation following the methods described earlier [51].

Preparation of iRGD conjugated nanoparticulate formulation

As described earlier, the iRGD peptide was conjugated with a pH-responsive block copolymer

using "click" chemistry [52] (S1 Fig). iRGD conjugated copolymers were purified via dialysis

(MWCO 1000 Da) for 72h.

Drug release study of ERKi nanoparticles

The amount of drug (ERKi) released from pH-responsive nanoparticles was measured by a

dialysis-based method using a Float-a = Lyzer (MWCO 3.5–5 kDa). Briefly, 1 ml of the nano-

formulation was placed inside the dialysis chamber. Next, the formulation was dialyzed against

5 ml of PBS buffer, either in the presence or absence of 10% lysis buffer (1 mM EDTA 1 mM

EGTA, 1 mM NaF, 20 mM Na4P2O7, 2 mM Na3VO4, 1% Triton X-100, 10% glycerol, 0.1%

SDS, 0.5% deoxycholate. This buffer has been procured from Sigma Aldrich and the pH was

adjusted to the desired range. The commercial buffer was further reinforced by 10-unit car-

boxypeptidase A [cathepsin A]. The objective of this buffer composition is to mimic the micro-

environment of lysosomes.

Next, the amount of drug released at different time points was measured by withdrawing

1ml of fluid from the bulk environment outside the dialysis chamber. Finally, the same volume

of respective fresh medium was replaced to maintain the overall bulk volume constant.

Flow cytometric analysis

MIA PaCa-2 cells were seeded in a six-well cell culture plate and treated with Alexa Fluor

647-loaded, iRGD conjugated nanoparticles for 6 and 12h, except for the control. After trypsi-

nization and washing with PBS, the cells were finally suspended in PBS (pH 7.4). The percent-

age of labeled nanoparticle uptake by the cancer cells was analyzed using a BD Accuri C6 Flow

Biosciences Cytometer. All experiments were conducted in eight sets of experiments.

Confocal fluorescence microscopy

MIA PaCa-2 cells were plated at 5000 cells / well in ibidi1 glass bottom dishes (35 mm) and

allowed to grow to about 70 percent confluency. The cells were then incubated with dye (Alexa

Fluorine 647) loaded iRGD conjugated nanoparticles for six h and 12h, except for the control

group (0h). Next, the cells were washed with 1xPBS and imaged using a Zeiss AxioObserver

Z1 microscope equipped with an LSM700 laser scanning module (Zeiss, Thornwood, NY) at

40X magnification with a 40x/1.3 Plan-Apochromat lens.
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Clonogenic survival assay

The clonogenic survival or colony formation assay was performed using the previously

described protocol [53, 54]. Briefly, untreated and treated MIA PaCa-2 cells were seeded in a

six-well plate at 400 cells per well. After 14 days, cells were fixed and stained with a crystal vio-

let solution. The colonies were then counted using a colony Dot-it imaging station (UVP).

The synergy assay of drug combinations

The PDAC cells (5000 cells/well) were seeded in 96-well plates. The ~60% confluent cells were

then treated with the different doses of free or the nanoparticle encapsulated form of SCH

772984 (0–100 nM), GEM (0–1000 nM), and their combination doses for 72 h. The synergy

assay was performed as described earlier using Combenefit1 software [40].

In vitro migration

In vitro migration of PDAC cells was performed as described previously [54]. Briefly,

untreated and treated PDAC cells (10,000 cells/well of twelve-well plates) were seeded into the

top chamber insert containing serum-free media. The DMEM containing 10% FBS was added

to the bottom chamber as a chemoattractant [54]. After 24h incubation in the CO2 incubator,

the migrated cells were attached to the outer surface of the insert stained with crystal violet

solution, and migrated cells were photographed using a Leica inverted microscope. The mem-

branes were then solubilized with 10% acetic acid, and optical density (OD) was measured

using a microplate reader at 450 nm. We examined three wells for each experimental condition

and repeated the experiments three times. All studies performed on mice were approved by

the Animal Care and Use Committee (IACUC) of Kansas City VA hospital facilities per NIH

guidelines for the care and use of laboratory animals.

Wound healing assay

The wound healing or scratch assay was performed as previously described [55]. Briefly, the

MIA PaCa-2 cells (untreated and untreated) were plated into each well of the six-well plate.

