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Abstract

The effects of coronavirus disease 2019 (COVID-19) primarily concern the respiratory tract

and lungs; however, studies have shown that all organs are susceptible to infection by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 may involve

multiorgan damage from direct viral invasion through angiotensin-converting enzyme 2

(ACE2), through inflammatory cytokine storms, or through other secondary pathways. This

study involved the analysis of publicly accessible transcriptome data from the Gene Expres-

sion Omnibus (GEO) database for identifying significant differentially expressed genes

related to COVID-19 and an investigation relating to the pathways associated with mito-

chondrial, cardiac, hepatic, and renal toxicity in COVID-19. Significant differentially

expressed genes were identified and ranked by statistical approaches, and the genes

derived by biological meaning were ranked by feature importance; both were utilized as

machine learning features for verification. Sample set selection for machine learning was

based on the performance, sample size, imbalanced data state, and overfitting assessment.

Machine learning served as a verification tool by facilitating the testing of biological hypothe-

ses by incorporating gene list adjustment. A subsequent in-depth study for gene and path-

way network analysis was conducted to explore whether COVID-19 is associated with

cardiac, hepatic, and renal impairments via mitochondrial infection. The analysis showed

that potential cardiac, hepatic, and renal impairments in COVID-19 are associated with

ACE2, inflammatory cytokine storms, and mitochondrial pathways, suggesting potential

medical interventions for COVID-19-induced multiorgan damage.

Introduction

Patients with coronavirus disease 2019 (COVID-19) experience various respiratory issues.

Acute respiratory distress syndrome (ARDS) due to COVID-19 pneumonia is the primary

cause of mortality and long-term lung damage. Although the respiratory system is most

commonly affected in people infected with severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), the virus can impact any organ in the body [1–3]. Indeed, multiple organs

are typically involved in critically ill patients [4]. In addition to classical symptoms of
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respiratory distress, many patients with COVID-19 have systemic symptoms, including car-

diovascular, hepatic or renal failure as well as coagulation disorders. Studies have reported

organ damage involving the lungs (33% of patients), heart (32%), kidneys (12%), liver

(10%), pancreas (17%), and spleen (6%); 66% of study participants had single- or multiorgan

system damage, and 25% of patients showed multiorgan damage with varying degrees of

overlap between various organs [5].

Cardiac complications occur in 20–44% of inpatients and are an independent risk factor for

COVID-19-related death [6]. Viral invasion of cardiomyocytes [7] or systemic inflammatory

responses without direct viral infiltration [8] can cause myocarditis, which can lead to heart

failure and arrhythmias. Some patients with severe COVID-19, including those who did not

have underlying kidney problems prior to the disease, acquire signs of kidney damage, with

more than 30% of COVID-19 inpatients developing kidney damage [9]. In addition, multiple

studies have reported the occurrence of liver damage in COVID-19 patients, indicating that

2–11% of COVID-19 patients develop liver comorbidities. Furthermore, in 16–53% of

reported cases, increases in alanine aminotransferase (ALT) and aspartate aminotransferase

(AST) levels occur during disease progression [10], which suggests that hepatocytes are dam-

aged and that the liver is inflamed.

An inflammatory cytokine storm is the most frequently reported phenomenon in COVID-

19. Inflammatory cytokines are immune responses intended to kill pathogens; however, the

hyperinflammatory state associated with excessive production of cytokines can cause perma-

nent damage to cells and mitochondria and induce cell death, potentially leading to further

organ damage [11]. Angiotensin-converting enzyme 2 (ACE2), a key enzyme of the renin-

angiotensin-aldosterone system (RAAS) that maintains homeostasis of blood pressure, electro-

lytes, and the inflammatory response, is also a possible cause of COVID-19-related damage to

the lung [12], heart [13], liver [14] and kidney [15] as SARS-CoV-2 enters cells through ACE2.

Mitochondria are another important target of SARS-CoV-2. Mitochondria, the main produc-

tion sites of adenosine triphosphate (ATP) [16], are involved in the regulation of cellular

immunity, homeostasis, and cell survival and death. There is evidence suggesting that SARS--

CoV-2 hijacks the mitochondria of immune cells, replicates within the mitochondrial struc-

ture, and impairs mitochondrial dynamics, leading to cell death [17]. However, whether

SARS-CoV-2 can impair organ function by direct viral infection via ACE2, mitochondrial

damage, or multiorgan damage triggered by an inflammatory cytokine storm needs to be fur-

ther investigated.

SARS-CoV-2 causes an increase in mitochondrial DNA (mtDNA) levels during infection

that may trigger an excessive immune response and lead to severe pathology in COVID-19,

including multiorgan failure [18]. While it is believed that mitochondrial antiviral signaling

(MAVS) interacts with different SARS-CoV-2 proteins, the SARS-CoV-2 M protein inhibits

MAVS protein aggregation, and the mitochondrial membrane-anchored MAVS protein is a

key factor in the cellular antiviral defense system that further inhibits the innate antiviral

response [19]. Immune evasion and hyperinflammation during COVID-19 can also be related

to the disruption of mitochondrial quality [20]. In addition, patients with COVID-19 have

reduced mitochondrial oxidative phosphorylation (OXPHOS) and bioenergetics, and

COVID-19 is reportedly associated with inhibition of mitochondrial gene transcription [21].

SARS-CoV-2 infection hinders mitochondrial bioenergetics, which in turn can trigger inflam-

masome activation. Consequently, mitochondrial inhibition not only results in excessive cyto-

kine production but also exerts a substantial impact on organs that heavily depend on

mitochondrial energy production [21].

Based on this evidence, we hypothesized that COVID-19 may cause damage to the heart,

kidney, and liver via mitochondrial dysfunction and downstream responses in addition to
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direct viral infection and cytokine storms. Systemic transcriptomic analysis was conducted to

examine the roles of mitochondria in COVID-19-related multiorgan damage (Fig 1). Our

analysis shows that it can be reasonably inferred that there is a correlation between the mito-

chondrial damage caused by SARS-CoV-2 infection and further deterioration of heart, kidney,

and liver function, resulting in multiorgan damage. This study enables understanding of the

causes of multiorgan complications caused by SARS-CoV-2 and the development of treatment

regimens.

Materials and methods

Bioinformatics and machine learning tools were used to analyze multiple publicly available

RNA-Seq sample sets from clinical samples. NetworkAnalyst is a comprehensive gene expres-

sion profiling and web visualization analysis [22]; Ingenuity Pathway Analysis (IPA) provides

analysis and development tools for genomics, proteomics, drug toxicology, and metabolic and

regulatory pathway studies [23]; DAVID (Database for Annotation, Visualization and Inte-

grated Discovery) is a web-based tool for functional evaluation of the gene expression data

[24–26]; ClueGO [27] is a Cytoscape plug-in for deciphering functionally grouped gene

Fig 1. Summary flow chart. The analysis in this study starts with data collection on gene expression, followed by gene transcriptome analysis to obtain

significantly expressed genes and toxicity analysis to further identify relevant significantly expressed genes. Subsequently, machine learning was used with the

significantly expressed genes identified through statistical and biological methods to validate the hypothesis that SARS-CoV-2 would cause further damage to

cardiac, hepatic, and renal function by infecting mitochondria. Finally, we conducted a literature review on the common genes, feature importance, and

pathway analysis of these transcriptomes to investigate how SARS-CoV-2 infects mitochondria and damages cardiac, liver, and kidney function and drew

conclusions. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0297664.g001
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ontology and pathway annotation networks [28]; GSEA (Gene Set Enrichment Analysis) is

applied to assess the distribution trend of genes in a specific gene set arranged in a gene table

based on their correlation to the phenotype to determine its contribution to the phenotype

[29, 30]. Python packages for machine learning sklearn (1.2.2), imblearn (0.10.1), and XGBoost

(1.7.5) were run in Python 3.10.11. The cnetplot is a function from the clusterProfiler R pack-

age, commonly used for visualizing gene set enrichment analysis results. This function creates

a category net plot that combines a category enrichment plot with a gene network plot. The

version of clusterProfiler is 4.8.3 and runs in R 4.3.1; Venn diagrams and feature importance

analysis tools were used to analyze specific genes to identify biological pathways and important

molecules in the heart, kidney, and liver that correlate with mitochondria affected by SARS--

CoV-2.

