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Abstract

Accurate identification of porcine cough plays a vital role in comprehensive respiratory

health monitoring and diagnosis of pigs. It serves as a fundamental prerequisite for stress-

free animal health management, reducing pig mortality rates, and improving the economic

efficiency of the farming industry. Creating a representative multi-source signal signature for

porcine cough is a crucial step toward automating its identification. To this end, a feature

fusion method that combines the biological features extracted from the acoustic source seg-

ment with the deep physiological features derived from thermal source images is proposed

in the paper. First, acoustic features from various domains are extracted from the sound

source signals. To determine the most effective combination of sound source features, an

SVM-based recursive feature elimination cross-validation algorithm (SVM-RFECV) is

employed. Second, a shallow convolutional neural network (named ThermographicNet) is

constructed to extract deep physiological features from the thermal source images. Finally,

the two heterogeneous features are integrated at an early stage and input into a support

vector machine (SVM) for porcine cough recognition. Through rigorous experimentation, the

performance of the proposed fusion approach is evaluated, achieving an impressive accu-

racy of 98.79% in recognizing porcine cough. These results further underscore the effective-

ness of combining acoustic source features with heterogeneous deep thermal source

features, thereby establishing a robust feature representation for porcine cough recognition.

Introduction

Non-contact, stress-free health behavior detection in pigs is essential for smart farming, and

pig interaction behavior recognition is essential for early disease diagnosis [1]. Cough serves as

an early sign of respiratory disease in pig houses, making its monitoring essential for the early

detection and treatment of such conditions [2,3]. However, relying on manual detection by

resident veterinarians leads to delayed response times, substantial costs, and subjective results

[4,5]. To address these challenges, many researchers have explored non-contact automatic
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recognition techniques for identifying pig cough, with a specific focus on pig cough sound rec-

ognition [6,7]. In addition, efforts have been made to improve the accuracy and robustness of

porcine cough recognition by using infrared cameras and other sensors to capture physiologi-

cal responses during coughing or observable external features associated with pig physiology

[8,9]. These studies mainly focus on porcine cough physiology recognition.

Cough sound recognition has emerged as a low-cost, convenient, efficient, and non-inva-

sive method for monitoring pig health. To enhance classification performance and robustness,

researchers have explored various techniques tailored to different environments and applica-

tion scenarios. These techniques have shown promising results in the field of cough sound rec-

ognition. Specifically, one approach involves utilizing machine learning algorithms to extract

representative sound features from the time domain, frequency domain, and Mel frequency

cepstrum domain. These features are then fed into a classifier for classification [10,11].

Another approach leverages convolutional neural networks to extract deep features from

sound spectrograms, enabling effective classification [12,13]. A third approach combines the

strengths of the previous two methods through multi-feature fusion classification [14,15].

These three approaches have demonstrated excellent performance in the task of cough sound

recognition. However, enhancing representative acoustic features remains a bottleneck chal-

lenge, especially in field situations where homogeneous acoustic features make it difficult to

achieve optimal classification results, whether using early fusion-feature fusion or late fusion-

classifier fusion [16,17]. To overcome this challenge, researchers aim to break the performance

bottleneck of cough sound classification by fusing heterogeneous features within the pig pen.

Cough physiological identification techniques leverage infrared cameras or other sensors to

capture the physiological responses of pigs when they cough, along with observable external physi-

ological features, to accurately identify coughs [18]. Among the existing methods, the develop-

ment of physiological image sensors and the use of infrared cameras to capture physiological

image data have been explored. Additionally, using Convolutional Neural Networks (CNN) to

extract deep physiological features with higher accuracy from captured data with fewer parameters

[19,20] has become the state of the arts for cough identification [21]. The development of physio-

logical sensors, however, can be invasive and expensive [22]. As a result, the utilization of CNN to

extract deep physiological features has gained traction due to its effectiveness. CNNs have been

successfully applied to cough physiological recognition in two primary ways. One is an end-to-

end approach for homogeneous physiological image classification tasks [23,24]. However, this

approach faces the same performance bottleneck as homogeneous sound classification. The other

approach extracts deep physiological features from the CNN and performs multimodal feature

fusion with other heterogeneous features (e.g., biometric features). The fused feature vectors are

then input into a lightweight classifier to complete the classification task [25,26]. In other words,

the various improved CNN functions as a deep physiological feature extractor that can reduce

computational costs to accelerate classification efficiency [27]. Moreover, the incorporation of

additional dimensions of heterogeneous features helps address the bottleneck of classification per-

formance improvement. Thus, adopting a custom shallow CNN architecture to extract deep phys-

iological features and fusing them with acoustic features to feed a lightweight SVM classifier holds

significant promise for porcine cough recognition.

This work aims to combine cough acoustic features with cough physiological features, tak-

ing into account the pathology of cough. The objective is to construct a robust and effective

feature representation for porcine cough in pig housing by combining heterogeneous multidi-

mensional fusion feature signals consisting of cough sound biosignal and cough body tempera-

ture infrared signal. This integration is expected to improve the performance of porcine cough

recognition significantly. To achieve this, a three-stage approach is proposed. Firstly, acoustic

features are extracted from the cough sound, and the SVM-RFECV algorithm is employed to
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select the optimal acoustic source biometric features. Secondly, a custom CNN is used to

extract thermal source deep physiological features from infrared thermal images, and the fea-

ture vectors of the two fully connected layers are fused to obtain layer fusion deep physiological

features. Lastly, the acoustic source biometric features are early fused with the thermal source

deep physiological features and layer fusion deep physiological features, respectively. These

fused features are then fed into a lightweight SVM classifier to complete the classification task.