Cells were allowed to grow to get a confluent monolayered cell. A scratch was made in the con-

fluent cell layer, and the images were captured. The cells were then treated with drugs for 72h.

Cell motilities were measured, images were taken, and the wound healing rate was calculated

as described earlier [56, 57].

Western blot analysis

The Western blot analysis was the same as described earlier [40, 54]—briefly, MIA PaCa-2

cells were lysed by RIPA buffer (Cell Signaling Technology), and protein concentration was

measured. Then, each sample’s 50 μg protein was loaded, and SDS-PAGE gel electrophoresis

was performed, followed by semi-dry transfer into Nitrocellulose membrane using a Trans-

blot Turbo Transfer System (Bio-Rad). Finally, membranes were probed with mouse antibod-

ies against neuropilin-1 (NRP-1), CCN1, CCN2, SHh, and β-actin (Cell Signaling Technology

and Santa Cruz), treated with peroxidase-conjugated goat anti-mouse secondary antibody,

and then visualized by enhanced chemiluminescence.

In vivo treatment

The animal studies were carried out strictly in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. The protocol was conducted with the approval of

the Animal Ethics Committee of the Kansas Coty VA Medical Center, Kansas City, MO
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(protocol No. SNB003). All surgery was performed under isoflurane anesthesia, and all efforts

were made to minimize suffering. The tumor-bearing KPC mice of different ages (8–10 weeks

old), confirmed by ultrasound imaging as described by us [58], were randomized to the respec-

tive treatment groups (n = 5). This study’s initial average tumor size was 100 mm3 ± 5 mm3

volume. Free GEM (40mg/Kg), iRGD-conjugated, pH-responsive nanoparticles (abbreviated

as iRGD-pHNPs-ERKi, 75 mg/kg for SCH772984), or a combination of these two drugs were

administrated intraperitoneally (i.p.) twice a week for four weeks. Weekly tumor growth/vol-

ume measurement is challenging in the KPC autochthonous mouse model. Thus, the tumors

were collected, and wet tumor weight was measured after the termination of the experiment or

when the signs of morbidity (endpoint) were recognized. These include abnormal posture,

rough hair coat, head tucked into the abdomen, and body weight loss (20% loss over the few

days). PBS and NP alone were used as controls. We used a human equivalent dose of each

drug for this study. All mice were humanly euthanized by CO2 asphyxiation, and tumors were

excised, wet weight measured, and collected for histologic analysis.

Statistical analysis

The statistical analysis was performed using Graph Pad Prism 8(GraphPad Software, Inc., La

Jolla, CA, USA) and PASS15softwares, NCSS, LLC (Kaysville, UT, USA). Unless stated other-

wise, the results are presented as mean ± standard deviation (SD). Means between the groups

were calculated and compared among or within the variables using a two-sided Student’s t-

test. In vitro migration and motility of PDAC cells were determined using a two-sided Stu-

dent’s t-test and two-way ANOVA. A P-value of 0.05 was considered statistically significant.

We calculated the required sample size for in vitro experiments using the previously estab-

lished method [59], and n = 5–8 cultures per group and time point, assuming a comparison-

wise type I error of 5% and power of 80% to detect the probability of concordance of 75%. The

required number of mice indicated at least five per group, and the time point, assuming the

power of 85%, type I error of 5%, probability of concordance between treatment and tumor

measurements of 75%, and experimental success rate of 80%.

A linear regression model of tumor weight was fitted after four weeks of treatment. The

model included the mice treated with ERKi-loaded nanoparticles (ERKi-NPs, N = 5), free

GEM (N = 5), ERKi+GEM (N = 5), or saline injections (control group, N = 5) (S1 Table).

Three dummy variables were used as the model-independent variables to represent the four

groups. Further, we used the Kaplan-Meier estimator to plot survival. The entire study was

performed blindly by two or more investigators.

Results

Morphology and stability study of iRGD conjugated pH-responsive

polymer encapsulated ERKi (iRGD-pHNPs-ERKi)

To investigate the morphology and stability of the nanoparticles, we examined the particle size

and surface charge of PEG-py nanoparticles by dynamic light scattering representing the parti-

cles’ hydrodynamic diameter. Additionally, the particle size in lyophilized form and their sur-

face morphology were confirmed using Transmission electron microscopy (TEM). TEM

images showed nanoparticles demonstrated (Fig 2) a smooth surface and spherical shape.