Data availability

The raw counts of the RNA-seq data were obtained from the NCBI Gene Expression Omni-

bus (GEO) database. The selection of sample sets is determined by several factors, including

the sample size for machine learning, the kind of human tissue being studied, and the pres-

ence of sufficient differentially expressed genes to facilitate further analysis. Prior to select-

ing these five sample sets, we conducted tests on additional sample sets. Nevertheless, the

majority of these datasets exhibit a limited number of differentially expressed genes, typi-

cally fewer than 100 or slightly exceeding this threshold. Hence, after the evaluation based

on the criteria, the selected sample sets comprised GSE152075, GSE163151, GSE157103,

GSE169241, and GSE152641 for significant differentially expressed genes and toxicity

analysis.

For the selection of sample sets of machine learning, our criteria were machine learning

performance, sample size, imbalanced data state, and overfitting assessment. We also per-

formed a comparison of GSE152075, GSE163151, GSE157103, and GSE152641 for machine

learning performance and a complete analysis.

The sample sets GSE152075 and GSE163151 were obtained from nasopharyngeal swabs,

GSE157103 from leukocytes, GSE169241 from human heart autopsy tissues, and GSE152641

from whole blood (Table 1). These five sample sets were first tested for differences between tis-

sues. We then performed machine learning on GSE152075 with a larger sample size to validate

the effect of COVID-19 on mitochondria and to identify further effects on the heart, kidney,

and liver.

Processing of RNA sequencing data

NetworkAnalyst is utilized for gene expression analysis, and this study required tuning of vari-

ous parameters. To initiate gene expression analysis using NetworkAnalyst, the mean is

employed for gene-level summarization. It simplifies and standardizes representation, reduces

random noise in the data, and makes it more amenable to downstream analyses. Additionally,

it helps mitigate issues with multiple testing and operates under the assumption that each tran-

script contributes equally to the gene’s activity.

Before performing differential expression analysis, filtering is employed to enhance statisti-

cal power by eliminating genes that do not exhibit a response. To obtain accurate and mean-

ingful inferences from differential expression analysis data, it is imperative to employ

appropriate normalization techniques.

Filtering aids in the elimination of information that is demonstrably inaccurate or unlikely

to be instructive. To modify the quantity of genes excluded from subsequent analysis, it is nec-

essary to set up the parameters for variance and abundance filters. The variance filter
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eliminates features with a variance percentile rank less than the threshold of those with consis-

tent expression values across circumstances. In this instance, the variance filtering was config-

ured to a threshold of 15, in accordance with the default configuration of NetworkAnalyst.

Consequently, data in the lowest 15th percentile of expression will be removed. The parameter

for eliminating features with counts below the set threshold is referred to as low abundance. In

this study, the default value of 4 was employed in NetworkAnalyst.

To accurately detect transcriptional differences and to guarantee that the expression distri-

butions of each sample are consistent throughout the whole experiment, normalization is

essential.

Log2-counts per million (Log2-CPM) is a normalization method commonly used in RNA-

seq data processing. Log transformation helps to compress the range of data, ensuring that

genes with high expression variability do not disproportionately influence subsequent

analyses.

Table 1. Summary of RNA sequence sample sets of COVID-19 in Gene Expression Omnibus.

GEO accession GSE title Tissue Platform Sample size

GSE152075 In vivo antiviral host transcriptional response to SARS-CoV-2 by

viral load, sex, and age [31]

Nasopharyngeal swab GPL18573 Illumina NextSeq

500 (Homo sapiens)
484

(COVID:

control = 430: 54)

GSE152075

Summary

1. SARS-CoV-2 triggered an antiviral response driven by interferon and concurrently decreased the transcription of ribosomal proteins. Levels of B

cells and neutrophils were higher in patients with a lower viral load.

2. A decrease in the expression of chemokines CXCL9/10/11, cognate receptors CXCR3, CD8A, and granzyme B was observed in elderly

individuals.

3. B- and NK-cell-specific transcripts were reduced and NF-κB inhibitors increased in males.

GSE163151 A diagnostic host response biosignature for COVID-19 from

RNA profiling of nasal swabs and blood [32]

Nasopharyngeal swab GPL24676 Illumina NovaSeq

6000 (Homo sapiens)
149

(COVID:

control = 138: 11)

GSE163151

Summary

1. A two-step classifier based on machine learning that was run on an individual test set of NP swab samples was able to segregate COVID-19 and

non-COVID-19 and infectious or noninfectious acute respiratory disease with 85.1%-86.5% accuracy.

2. SARS-CoV-2 infection has unique biologic features and differences between NP swabs and whole blood that can be used in the differential

diagnosis of COVID-19.

GSE169241 hPSC-derived cells to model macrophage-mediated inflammation

in COVID-19 Hearts [33]

Human heart autopsy

tissues

GPL24676 Illumina NovaSeq

6000 (Homo sapiens)
8

(COVID:

control = 3:5)

GSE169241

Summary

1. COVID-19 patients showed a significant increase in CCL2 expression and macrophage infiltration in cardiac tissue.

2. After SARS-CoV-2 exposure, macrophages induced increased cardiomyocyte reactive oxygen species and apoptosis via secretion of IL-6 and

TNF-α.

GSE157103 Large-scale multiomic analysis of COVID-19 severity [34] Leukocyte GPL24676 Illumina NovaSeq

6000 (Homo sapiens)
126

(COVID:

control = 100: 26;

ICU: non-ICU = 50:

50)

GSE157103

Summary

1. Coagulation-related proteins, as well as cellular fibronectin (cFN), were significantly increased in COVID-19 patients.

2. The abundance of prothrombin, which is cleaved to form thrombin during coagulation, was significantly reduced and correlated with severity,

which may help to elucidate the hypercoagulable environment of SARS-CoV-2 infection.

GSE152641 Transcriptomic similarities and differences in host response

between SARS-CoV-2 and other viral infection [35]

Whole blood GPL24676 Illumina NovaSeq

6000 (Homo sapiens)
86

(COVID:

control = 62: 24)

GSE152641

Summary

1. Changes in gene expression in the peripheral blood of COVID-19 patients correlated highly with changes in response to other viral infections.

However, two genes, ACO1 and ATL3, showed significantly different changes in expression.

2. Some dynamic immune evasion and counter host responses are specific to COVID-19. For example, CD56bright NK cells, M2 macrophages, and

total NK cells were increased in COVID-19.

https://doi.org/10.1371/journal.pone.0297664.t001
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The limma approach is commonly utilized in the context of differential expression analysis

because of its use of linear models, which frequently leads to improved computational effi-

ciency when compared to alternative methods for differential expression analysis [36]. The

adjusted p value was set to 0.05 [37] and the log2-fold change to 1.5 [38] to ensure that the dif-

ferentially expressed genes being identified were statistically significant and biologically mean-

ingful with sufficient variance. This makes the results more biologically relevant and valuable

for application. The volcano plots of the significantly expressed genes in GSE152075,

GSE169241, GSE157103, GSE163151, and GSE152641 show genes with increased and

decreased gene expression (S1 Fig in S1 File) [39].

Gene set enrichment and pathway analysis

After obtaining the significantly expressed genes from NetworkAnalyst’s differential gene

expression analysis, we used Ingenuity Pathway Analysis (IPA; version 84978992) for a com-

parative analysis of the five sample sets and obtained toxicity lists for each sample set from the

Tox analysis.

DAVID, ClueGO, the cnetplot from the clusterProfiler package in R and GSEA were used

for pathway enrichment analysis and functional annotation. The significantly expressed genes

of these transcriptomes were analyzed in terms of KEGG, REACTOME, and WIKIPATH-

WAYS in DAVID. Genes are linked with enriched pathways with GO, KEGG, and REAC-

TOME by cnetplot. GSEA assesses how predefined gene sets are distributed within a gene

table sorted by their correlation with the phenotype, helping to determine their impact on the

phenotype. The gene set database utilized in the analysis was h.all.v2023.1.Hs.symbols.gmt. A

total of 1000 permutations were performed, with gene symbols being collapsed in the database.

The permutation type employed was phenotypic, and the chip platform used was Human_-

Gene_Symbol_with_Remapping_MSigDB.v2023.1.Hs.chip. ClueGO was used for comprehen-

sive pathway and biological analysis and functional annotation of GO terms and pathways.

The databases of GO, KEGG, WIKIPATHWAYS, REACTOME Reactions, and REACTOME

Pathways were included in the ClueGO setting panel. The parameters encompass a p value

threshold established at 0.05, a GO hierarchy ranging from level 8 to 15, and a pathway selec-

tion criterion of 2 genes with 6% per pathway. Other parameters were set to default. In addi-

tion, a Venn diagram was used to identify common genes for analysis of the biological

meaning in the mitochondria, heart, kidney, and liver through their transcriptomes.

Machine learning

The GSE152075 sample set was selected for machine learning based on several considerations.

In numerous machine learning tasks, it is generally observed that the performance of the

model tends to improve as the number of samples increases. This can be attributed to the fact

that the model is subjected to a larger volume of data, enabling it to acquire a broader range of

features and patterns. A greater number of data typically leads to improved generalization

capabilities of the model.

When performing model training with a limited amount of data, there is an increased likeli-

hood of encountering the phenomenon known as overfitting [40]. Overfitting refers to a situa-

tion in which the model demonstrates excellent performance when evaluated on the training

data but fails to generalize effectively when presented with fresh, previously unseen data. This

implies that the model could exhibit excessive complexity and has inflexibly acquired the char-

acteristics of the training data, resulting in poor performance when applied to novel data.

The utilization of diverse sample sets may yield disparate outcomes, introducing complexity

to the analysis. The GSE169241 sample set derives from human heart autopsy tissues,
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GSE157103 from leukocytes, and GSE152641 from whole blood samples. Similar to

GSE152075, GSE163151 utilized nasopharyngeal swabs as the source of samples. However,

due to the severe imbalance of samples between the COVID and control groups (138:11) in

GSE163151, even employing techniques such as SMOTE to address the issue of imbalanced

data might not produce adequate outcomes.

We use several indexes, including F1-Score, MCC, and AUC, to evaluate the performance

of models, each with its specific formula, significance, and application, particularly in scenarios

with imbalanced data.

The metric of F1-Score is the harmonic mean of precision and recall, calculated as

F1-Score ¼ 2�
Precision � Recall

Precision þ Recall

A higher F1-Score, closer to 1, indicates better model performance, balancing the precision

and recall, which is especially crucial in imbalanced datasets. An F1-Score near 0 indicates

poor model performance.

MCC (Matthews Correlation Coefficient) is calculated using the formula:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ

p

Where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false

negatives, respectively. MCC values range from -1 to +1. MCC is particularly valuable in

imbalanced datasets as it provides a balanced measure even when class distribution is skewed.

AUC (Area Under the Curve) refers to the area under the ROC (Receiver Operating Char-

acteristic) curve, AUC ranges from 0 to 1. AUC is less sensitive to class imbalance, making it a

robust measure for evaluating models on imbalanced datasets.

In imbalanced data scenarios, these metrics are crucial as they offer more comprehensive

insights into a model’s performance than mere accuracy. While a high accuracy might be mis-

leading in such cases, a high score in F1, MCC, and AUC indicates that the model effectively

handles both minority and majority classes, providing a holistic assessment of its predictive

capabilities across different class distributions.

The machine learning comparison was conducted on four sample sets, GSE152075,

GSE163151, GSE157103, and GSE1526414, with the top 40 significantly expressed genes (S1

Table in S1 File), which is explained for the number of gene selection in the subsection of sen-

sitivity analysis of machine learning with varying significant gene counts. The GSE169241

sample set was excluded from the comparison due to its small sample size. Based on the factors

mentioned above, the overall performance of GSE152075 generally showed the most opti-

mized selection regarding machine learning performance, sample size, imbalanced data state,

and overfitting assessment (S2 Table in S1 File).

In addition, utilizing several sample sets can offer a more comprehensive outlook; however,

performing an in-depth examination of a singular sample set facilitates a more intricate study

and comprehension. Therefore, we mainly utilized the GSE152075 sample set, which consists

of 484 samples driven by the objective of ensuring consistency and uniformity in the subse-

quent study.

With the selected genes from the GSE152075 sample set as features, machine learning

methods were used to test whether the association between COVID-19 and effects in the mito-

chondria, heart, kidney, and liver could be predicted. Through these machine learning results,

the pathways and biological meanings of the genes were further analyzed.
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We employed four machine learning algorithms, including XGBoost [41] with parameters

for colsample_bytree = 0.9, learning_rate = 0.1, max_depth = 10, n_estimators = 50, random

forest [42] with parameters for max_depth = 10, min_samples_split = 5, n_estimators = 100,

logistic regression [43] with parameters for C = 50, max_iter = 5000 and SVM [44] with

parameters for kernel = ’rbf’, C = 100, gamma = 0.01, probability = True, to test and predict

COVID-19. The K-fold cross-validation technique was utilized, with K-fold sets to 10.

Since the ratio of the experimental group to the control group in the GSE152075 sample

set was 430:54, the control group size was insufficient, which created a problem of imbal-

anced data. Thus, we employed SMOTE (Synthetic Minority Oversampling Technique) to

analyze the samples in the minority category and add new samples to the sample set.

SMOTE is a method used to address imbalanced sample sets, especially for oversampling

minority classes. In imbalanced sample sets, the number of samples from one class greatly

outnumbers the other. This results in many machine learning models being biased toward

the majority class as they try to maximize overall accuracy, potentially neglecting or misclas-

sifying the minority class. SMOTE addresses the issue of class imbalance not by simply

duplicating samples from the minority class but by generating new synthetic samples. For

every sample in the minority class, it identifies k-nearest neighbors, all of which belong to

the same minority class. A neighbor is then randomly chosen, and a synthetic sample is pro-

duced at a random point between this sample and its selected neighbor. This procedure is

iteratively carried out until a desired sample count or proportion for the minority class is

reached. The synthesis method of SMOTE can be described using the following mathemati-

cal formula:

Given a sample xi from the minority class, a random selection is made from its k nearest

neighbors, denoted as xzi. Next, a random number λ between 0 and 1 is chosen. The new syn-

thetic sample xnew can be generated using the formula:

xnew ¼ xi þ l� ðxzi � xiÞ

This method ensures that the new synthetic sample lies somewhere on the line segment

between the original sample and its chosen neighbor. Each iteration might yield different

results because λ is randomized.