Furthermore, we confirmed the stability of the nanoparticles at 4˚C refrigerated conditions

by measuring TEM, size distribution, and zeta potential at different time points over a month

after synthesis. According to the TEM results, particle size was found to be 191±19nm (Fig

2A), 204±24nm (Fig 2B), and 205±22 nm (Fig 2C) after Day 1, Day 15, and Day 30 post-
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synthesis, respectively. Hydrodynamic diameters of particles measured via DLS were 255±17

nm for Day 1, 269±18nm for Day 15, and 271±21 nm for Day 30 (Fig 2D) post-synthesis. The

variation in the particle size was observed in TEM and DLS data due to the dried and hydrated

form of the samples used for these studies. This result suggested that the nanoparticles were

stable for at least 30 days post-synthesis under room conditions.

Drug release and kinetic study of iRGD-pHNPs under an acidic or hypoxic

microenvironment

Our previous studies have shown that ERKi-loaded pHNPs released <20% of encapsulated

ERKi in physiological pH (7.4). However, when placed at pH 5.5, the pHNPs released >50%

ERKi in 24h. NPs without the pH-responsive linker failed to release a significant amount of

drugs under acidic conditions [40]. Therefore, we first investigated the Drug (ERKi) release

capacity of iRGD-pHNPs in phosphate buffer saline (PBS, pH 7.2) or PBS with a 10% lysis buffer

solution (pH 5.5) containing lysosomal enzymes (Fig 3A). We found that in PBS, 31% cumula-

tive drug was released within 12 h followed by additional 13% cumulative drug release within

the next 36 h. In contrast, in PBS with a 10% lysis buffer solution, we found 49% cumulative

drug released over 12 h, followed by an additional 20% cumulative drug released over the next

36 h. Both release profiles demonstrated that the drug release rate was significant for the first

12 h, followed by a decrease in release rate over the next 36 h to reach saturation. Moreover, in

the presence of a 10% lysis buffer solution with acidic pH, the PEG-py polymer-drug release

rate from nanoparticles was enhanced by ~18%, indicating lysosomal autophagic degradation

[60] is implicated in drug-releasing from iRGD-pHNPs.

One of the unique features of the solid tumor microenvironment is acidic, mainly due to

hypoxia [61]. Thus, we sought to test if iRGD-pHNPs effectively release drugs in a hypoxic envi-

ronment. The cell-free studies found that iRGD-pHNPs can effectively release ERKi in hypoxic

Fig 2. Quality controls (QC) of nanoparticles. TEM micrograph detecting particle size of PEG-Py nanoparticles at

(A) Day 1, (B) Day 15, and (C) Day 30. (D). The DLS study measured the particle size distribution range for Day 1,

Day 15, and Day 30 to validate TEM images. (E). Variation of zeta potential of PEG-Py for Day 1, Day 15, and Day 30

to demonstrate the stability of nanoparticle throughout the time.

https://doi.org/10.1371/journal.pone.0297749.g002
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conditions with or without lowering the pH. However, hypoxia with low pH exhibited a signif-

icant release of ERKi compared to other conditions (Fig 3B).

Cellular uptake and internalization of the iRGD-pHNPS-ERKi in MIA-PaCa-

2 cells

The cellular uptake of the Alexa Fluor 647 labeled iRGD tagged pH-responsive nanoparticles

was investigated in MIA PaCa-2 cells. It was reported that the iRGD peptide (sequence:

CRGDKGPDC) binds with the cell surface co-receptor of neuropilin 1 (NRP1) through binding

with αv integrins and unmasking the CendR motif (R/KXXR/ K). This sequential process pro-

motes cell penetration via rapid endocytosis/macropinocytosis [62–66]. We, therefore, first

investigated the binding affinity of iRGD decorated pH-responsive nanoparticles in MIA PaCa-

2 cells that have been found to overexpress NRP-1 (Fig 4A, S2 Fig) [67]. To do so, cells were

exposed to AF647 labeled NPs for 0 h, 06 h, and 12 h, and cellular uptake of fluorescently labeled