SMOTE offers notable advantages in tackling data imbalance. Instead of duplicating minor-

ity class samples, it produces synthetic samples, enhancing the sample set’s diversity and

reducing the risk of overfitting. Furthermore, by expanding the minority class data, SMOTE

ensures that models can better grasp the nuances of this class, leading to improved prediction

accuracy [45]. Using this method, the ratio of the experimental group to the control group was

1:1.

SHAP (SHapley Additive exPlanations, 0.41.0) was used to analyze the prediction interpre-

tation of the contribution of each feature. We then calculated the Shapley value of each feature

to measure the contribution of the feature to the prediction so that the contribution of each

feature could be understood in detail [46].

The codes are available at https://github.com/ntumitolab/ML-RNA-Seq.

Results

After analyzing and processing the RNA sequencing raw count data for sample sets

GSE152075, GSE163151, GSE169241, GSE157103 and GSE152641, the significant genes of

each sample set were obtained and tested in machine learning, pathway analysis and IPA-Tox

analysis.
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Sensitivity analysis of machine learning with varying significant gene

counts

The initial investigation involved assessing the predictive capabilities of the features identified

by the statistical methodology for COVID-19 to gain insights into the potential utility of

machine learning. Consequently, we ranked the significantly expressed genes from the differ-

ential gene expression analysis of GSE152075 from NetworkAnalyst by their adjusted p value.

The top 100 significantly expressed genes from the differential expression analysis of

GSE152075 (S3 Table in S1 File) were ordered by the adjusted p value and used for machine

learning and pathway analysis. The machine learning prediction power for predicting

COVID-19 was tested on the top 100, 80, 60, 50, 40, 30, and 20 significantly expressed genes,

and the results showed that the accuracy, F1-Score, and AUC of the four machine learning

algorithms except SVM were near or above 90% for the top 30–100 significantly expressed

genes (Table 2). This implies 30 significantly expressed genes to be sufficient for good predic-

tion power. However, the overall performances of 40 significantly expressed genes in these

four machine learning algorithms were better than 30 significantly expressed genes. Therefore,

we proceeded with 40 genes for a more comprehensive pathway enrichment exploration.

Table 2. Machine learning results of the top 100, 80, 60, 50, 40, 30, 20 significantly expressed genes, and randomly selected 40 genes in GSE152075.

Machine Learning

Features 100 genes 80 genes 60 genes 50 genes 40 genes 30 genes 20 genes Randomly selected 40 genes

XGBoost Accuracy 0.963 0.963 0.965 0.963 0.969 0.961 0.950 0.851

Sensitivity 0.979 0.984 0.984 0.979 0.984 0.977 0.967 0.921

Specificity 0.833 0.796 0.815 0.833 0.852 0.833 0.815 0.296

Precision 0.979 0.975 0.977 0.979 0.981 0.979 0.977 0.912

F1-Score 0.979 0.979 0.980 0.979 0.983 0.978 0.972 0.917

MCC 0.812 0.807 0.819 0.812 0.842 0.804 0.758 0.225

AUC 0.973 0.972 0.978 0.974 0.972 0.970 0.943 0.657

Random Forest Accuracy 0.965 0.969 0.969 0.965 0.969 0.965 0.952 0.849

Sensitivity 0.988 0.991 0.991 0.988 0.991 0.988 0.984 0.919

Specificity 0.778 0.796 0.796 0.778 0.796 0.778 0.704 0.296

Precision 0.973 0.975 0.975 0.973 0.975 0.973 0.964 0.912

F1-Score 0.980 0.983 0.983 0.980 0.983 0.980 0.974 0.915

MCC 0.815 0.837 0.837 0.815 0.837 0.815 0.745 0.220

AUC 0.975 0.970 0.963 0.964 0.961 0.964 0.956 0.646

Logistic Regression Accuracy 0.938 0.924 0.913 0.909 0.899 0.897 0.798 0.698

Sensitivity 0.944 0.935 0.916 0.909 0.902 0.898 0.781 0.726

Specificity 0.889 0.833 0.889 0.907 0.870 0.889 0.926 0.481

Precision 0.985 0.978 0.985 0.987 0.982 0.985 0.988 0.918

F1-Score 0.964 0.956 0.949 0.947 0.941 0.939 0.873 0.810

MCC 0.737 0.676 0.669 0.667 0.628 0.631 0.487 0.143

AUC 0.976 0.974 0.973 0.974 0.976 0.962 0.943 0.691

SVM Accuracy 0.880 0.851 0.829 0.820 0.800 0.725 0.643 0.446

Sensitivity 0.867 0.847 0.821 0.807 0.786 0.700 0.607 0.426

Specificity 0.981 0.889 0.889 0.926 0.907 0.926 0.926 0.611

Precision 0.997 0.984 0.983 0.989 0.985 0.987 0.985 0.897

F1-Score 0.928 0.910 0.895 0.889 0.875 0.819 0.751 0.577

MCC 0.638 0.546 0.511 0.517 0.480 0.408 0.337 0.023

AUC 0.975 0.969 0.968 0.967 0.962 0.957 0.962 0.654

https://doi.org/10.1371/journal.pone.0297664.t002
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A randomly selected 40 genes from all genes of GSE152075 as machine learning features

were also tested as a baseline to validate the result of assessing the predictive capabilities of the

features identified by the statistical methodology for COVID-19. The result showed that the

machine learning predictive capabilities cannot be established without pre-process feature

selection.

The top 40 significantly expressed genes in the GSE152075 sample set (Fig 2A) were then

analyzed in DAVID for KEGG, REACTOME, and WIKIPATHWAYS pathway analysis.

COVID-19- and SARS-CoV-2-related pathways were identified as some of the major pathways

from these top 40 significantly expressed genes. In addition, pathways related to inflammatory

cytokine storms, such as interferon signaling [47], interferon alpha/beta/gamma signaling, and

Fig 2. Pathway analysis of the top 40 significantly expressed genes in GSE152075. (A) List of the top 40 significantly expressed genes in the GSE152075 sample set.

(B) DAVID analysis results of the top 40 significantly expressed genes in the REACTOME pathways. (C) Network of pathways from ClueGO for the top 40

significantly expressed genes showing that SARS-CoV-2 and inflammatory cytokine storm-related interferon signaling pathways are the main terms by group among

the top 40 significantly expressed genes. Cnetplot of (D) GO enrichment analysis for the top 40 DEGs in Biological Process, (E) KEGG, and (F) REACTOME. (G)

GSEA results for enrichment analysis of the top 40 significantly expressed genes.

https://doi.org/10.1371/journal.pone.0297664.g002
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cytokine signaling in the immune system, were identified (Fig 2B), accounting for a large pro-

portion of the pathway analysis results in ClueGo (Fig 2C). Genes linked with enriched path-

ways by cnetplot shows GO enrichment analysis for the top 40 DEGs in Biological Process

(BP) is mainly virus-related pathway (Fig 2D), KEGG is coronavirus disease—COVID-19 (Fig

2E), and REACTOME is interferon-related signaling (Fig 2F). Interferon alpha/gamma signal-

ing can also be seen in GSEA (Fig 2G). Hence, it can be inferred that inflammatory cytokine

storms are strongly associated with COVID-19. Using these top 40 significantly expressed

genes as machine learning features may effectively predict COVID-19.

Tox analysis of mitochondria, heart, kidney, and liver

The toxicity lists were obtained by performing Tox analysis on the significantly expressed

genes in the five sample sets (Table 1) via IPA. The samples from different tissues and sampling

platforms showed different common genes (Fig 3) and toxicity lists, indicating that the patho-

genesis of COVID-19 is tissue specific.