NPs was quantified using FACs analysis. We found a time-dependent increase in AF647-labeled

cell numbers (Fig 4B). Next, we investigated cellular uptake and internalization of AF647-la-

beled NPs (Red color) in MIA PaCa-2 cells using confocal microscopic imaging following incu-

bation with the NPs for 6 and 12 h. Results indicated that the cellular uptake of nanoparticles by

MIA PaCa-2 cells was increased significantly in a time-dependent fashion (Fig 4C & 4D). The

studies also indicated that the NPs were localized in the cytosol and the nucleus.

iRGD-pHNPS-ERKi and free GEM are synergistically cytotoxic in PDAC cells

Earlier studies have reported that combining two or more therapeutic agents is the cornerstone

of cancer therapy as they show an additive or synergistic effect to target cancer-promoting or

cancer-sustaining pathways [68]. Recently, we have shown that encapsulated ERKi and GEM

in pH-responsive nanoparticles exhibit a synergistic cytotoxic effect on PDAC cells [40].

Therefore, this study sought to investigate whether iRGD-pHNPS-ERKi and free GEM combina-

tion exhibit a synergistic cytotoxic effect on PDAC cells. To test the hypothesis, the combined

cytotoxicity of ERKi (SCH 772984)-iRGD-pHNPs with free GEM was investigated in MIA PaCa-

Fig 3. Drug-release profiles in different environments. (A). Cumulative drug release profile in PBS buffer and PBS with 10% added Lysis buffer solution, and (B).

Effect of hypoxia and low pH on ERKi release from iRGD-pHNPs in a cell-free system.

https://doi.org/10.1371/journal.pone.0297749.g003

PLOS ONE Targeting PDAC by ERKi encapsulated in pH-responsive targeted nanoparticles and sensitizes GEM

PLOS ONE | https://doi.org/10.1371/journal.pone.0297749 April 30, 2024 9 / 24

https://doi.org/10.1371/journal.pone.0297749.g003
https://doi.org/10.1371/journal.pone.0297749


2 and Panc-1 cell lines by a surface plot based on the percent excess of the Bliss prediction

using the average response measures at each combination dose [69]. We found an impressive

synergistic cytotoxic effect in MIA PaCa-2 cells after 72 h incubation with drugs (Fig 5). In

contrast, the synergistic interaction of these drugs’ combination on Panc1 cells was not notable

as the MIA PaCa-2 cell line. On the contrary, free-ERKi and GEM exhibit weak or no synergis-

tic effects. Although the mechanism is unclear, the results indicated that the combination of

free GEM and encapsulated ERKi synergized when used to suppress the growth and prolifera-

tion of MIA-PaCa-2 and Panc-1 cells. Thus, we mainly used MIA PaCa-2 cells for physiologi-

cal studies.

Fig 4. Cellular uptake study of Alexa Fluor 647 (AF 647) labeled iRGD tagged pH-responsive nanoparticles on

MIA PaCa-2 cells. (A). NRP-1 status in PDAC cell lines, (B). Quantitative determination of fluorescently labeled Mia

PaCa-2 cells using FACs analysis after 0h, 12 h, and 24 h of incubation with AF 647-labeled nanoparticles. (C). Cells

were treated with dye-labeled nanoparticles for six h and 12h, and cellular distribution was determined using confocal

microscopy and (D). Violin diagram representing the integral density/ Unit Area of AF 647 labeled nanoparticles,

DAPI (blue), and Phalloidin (green) used for the detection nucleus and cytoplasm of a cell. Data presented as

mean ± SD, n = 8.

https://doi.org/10.1371/journal.pone.0297749.g004
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ERKi-iRGD-pHNPs and free GEM alone or in combination impair the

Colony-forming ability of PDAC cells

The in vitro colony-forming ability indicates clonal cell growth, thus a hallmark of aggres-

sive cancer cells or cancer stem cells. The ERK1/2-signaling plays a vital role in cancer cell

growth and colony formation [70]. This study, to test the functional efficacy of ERKi-iRGD-

pHNPs, thus aimed to investigate whether ERKi-iRGD-pHNPs can reduce the colony-forming

ability of PDAC cells and exhibit an additive impact in the presence of free GEM. We ana-

lyzed the colony formation capacity of MIA PaCa-2 and PANC-1 cells after treating the

cells with the IC50 concentration of free GEM, nano-encapsulated ERKi and combining

both drugs. We found a significant inhibition of the colony formation in the combined

treatment of free GEM along with nano-encapsulated ERKi compared to the treatment

involving GEM alone, encapsulated ERKi, free GEM, and ERKi combination, or the

untreated control (Fig 6).