The nasopharyngeal swab data from GSE152075 and GSE163151 each showed the largest

number of genes in common between these five sample sets and the toxic effects of COVID-19

on the heart, kidney, liver, and mitochondria (Fig 4A and 4B). The human heart tissue samples

Fig 3. The common genes across the RNA-seq datasets. Top 100 significantly expressed genes were compared between RNA-seq datasets GSE152075, GSE163151,

GSE169241, GSE157103 and GSE152641. The Venn diagram result indicates that the pathogenesis of COVID-19 is tissue specific.

https://doi.org/10.1371/journal.pone.0297664.g003
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from GSE169241 showed the toxic effects of COVID-19 mainly on the heart and mitochondria

(Fig 4C). While the data on leukocytes from GSE157103 and on whole-blood samples from

GSE152641 showed that COVID-19 had toxic effects on the heart, kidney, and liver, the toxic

effects on mitochondria were not significant (Fig 4D and 4E). However, the toxicity lists

obtained from the GSE157103 leukocyte samples with ICU and non-ICU toxicity analysis

showed a toxic mitochondrial effect in addition to the toxic cardiac, renal, and hepatic effects

(Fig 4F), which suggests that mitochondrial dysfunction is associated with disease progression

in COVID-19 patients [48].

Fig 4. IPA comparative analysis of the RNA-seq data. Differentially expressed genes between the COVID-19 patients and the control groups were compared in the

comparative IPA analysis for toxicity lists and toxicity functions. The following RNA-seq sample sets were obtained from the NCBI Gene Expression Omnibus

database (GEO): GSE152075 (A, nasopharyngeal swab), GSE163151 (B, nasopharyngeal swab), GSE169241 (C, human heart autopsy tissues), GSE157103 (D,

leukocyte), and GSE152641 (E, whole blood). ICU patients and non-ICU patients were compared in the GSE157103 sample set (F).

https://doi.org/10.1371/journal.pone.0297664.g004
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Machine learning of genes associated with the mitochondria-, heart-,

kidney-, and liver-related toxicity list

In IPA-tox analysis of the GSE152075 sample set, we identified the differentially expressed

genes (DEGs) associated with the mitochondria-related toxicity list (Table 3) under the criteria

of -log(p value) > 1.3 for further machine learning analysis. Mitochondrial dysfunction was

the relevant pathway identified by the mitochondria-related toxicity list, which included 32

DEGs in GSE150275. Similarly, significantly expressed genes were identified from the heart-,

kidney-, and liver-related toxicity lists (Table 3). Among them, the heart-related toxicity lists

included cardiac fibrosis [49] and cardiac necrosis/cell death pathways [50]; there were 38

genes in these toxicity lists. The kidney-related toxicity list included renal necrosis/cell death

[51], increases renal nephritis [52] panel (PSTC) [53], and increases glomerular injury path-

ways [54]; there were 55 genes in these toxicity lists. The liver-related toxicity lists included

increases in liver hepatitis [55], liver necrosis/cell death [56] and increases in liver damage

pathways [57]; there were 42 genes in these toxicity lists (Table 3). These identified genes from

the toxicity lists were compared to the top 100 and top 40 significantly expressed genes, and

only a few common significantly expressed genes were identified, including NDUFV1 and

PRDX5 in mitochondrial dysfunction and RRAD, CIB1, CYBB, and SLC8A1 in the heart.

There were many differences in gene expression between those identified by the statistical

meaning method and those identified by the biological meaning method.

Next, these DEGs in the mitochondria-, heart-, renal-, and liver-related toxicity lists were

used as features to test the prediction efficiency of COVID-19 in machine learning models.

The results showed that the gene sets in the mitochondria-, heart-, renal-, and liver-related

Table 3. Genes associated with mitochondria-, heart-, kidney-, and liver-related toxicity list and top significantly expressed genes in GSE152075.

Genes associated with

mitochondrial-related toxicity list

(32 genes)

Genes associated with heart-

related toxicity list (38 genes)

Genes associated with renal-

related toxicity list (55 genes)

Genes associated with liver-

related toxicity list (42 genes)

Related toxicity list Mitochondrial Dysfunction Cardiac Fibrosis

Cardiac Necrosis/Cell Death

Renal Necrosis/Cell Death

Increases Renal Nephritis

Renal Safety Biomarker Panel

(PSTC)

Increases Glomerular Injury

Increases Liver Hepatitis

Liver Necrosis/Cell Death

Increases Liver Damage

Genes in toxicity

list

ACO2, ATP5F1E, ATP5ME, BAD,

CLIC2, COX4I1, COX5A, COX5B,

COX6A1, COX7B, CYC1, FIS1,

GPX1, GPX4, GSTP1, MT-ND6,

NDUFA11, NDUFA13, NDUFA2,

NDUFA4, NDUFAB1, NDUFB10,

NDUFB2, NDUFB7, NDUFS6,

NDUFV1, PRDX5, SURF1,

TOMM7, UQCR11, UQCRC1,

UQCRQ

CYBB, TLR4, PRKCB, SLC8A1,

TLR2, GPX1, ACE2, DVL1,

SLC2A1, STEAP3, CIB1,

NDUFS6, MB, CARD6, JUN,

LMNA, KLF15, LARP6, DAG1,

USP18, NEXN, FLT1, PIN1,

NUB1, CTNNB1, PROX1,

S100A6, CCN1, RRAD, CASP1,

BAD, NDUFA13, SOCS3, KLF4,

NTN1, SERPINF1, JUND,

ABCC9

MIF, TLR2, CLU, CTNNB1, FLT1,

TLR7, TNFSF13B, TNFSF14,

OLR1, LRP5, CYBB, GPX4, ZEB1,

TLR4, P2RX7, KMO, ACE2,

SLC2A1, FOS, LAMB2, PRKCB,

MEFV, APRT, HSPA1A, HSPA1B,

NDUFAB1, CASP1, STUB1, BAD,

ALDH3B1, MLKL, BCL2L14,

RFXANK, IDO1, SLC8A1, PRDX2,

IER3, GNB2, BIRC3, CITED2,

NTN1, GSTP1, ERBB2, ZBP1,

APOBEC3A, AIM2, FCGR3A,

FCGR3B, CX3CR1, TFF3, DDR1,

CD274, JUN, C3AR1, CCR1

TLR4, GBP5, CASP1, CCL4,

TLR2, TLR7, JUN, TNFSF14,

ALDH3A1, P2RX7, KMO, MIF,

BSG, CCR5, IL2RG, ATG4B,

AIM2, CCN1, EPHA2, CCL2,

KEAP1, CHCHD2, PROS1, SELL,

KRT8, CTNNB1, FOS, CXCL10,

IRF8, CD274, TKT, BAD, FGL2,

GADD45B, SIGIRR, SOCS3,

IER3, BIRC3, USP18, PTPRC,

JUND, PHB2

Common genes

with top 100

significantly

expressed genes

NDUFV1, PRDX5 RRAD, CIB1, CYBB, SLC8A1 TNFSF13B, CCR1, CYBB, SLC8A1 ALDH3A1, CXCL10, GBP5

Common genes

with top 40

significantly

expressed genes

PRDX5 RRAD _ CXCL10

https://doi.org/10.1371/journal.pone.0297664.t003
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toxicity list could mostly provide accuracy, F1-Score, and AUC of the four machine learning

algorithms except SVM, which were near or above 90% (Table 4). These machine learning

results demonstrated that the toxicity analyses of the mitochondria, heart, liver, and kidney

correlated with COVID-19 and were sufficient for machine learning to predict COVID-19.