In vitro migration of pancreatic cancer cells was decreased by combination

therapy

The RAS-ERK pathway is conserved in promoting cancer cell migration and invasion [71].

Therefore, to test the additional functional potency of iRGD-pHNPs-ERKi, we conducted an in
vitro migration assay and a wound healing assay to determine the cancer cell migration ability

after the drug treatment. We found that free GEM or encapsulated ERKi decreased PDAC cell

migration. However, the encapsulated ERKi and GEM combination significantly impacted cell

mobility at 48 and 72h (Fig 7).

Fig 5. Dose-response synergy map of different drug combinations using Bliss synergy model. (A). Free ERKi and

Free Gem on MIA PaCa-2 cells, (B). Free ERKi and Free GEM on Panc1, (C). ERKi NP and free GEM on MIA PaCa-2

and (D). ERKi NP and free GEM on Panc1.

https://doi.org/10.1371/journal.pone.0297749.g005
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Combination treatment of ERKi- iRGD-pHNPs and GEM impairs K-Ras-

dependent PDAC growth in an autochthonous mouse model

To evaluate the effect of ERKi-iRGD-pHNPs and GEM alone or the combination of these two

drugs in vivo, we used the K-Ras mutant-dependent PDAC model in KPC mice (Fig 2). Genet-

ically engineered KPC mice recapitulate the pathological characteristics of human pancreatic

cancer with desmoplasia [47, 72], comprising a dense fibroinflammatory tumor microenviron-

ment that causes hypoxia and limits drug delivery [73, 74]. Consistent with previous findings,

we found tumor-bearing KPC mouse exhibits more desmoplasia than KC mice, as detected by

immunostaining of α-SMA, an active stellate cell marker (Fig 8A). Moreover, a hypoxic

marker, HIF1α, is markedly elevated in the tumor areas of KPC mice (Fig 8B), suggesting

these PDAC tumors with desmoplasia is highly hypoxic.

We next investigated the status of NRP-1 in PDAC in KPC mice and compared it with

human PDAC tissue samples. The immunohistochemical studies showed that NRP-1 is over-

expressed in human and mouse PDAC samples (Fig 8C), indicating that the KPC PDAC

mouse model is ideal for iRGD-mediated drug delivery studies.

We then evaluated the penetration of iRGD-pHNPs in desmoplastic PDAC tumors in KPC

mice, followed by the accumulation of NPs in the tumors. For imaging, we incorporated an

Alexa Fluor 647 (AF-647) conjugated polymer (5 mol%) in the iRGD-pHNPs and injected them

through the tail vein of KPC mice bearing pancreatic tumors (n = 3) for 24h. The tumors were

excised and subsequently imaged for fluorescence signals. We observed that the iRGD-pHNPs

accumulated significantly in the tumor compared to the non-targeted control (Fig 8D).

Finally, we investigated the effect of ERKi-iRGDpHNPs, GEM., or a combination of ERKi-iRGD-

pHNPs on the chemosensitization of GEM in KPC mice following twice-a-week i.p. injection of

saline, iRGD-pHNPs containing 75 mg/kg for SCH772984, free GEM (40 mg/kg for GEM/human

equivalent dose), or a combination of ERKi-iRGD-pHNPs with GEM into tumor-bearing KPC

mice. On average, after four weeks of treatment, tumor weights in mice on GEM alone were 1.20

g smaller than in untreated mice, but this difference was insignificant (p = 0.19, S1 Table). The

average difference in tumor weights between mice treated with ERKi NPs alone and untreated

mice was insignificant (p = 0.58). In contrast, mice receiving both ERKi NPs and GEM exhibited

tumor weights that were 2.56 g smaller than those of untreated mice, a significant difference

[p = 0.01; 95% CI, (-4.43, -0.69); S1 Table]. The difference between the effect of the combined

therapy and the average of the effects of ERKi NPs and GEM alone was significant [-1.71;

p = 0.04; 95% CI, (-3.33,-0.089)], suggesting a statistically significant synergism between ERKi

NPs and free GEM (Fig 8E). Furthermore, we found that the combination treatment significantly

increased the overall survival of the KPC mice (Fig 8F). Collectively, the effect of ERKi-iRGD-pH-

NPs or GEM is not remarkable as a combination treatment suggesting ERKi-iRGD-pH-NPs and

GEM together could be an ideal approach for K-RAS mediated PDAC therapy.