To determine whether COVID-19 may further impair cardiac, hepatic, and renal function

due to mitochondrial dysfunction, we added the 32 significantly expressed genes from the

mitochondria-related toxicity lists to the significantly expressed genes of heart-, liver-, and kid-

ney-related toxicity lists. After combining the lists, there were 66 significantly expressed genes

related to the mitochondria and heart, 83 significantly expressed genes related to the mito-

chondria and kidney, and 73 significantly expressed genes related to the mitochondria and

liver. The results of this round of machine learning indicated that the accuracy, F1 score, and

AUC of all the machine learning algorithms, including SVM, using the three sets of transcrip-

tomes were above 90% (Table 5). We found that adding the significantly expressed genes in

the mitochondria-related toxicity list to those of the heart-, liver-, and kidney-related toxicity

lists improved the prediction powers in machine learning models. In particular, the accuracy

Table 4. Machine learning results of genes associated with the mitochondria-, heart-, kidney-, and liver-related toxicity list in GSE152075.

Machine Learning

Features Genes selected from

Mitochondrial

dysfunction toxicity list

(32 genes)

Genes selected from Heart

toxicity list (Cardiac

Fibrosis + Cardiac

Necrosis/Cell Death) (38

genes)

Genes selected from Renal toxicity list

(Renal Necrosis/Cell Death + Increases

Renal Nephritis + Renal Safety

Biomarker Panel (PSTC) + Increases

Glomerular Injury) (55 genes)

Genes selected from Liver toxicity

list (Increases Liver Hepatitis

+ Liver Necrosis/Cell Death

+ Increases Liver Damage) (42

genes)

XGBoost Accuracy 0.948 0.938 0.938 0.942

Sensitivity 0.981 0.970 0.974 0.967

Specificity 0.685 0.685 0.648 0.741

Precision 0.961 0.961 0.957 0.967

F1-Score 0.971 0.965 0.965 0.967

MCC 0.723 0.678 0.668 0.708

AUC 0.859 0.913 0.913 0.933

Random

Forest

Accuracy 0.944 0.952 0.940 0.944

Sensitivity 0.991 0.993 0.986 0.981

Specificity 0.574 0.630 0.574 0.648

Precision 0.949 0.955 0.949 0.957

F1-Score 0.969 0.974 0.967 0.969

MCC 0.687 0.738 0.664 0.697

AUC 0.922 0.955 0.960 0.969

Logistic

Regression

Accuracy 0.905 0.897 0.907 0.909

Sensitivity 0.930 0.907 0.912 0.914

Specificity 0.704 0.815 0.870 0.870

Precision 0.962 0.975 0.982 0.982

F1-Score 0.946 0.940 0.946 0.947

MCC 0.574 0.600 0.647 0.652

AUC 0.863 0.898 0.919 0.939

SVM Accuracy 0.936 0.899 0.771 0.723

Sensitivity 0.979 0.919 0.756 0.693

Specificity 0.593 0.741 0.889 0.963

Precision 0.95 0.966 0.982 0.993

F1-Score 0.964 0.942 0.854 0.816

MCC 0.646 0.574 0.437 0.425

AUC 0.935 0.949 0.937 0.966

https://doi.org/10.1371/journal.pone.0297664.t004
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of the machine learning algorithm SVM of significantly expressed genes in the heart-, kidney-,

and liver-related toxicity lists all improved notably (S2 Fig in S1 File). Thus, we can infer that

COVID-19 may cause further damage to cardiac, liver, and kidney function by damaging

mitochondria.

Common gene analysis of the genes associated with mitochondria-, heart-,

kidney-, and liver-related toxicity

Finally, we identified the common genes among the significantly expressed genes from the

mitochondria-related toxicity list and the three sets of significantly expressed genes from the

heart-, kidney-, and liver-related toxicity lists for further analysis. The common genes in the

mitochondria- and heart-related toxicity lists were NDUFS6, NDUFA13, GPX1, and BAD; the

common genes in the mitochondria- and kidney-related toxicity lists were GPX4, GSTP1,

NDUFAB1, and BAD. BAD (BCL2-associated agonist of cell death) was the only common gene

Table 5. Machine learning results of genes associated with mitochondria and other organ-related toxicity lists.

Machine Learning

Features Genes selected from Mitochondrial

dysfunction + Heart (Cardiac Fibrosis

+ Cardiac Necrosis/Cell Death) toxicity

list in GSE152075 (66 genes)

Genes selected from Mitochondrial

dysfunction + Renal (Renal Necrosis/Cell

Death + Increases Renal Nephritis + Renal

Safety Biomarker Panel (PSTC) + Increases

Glomerular Injury) toxicity list in

GSE152075 (83 genes)

Genes selected from Mitochondrial

dysfunction + Liver (Increases Liver

Hepatitis + Liver Necrosis/Cell Death

+ Increases Liver Damage) toxicity list in

GSE152075 (73 genes)

XGBoost Accuracy 0.955 0.946 0.934

Sensitivity 0.986 0.984 0.965

Specificity 0.704 0.648 0.685

Precision 0.964 0.957 0.961

F1-Score 0.975 0.970 0.963

MCC 0.755 0.707 0.661

AUC 0.905 0.912 0.952

Random

Forest

Accuracy 0.957 0.957 0.963

Sensitivity 0.991 0.993 0.998

Specificity 0.685 0.667 0.685

Precision 0.962 0.960 0.962

F1-Score 0.976 0.976 0.979

MCC 0.764 0.763 0.799

AUC 0.957 0.964 0.970

Logistic

Regression

Accuracy 0.919 0.940 0.940

Sensitivity 0.933 0.953 0.951

Specificity 0.815 0.833 0.852

Precision 0.976 0.979 0.981

F1-Score 0.954 0.966 0.966

MCC 0.657 0.727 0.732

AUC 0.906 0.922 0.953

SVM Accuracy 0.917 0.911 0.913

Sensitivity 0.935 0.926 0.926

Specificity 0.778 0.796 0.815

Precision 0.971 0.973 0.975

F1-Score 0.953 0.949 0.950

MCC 0.638 0.628 0.641

AUC 0.952 0.936 0.969

https://doi.org/10.1371/journal.pone.0297664.t005
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between the mitochondria-related toxicity list and heart-, kidney-, and liver-related toxicity

lists (Fig 5). The BAD protein, belonging to the Bcl-2 gene family, is a proapoptotic member

involved in initiating apoptosis, which might explain the cell death in various tissue types and

contribute to further pathogenicity and organ damage [58].

Regarding the common genes between the mitochondria-related toxicity lists and heart-

and kidney-related toxicity lists, GPX1 and GPX4 were associated with oxidative stress; NDU-
FAB1, NDUFS6, and NDUFA13 were associated with OXPHOS; and GSTP1 was associated

with the NRF2-mediated oxidative stress response. In addition to mitochondrial dysfunction,

oxidative stress and the NRF2-mediated oxidative stress response were included in the

GSE152075 toxicity lists. OXPHOS generates reactive oxygen species (ROS) [59]. The presence

of excess ROS during the regulation of intracellular signaling may cause irreversible damage to

cellular components and trigger apoptosis through the mitochondrial intrinsic apoptotic path-

way [60]. Therefore, oxidative stress can cause apoptosis via a mitochondria-dependent path-

way [61].

SHAP was used to determine the feature importance of significantly expressed genes in the

mitochondria-, heart-, kidney-, and liver-related toxicity lists to analyze which genes have the

greatest impact. The top ranking feature importance of the significantly expressed genes

CXCL10, ATP5F1E, and ACE2 (Fig 6A) identified using the biological meaning method in the

mitochondria-, heart-, kidney-, and liver-related toxicity lists. CXCL10 is associated with cyto-

kine storms [62] and is an important chemokine [63]. Furthermore, it is reported to be an

exceptional prognostic biomarker for COVID-19 patients [64, 65]. ACE2 is an entry receptor

for SARS-CoV-2 and is also associated with mtDNA depletion and mitochondrial dysfunction

[66]. ATP5F1E encodes a subunit of mitochondrial ATP synthase. A significant increase in

expression of ATP5F1E in COVID-19 patients has been reported [67], which might be related

to elevated production of ROS and increased inflammation [68, 69]. The network of pathways

analysis from ClueGO involved the selection of the top feature importance of significantly

expressed genes with SHAP values higher than the average. These genes include CXCL10,

RRAD, USP18, ATP5F1E, CIB1, C3AR1, CYBB, PROS1, ACE2, STUB1, UQCRQ, MT-ND6,

SLC8A1, NDUFV1, COX5A, FLT1, NDUFA13, NDUFB7, BAD, ATP5ME, NDUFAB1, LAMB2,

SOCS3, PHB2, TFF3, and KLF15. The analyzed pathways show that the genes from mitochon-

dria-, heart-, kidney-, and liver-related toxicity lists are closely related to COVID-19 and

Fig 5. Common genes associated with mitochondria-, heart-, kidney-, and liver-related toxicity lists.

https://doi.org/10.1371/journal.pone.0297664.g005
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mitochondria, including the mitochondrial immune response to SARS-CoV-2, COVID-19

adverse outcome pathway, oxidative phosphorylation, type II interferon signaling, regulation

of IFNA/IFNB signaling, and electron transport chain:OXPHOS system in mitochondria (Fig

6B). Genes linked with enriched pathways by cnetplot shows GO enrichment analysis for top

feature importance of significantly expressed genes with SHAP values higher than the average

in Biological Process (BP) is oxidative phosphorylation and ATP-related pathway (Fig 6C),

KEGG is also oxidative phosphorylation (Fig 6D), and REACTOME is ATP-related pathway

(Fig 6E). Thus, the top-ranking feature importance significantly expressed genes from mito-

chondria-, heart-, kidney-, and liver-related toxicity lists were identified by a biological mean-

ing approach for machine learning analysis, and the main determinants included factors

related to COVID-19, immune response and mitochondria. Several interferon signaling genes,

such as IFIT1, IFIT2, IFIT3, IFI5 and CXCL10, which are also associated with inflammatory

cytokine storms and immune responses, were among the top 40 significantly expressed genes.

Therefore, if the top significantly expressed genes were identified by a statistical meaning

approach for machine learning analysis, the main determinants included factors also related to

the inflammatory cytokine storm and immune response.

Discussion

Machine learning is often applied for prediction or classification. Here, we employ machine

learning in a reverse sense: we first formulated a hypothesis and then used the data that met

Fig 6. Feature importance analysis. (A) Feature importance is based on SHAP values of the genes from the mitochondria-, heart-, kidney-, and liver-related

toxicity lists. (B) ClueGO network analysis of the top features with SHAP values higher than the average. SHAP was also used to identify feature importance genes

in XGBoost to further elucidate the heart, kidney, and liver damage caused by mitochondrial infection triggered by COVID-19. Cnetplot of (C) GO enrichment

analysis for the top features with SHAP values higher than the average in Biological Process, (D) KEGG, and (E) REACTOME.

https://doi.org/10.1371/journal.pone.0297664.g006
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the hypothesis to perform machine learning. If the accuracy of the prediction was high, the

hypothesis had a high probability of being correct in terms of logical inference, which would

provide an interpretation for the results obtained through machine learning.

The main objective of this study was to investigate the effects of COVID-19 on mitochon-

drial infection and subsequent damage to the heart, kidneys, and liver. To establish the correla-

tion, two aims were hypothesized and then tested to determine the hypothetical validity. One

aim used the statistical meaning approach and generated the prediction for machine learning,

which would then be used as a baseline. This approach also allowed us to understand the reli-

ability and rationality of machine learning when used on these sample sets. The other aim used

the biological meaning of COVID-19 to analyze and elucidate the main hypothesis of our

study, which regarded the infection of mitochondria by COVID-19 and subsequent cardiac,

renal, and liver damage. Therefore, this study employed machine learning to evaluate our

hypotheses.

The first aim used a statistical meaning approach to find relevant genes to be used as

machine learning features. The machine learning results showed that by selecting the top sig-

nificantly expressed genes for machine learning, it was possible to predict COVID-19 effec-

tively, but this approach did not directly show the effect of COVID-19 on mitochondria,

which might be because other factors have more direct effects. For example, inflammatory

cytokine storms constituted a significant proportion in the DAVID analysis of the top 40 sig-

nificantly expressed genes. Inflammatory cytokine storms have a strong connection with

COVID-19, which causes multiorgan damage [70]. Machine learning can effectively predict

COVID-19 using the top 40 significantly expressed genes as features.

The second aim tested the machine learning features selected from biological meaning,

since the importance of individual genes in biological pathways and biological meaning do not

entirely reflect the level of gene expression (i.e., few genes from the selected toxicity lists were

shown in the top 100 significantly expressed genes). We used GSE152075 toxicity analysis to

identify significantly expressed genes in the mitochondria-, heart-, kidney-, and liver-related

toxicity lists. We then used machine learning to validate whether the significantly expressed

genes identified by the biological meaning approach are able to predict COVID-19 and

whether the infection of mitochondria by COVID-19 might have further biological meaning

for potential cardiac, kidney, and liver damage. The results of the final analysis implied a corre-

lation between the impact of COVID-19 on mitochondria and further cardiac, renal, and

hepatic impairment. Therefore, we concluded that the effect of COVID-19 on mitochondria is

associated with the potential impairment of cardiac, hepatic, and renal functions.

Machine learning has been widely applied to the diagnosis of COVID-19 patients. For

example, the GSE152075 sample set has been used in other machine learning studies that used

automated ML (AutoML) [71] and XGBoost for feature selection [72]. Among the 24 selected

feature genes (IGFBP2, KRT8, RPLP0, XAF1, RPL13, OAS2, CES1, RPL4, EEF1G, NR2F6,

RPS8, RPL10A, SNX14, C5orf15, TNFRSF19, CD24, ALAS1, CEP112, C9orf24, POLR2J3,

AAMP, DUOX2, EMCN, and RPL3), keratin, type II cytoskeletal 8 (KRT8) was the only com-

mon gene out of the significantly expressed genes in the mitochondria-, heart-, kidney-, and

liver-related toxicity lists obtained from our analysis of GSE152075 gene expression data. Mal-

eknia et al. [73] employed the least absolute shrinkage and selection operator (LASSO) regres-

sion model to perform feature selection, and nasopharyngeal swab sample sets from

GSE163151, GSE152075, GSE156063, and GSE188678 were applied. Random forest classifica-

tion was used for training prediction. The common genes shared between those selected via

feature selection using this LASSO regression model (COPA, CXCL11, IFI6, MIF, NUCB1,

SAMHD1, SIGLEC1, and TMED9) and the top 100 significantly expressed genes of

GSE152075 were interferon alpha inducible protein 6 (IFI6), C-X-C motif chemokine ligand
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11 (CXCL11), and sialic acid binding Ig-like lectin 1 (SIGLEC1), all of which are related to the

immune response. There was one gene in common when screening against all the significantly

expressed genes in the GSE152075 mitochondria-, heart-, kidney-, and liver-related toxicity

lists, which was macrophage migration inhibitory factor (MIF). Since different feature selec-

tion methods yield different genes, the biological pathways or biological meaning they repre-

sent can vary.