The expressions of desmoplastic regulatory proteins in PDAC cells are

impaired following ERKi treatment

Peritumoral desmoplasia significantly affects intra-tumoral drug delivery [75]. Several secre-

tory proteins, including cell communicating network 1 (CCN1), sonic hedgehog (SHh), and

Fig 6. Clonogenic survival assay on MIA PaCa-2 and Panc-1 cells using a different combination of free GEM, Free

ERK inhibitor, and nano encapsulated ERK inhibitor. Cells were treated with 0.1% DMSO control, free GEM, free

ERKi, ERKi nanoparticles, or a combination of drugs for 72h. Cells (400 cells) were added to each well of the six-well

plate for 14 days for colony formation. Colonies were counted using the colony Dot-it imaging station. The bar graph

represents the mean ± SD of three experiments.

https://doi.org/10.1371/journal.pone.0297749.g006
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CCN2/CTGF, of PDAC cells help in promoting and maintaining peritumoral desmoplasia by

activating myofibroblast cells (Fig 9A) [75–78]. In addition, some of these proteins are inter-

twined via feed-forward loops. Our study showed that ERKi treatment significantly reduced

the production of CCN1, CCN2, and SHh in PDAC cells (Fig 9B–9D) (S2 Fig).

Fig 7. Effect of ERKi-NPs on invasive phenotypes of PDAC cells in the presence or absence of free gemcitabine.

(A). The proposed experimental strategy of in vitro migration, (B). Representative microphotograph (10x, crystal

violet staining) and quantification of Transwell migration assay of PDAC cell lines with or without treatment groups,

and (C). wound-healing assay in untreated and treated groups of MIA PaCa-2 cells. Data represent means ± SD of

three independent experiments. The p values were calculated using one-way ANOVA and two-tailed unpaired

Student’s t-test. ns = not significant.

https://doi.org/10.1371/journal.pone.0297749.g007
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Discussion

The pH in tumor cells and their microenvironment plays critical roles in the development of

the disease and is thus considered an active target for treatment [79]. Previous studies have

shown that cancer cells’ intracellular cytosolic pH (pHi) is mildly alkaline compared to healthy

cells, while cancer cells’ extracellular pH (pHe) is acidic. Thus, nanoparticles responsive to the

pH gradients are promising for cancer drug delivery [40, 80]. Furthermore, the pH-responsive

Fig 8. The treatment effect of ERKi-iRGD-pH-NPs and GEM on PDAC tumor growth in the KPC mouse model. (A). Detection of desmoplasia by

immunohistological evaluation of α-SMA in the KC and KPC mice tumor sections, (B). Detection of the hypoxia by Immunohistological evaluation of HIF-1α
in a KPC mouse’s adjacent normal and tumor sections. (C). Immunohistological evaluation of NRP-1 in the human and KPC mice tumor sections, (D).

Penetration and distribution of pHNPs with or without iRGD in the PDAC tumors in the KPC model. n, 3 KPC mice. The fluorescent intensity was measured

from ten hotspot areas from sections of the tumors of three KPC mice. Scale, 200 μm, Data are mean ± SD. (E). GEM treatment in combination with

ERKi-iRGD-pHNPs showed the minimum tumor growth (blue circles). (n = 5, three males, two females). Data represent mean ±SD. (F). Kaplan-Meier analysis

depicting cumulative of respective treatment groups.

https://doi.org/10.1371/journal.pone.0297749.g008
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nanocarriers have therapeutic advantages because, at pHe or lysosomal pH (acidic), they

release drugs into the extracellular fluids or cytosol (Fig 10) [80]. The released drugs then

destroy cancer cells, and surrounding fibroblast cells form a desmoplastic cage and can be

used for cancer immunotherapy [40, 81].

Furthermore, the desmoplastic microenvironment is highly hypoxic, causing lactate forma-

tion, and, as a result, pH is decreased in the cancer cells and tumor microenvironment [82].