In our study, significantly expressed genes obtained from the statistical meaning approach

and from the biological meaning approach had few genes in common. However, both

machine learning results were predictive of COVID-19, and only the interpretation they pre-

sented differed [74]. As the features identified using the biological meaning approach were

related to the mitochondria, heart, kidney, and liver, the interpretation of the machine learn-

ing results implied that the effects of SARS-CoV-2 on ACE2 and mitochondria were associ-

ated with further impairment of the heart, liver, and kidneys. One interpretation for the

machine learning results using the statistical approach to feature selection was that SARS-

CoV-2 triggers an inflammatory cytokine storm, which in turn impairs cardiac, hepatic, and

renal function.

BAD, the only gene in common between the mitochondria-related toxicity list and the

heart-, kidney-, and liver-related toxicity lists, is a regulator of apoptosis, and BAD mRNA

expression is found in many tissues (heart, liver, spleen, lung, kidney, hypothalamus, pituitary,

uterus, and ovary) [75]. Apoptosis occurs via the extrinsic death receptor pathway or the

intrinsic intracellular pathway, which ultimately leads to mitochondrial dysfunction. In hepa-

tocytes, the convergence of these cell death pathways also requires mitochondrial damages for

effective apoptosis. The mitochondrial pathways of cell death are regulated by interactions

among the Bcl-2 protein family members [76]. Liver biopsies from SARS patients have shown

that SARS-CoV may induce apoptosis of hepatocytes, leading to liver damage [77]. Apoptosis

leads to the deterioration of cardiac contractility observed in COVID-19 patients [78]. There is

also evidence showing that COVID-19 causes renal tubular damage due to mitochondrial

damage and apoptosis [79]. Therefore, mitochondrial dysfunction may be an important factor

in apoptotic cell death that causes cardiac, kidney, and liver damage, and COVID-19 is an

important cause of mitochondrial dysfunction.

Analysis of these common genes also showed that SARS-CoV-2 can hijack pathways, such

as that of oxidative stress, after mitochondrial infection. Mitochondria are the main source of

free radicals that are responsible for oxidative stress. If the antioxidant system fails to neutralize

these free radicals in a timely manner, oxidative stress occurs, resulting in damage to cells and

tissues. Mitochondria and mitochondrial DNA are targets of oxidative stress, as both the mem-

brane structure and the inner components of mitochondria are susceptible to oxidative dam-

age. When oxidative stress damages mitochondria, it affects cellular energy production and

metabolism, which in turn affects all of the biological functions of cells and tissues. This stress

causes apoptosis, which in turn is associated with impairment of cardiac, liver, and kidney

function.

Our analysis revealed a correlation between the mitochondrial effects of COVID-19 and

further impairment of cardiac, hepatic, and renal function. Mitochondrial dysfunction was

determined to be a key factor in COVID-19 [80]. In addition, the analysis of gene expression

in A549 and Calu3 cell lines infected with SARS-CoV-2 revealed an increase in the expression

of genes related to cytokine production, inflammatory responses, mitochondria and autopha-

gic processes [81]. Mitochondria cause cardiac dysfunction and myocyte damage via loss of

metabolic capacity as well as via production and release of viral factors [82]. As our study

focused on the analysis of cardiac, renal, and hepatic damage caused by the infection of mito-

chondria by SARS-CoV-2, we then used machine learning to validate whether the significantly
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expressed genes associated with mitochondria could be used to predict COVID-19 and to fur-

ther analyze the damage to the heart, kidney, and liver caused by mitochondrial impairment.

Other studies have also shown that COVID-19 induces systemic host responses and tran-

scriptomic changes and that the resulting disruptions affect the biological processes and func-

tions of each organ system [83]. In addition, studies have shown that recovered patients show

symptoms of long COVID with multiorgan damage [84–86]. Therefore, further investigation

into whether the mitochondrial effects of COVID-19 also cause subsequent development of

long COVID symptoms in patients is necessary [87].

Conclusions

An increasing number of case studies have recorded acute cardiac manifestations in patients

with COVID-19. A significant proportion of patients diagnosed with COVID-19, with or with-

out prior cardiovascular disease, demonstrate high levels of troponin or creatine kinase, sug-

gesting myocardial injury, which in turn leads to cardiac insufficiency and arrhythmia [88].

The association between SARS-CoV-2 infection, mitochondrial dysfunction, and subsequent

cardiovascular disease has been shown to be critical [89]. Similar findings have also been

observed in other organs, such as the liver [90] and kidneys [91]. In this study, we demon-

strated that SARS-CoV-2 can affect mitochondria, directly invade cells in various organs via

ACE2, and trigger a cytokine storm, which in turn impairs cardiac, hepatic, and renal function

(Fig 7). It is also possible that these correlations are because these pathways are related to each

other. For example, direct infection by SARS-CoV-2 via ACE2-dependent pathways correlates

with mitochondrial dysfunction [92], and there is a close association between mitochondrial

dysfunction and immunosenescence; this may lead to an increased possibility of imbalance in

the immune response to SARS-CoV-2 and may manifest as an exaggerated proinflammatory

response and a cytokine storm [93], resulting in further multiorgan damage.

This study identified significantly expressed genes in the mitochondria-, heart-, kidney-,

and renal-related toxicity lists from Tox analysis for machine learning to validate their associa-

tion with COVID-19 and conclude that the mitochondrial infection caused by COVID-19 fur-

ther impairs cardiac, hepatic, and renal function. We also obtained evidence for the

correlation between genes, terms, and pathways in the mitochondria, heart, liver, and kidneys

during COVID-19 that have been demonstrated in other studies. The aim of this study was to

obtain the same conclusion using different methods that extended the inquiry and provided

further interpretation for these findings. Although there are many possible mechanisms by

which SARS-CoV-2 causes multiorgan damage, including direct cellular invasion via ACE2

and cytokine storms, which in turn impair cardiac, hepatic, and renal function, the hypothesis

of this study, the correlation between the mitochondrial impact of COVID-19 and further car-

diac, renal, and hepatic impairment, which was tested using machine learning, holds true.

By carrying out preliminary analysis through transcriptomics analysis, using machine

learning to validate the conclusions of the analysis results, and cross-comparing reports, this

analysis process identified and validated the hypotheses. However, importantly, the character-

istics of the sample data used, such as the different tissues sampled and the different detection

platforms and sample sizes, may affect the validation results. The trained machine learning

models from GSE152075 with the top 40 significant genes were tested by other sample sets,

including GSE163151, GSE157103, and GSE1526414. The result of prediction accuracy is

notably poor, which implies that if the tissues, gene expression detection platforms, or parame-

ter settings are different, the trained machine learning model cannot be utilized in other sam-

ple sets (S4 Table in S1 File). From this study, it can be seen that the results of toxicity lists

varied between the different tissues sampled, and the results from the same tissues could also
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vary depending on the sampling platform and the ratio or size of the experimental and control

samples. Further interpretation and the use of machine learning to analyze the effects of differ-

ent sample tissues and different sample sizes on the hypothesis may be a valuable field of inter-

est for subsequent study.

Supporting information

S1 File.

(PDF)

Fig 7. Mechanisms of COVID-19 causing multiorgan damage. SARS-CoV-2 can affect mitochondria, directly invade cells in various organs via ACE2, and

lead to cytokine storms, oxidative stress, mitochondrial dysfunction and cell death, which can in turn impair cardiac, liver, and kidney function. The figure was

created with BioRender.com.

https://doi.org/10.1371/journal.pone.0297664.g007
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