Thus, low pH or hypoxia in the tumor ecosystem could be the ideal target for releasing drugs

using pH-responsive nanocarriers for cancer therapies with no or minimal side effects. There-

fore, this study aimed to investigate whether ERKi-loaded pH-responsive nanocarrier grafted

with a PDAC-targeted arginine-glycine-aspartic acid (iRGD)-peptide effectively releases ERKi

in a pH and hypoxic environment. We demonstrated that ERKi is released in low pH environ-

ments, including hypoxic areas, by co-opting multiple mechanisms and showed an additive

effect with gemcitabine in vitro and in vivo. Therefore, as summarized in Fig 10, we propose

that the iRGD decorated pH-responsive nanocarriers effectively release drugs in pHe, lyso-

somal pH, and hypoxia zone in PDAC in vitro and a KPC mouse model with a hypoxic zone.

Fig 9. ERKi suppressed the production of desmoplastic regulatory proteins in PDAC cells. (A). ERKi targetable desmoplastic regulatory molecules in

PDAC. (B-D). Immunoblots of lysates from Panc-1 and MIA-PaCa-2 cells treated with ERKi or left untreated. β-Actin antibody was used as a loading control

for each immunoblot.

https://doi.org/10.1371/journal.pone.0297749.g009
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Fig 10. Proposed in vivo model of ERKi-iRGD-pHNPs drug-releasing pathways in PDAC. The pathways are discussed in the text about the pathways of drug

release under hypoxic and low-pH microenvironments. The drawing is adapted from current work and previous findings.

https://doi.org/10.1371/journal.pone.0297749.g010
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Recently, we found that pH-responsive nanocarriers release ERK inhibitors and gemcita-

bine under cell culture conditions and in the tumors of a subcutaneous xenograft mouse

model. As expected from the mechanistic viewpoints, the released drugs significantly impaired

in vitro cellular proliferation and tumor growth [40] and raised two hypotheses. These include

1. the pH-responsive nanocarriers could be tumor-specific targeted particles if we incorporate

iRGD, and 2. Since hypoxia promotes the tumors’ and tumor microenvironment’s pH gradient

zones, pH-responsive nanocarriers could release ERKi in hypoxic tumors without further

modification.

Our collective studies found pH-responsive ERKi (SCH772984) encapsulated nanoparticles

grafted with iRGD peptide, effectively releasing ERKi in hypoxic and low pH environments.

They reduced PDAC growth in a KPC autochthonous tumor model in which desmoplastic

zones are high. Thus, these studies support the first hypothesis and indicate that iRGD grafted

pH-responsive nanoparticles are ideal for delivering drugs into the tumors surrounded by the

desmoplastic cage with hypoxic or low pH environments through the possible multiple path-

ways, as shown in Fig 10. However, further studies are warranted.

Finally, through comprehensive experimental analyses, including colony formation ability

and cellular migration as invasive behaviors, and in vivo studies, we demonstrated that the

therapeutic efficacy of free gemcitabine increased significantly in both in vitro and in vivo
when performed a combination treatment with nanoparticle-encapsulated ERKi. However, in
vivo system, the effect of a single agent is minimal compared to in vitro. In contrast, the combi-

nation treatment effect was more pronounced in vivo, and gemcitabine efficiency is expected

to be weak vivo compared to that observed in the tissue culture environment.

ERK inhibitors regulate desmoplastic reactions in the cancer microenvironment [32, 33].

Our in vitro and in vivo studies found that ERKi significantly impaired the production of sev-

eral proteins necessary for desmoplasic reaction in PDAC, suggesting destroying desmoplasia

might help promote GEM action in these models.

Conclusion

Our findings have important biological and clinical implications. The pH-responsive nanopar-

ticles used in these studies are rewired chemically and pharmacologically with iRGD tumor

penetrating peptide for cancer cell-targeted delivery and releasing ERKi in hypoxic and low

pH zones. Finally, the K-RAS-dependent PDAC tumors in genetically engineered KPC mouse

models can be sensitized to gemcitabine by combining ERKi treatments. Neither inhibitor has

potent single-agent activity in this tumor as in combination. Further, we anticipate that ERKi

significantly reduces the production of desmoplastic regulator factors in PDAC cells. For the

first time, we showed that an iRGD-tagged pH-responsive nanocarrier would be suitable for

off-the-shelf universal use to deliver drugs with challenging PK/PD features to highly hypoxic

tumors.
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