In summary, this study makes the following contributions:

1. Proposal of a novel framework: This study introduces a novel framework that combines

acoustic source features with deep physiological features for pig cough recognition.

2. Development of a feature selection method: To optimize the recognition process, a feature

selection method is proposed to extract a representative set of acoustic features of pig coughs.

3. Construction of a CNN architecture: A carefully designed CNN architecture is constructed

to extract deep physiological features from thermal images to enhance the recognition per-

formance of pig coughs.

4. Comparative analysis with existing models: The proposed method outperforms existing

CNN models in terms of recognition speed, model size, and classification performance.

The remainder of this paper is organized as follows. Materials Section provides the work

related to the materials. In Methods Section, the methods involved in the experiments are

comprehensively described. The results obtained from our experiments are presented in

Experiments and Results Section. Discussion Section offers a discussion of the results. Finally,

conclusions are drawn in Conclusions Section.

Materials

Housing and laboratory animals

The data used in this study were collected in a real farming environment in the isolation barn

of a large commercial fattening pig farm in Hohhot, Inner Mongolia Autonomous Region,

China. The fattening farm has a production scale of 100,000 hogs and raises three breeds,

including Large White, Long White, and Duroc, and abnormally sick pigs are sent to the isola-

tion barns for isolation. One of the isolation barns with a capacity of 218 pigs was selected for

this experiment. The resident veterinarians isolated pigs of different breeds, age groups, and

coughing conditions into the isolation barn was selected. The experiment lasted for 15 days,

and the pigs in the isolation barn were constantly transferred in/out of the barn in a dynamic

and real-time manner to ensure complete coverage of pigs with different conditions. The

experimental isolation barn comprises three units, A, B, and C, each containing seven pens.

A1 and C1 house the coughing pigs for the experiments (up to 14 pigs per pen), and A2, B1,

B2, and C2 hose the recovering pigs for the experiments (occasional coughing or no coughing,

up to 10 pigs per pen), with pens next to each other and interacting with each other in order to

reproduce the real environment (coughing) in the production barn. The pens are located next

to each other and interact, completely reproducing the real environment in a production barn

(coughing pigs surrounded by non-coughing pigs, interacting with each other). The layout of

the experimental pigs and pens is shown in Fig 1.

Data acquisition and preprocessing

The data collection system uses a real production system deployed in the experimental pig

house and adopts a cloud-edge-end architecture. The cloud terminal of this experiment

PLOS ONE Heterogeneous fusion features for accurate porcine cough recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0297655 February 1, 2024 3 / 28

https://doi.org/10.1371/journal.pone.0297655


includes a pickup for collecting cough sounds and a camera for infrared data deployed in the

pig house. The camera and pickup are consistently gathering audio and video data within the

pig house, operating 24/7. The camera is a binocular dome camera (TB-1217A-3/PA, Hikvi-

sion, Hangzhou, China. Visible light: 25FPS, 4096Kbps, H.264. IR: 1280×720, 25fps,

4096Kbps, H.264 coding), the camera is fixed on a 2-meter-high wall on one side of the pigsty,

with an adjustable viewing angle, which makes it easy to cover the whole pigsty. The pickup

was an audio recorder (DS-2FP4121-OW-AI, Hikvision, Hangzhou, China, 48kHz, 64kbps,

AAC). The cameras and pickups are connected with special audio/video adapter cables. In this

way, the installation position of the equipment can be flexibly selected according to different

pigsty environments, and the distance between the camera and the pickup can be flexibly

adjusted. The edge server is a desktop PC server (OptiPlex 3070, Dell, USA) located within the

pig farm’s server room, establishing a seamless connection with the cameras via Ethernet.

Through the utilization of the FFMPEG software, the Edge server effectively captures real-time

feeds from both the visible light channel (1920×1080) and thermal imaging channel

(1280×720) using the RTSP protocol. Real-time acquisition to the server hard drive, respec-

tively, saved as the acquisition start time as the file name of the mp4 file, i.e., visible light is

named as “acquisition start time _ camera number.mp4” and thermal imaging is named as

“acquisition start time _ camera number _ tf.mp4”. Importantly, each mp4 file contains audio

data and generates new audio and video files every 10 minutes. To facilitate synchronized data

transfer between the Edge server of the pig farm and the Storage server of the cloud animal

husbandry platform [28], a robust Internet connection links the two. The Rsync file synchroni-

zation protocol plays a pivotal role in automatically and incrementally transferring audio and

video files from the pig farm to the cloud animal husbandry platform. Upon successful

Fig 1. Layout of the experimental pig house.

https://doi.org/10.1371/journal.pone.0297655.g001
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synchronization, files are automatically deleted from the Edge server. The Storage server

within the cloud animal husbandry platform employs FFMPEG software once again to extract

audio from the received visible light audio and video files. These audio segments are then

stored as a.wav file, adopting the corresponding video file’s name format (“Acquisition Start

Time_Camera No.wav” and “Original Audio and Video File Name.wav”). The data acquisition

system used in this study is a real production data acquisition system with good end-to-end

generalization capability. Finally, 2160 original data sets were collected over 15 days using a

cloud-edge-end data acquisition system. Each set comprises a 10-minute audio WAV file and

its corresponding 10-minute infrared video MP4 file. The architecture of the data acquisition

system is shown in Fig 2.

For the 2160 sets of raw data files collected, the lens occlusion blurred frames, feeding,

immunization, treatment, and other feeding activity-related frames in the raw data were elimi-

nated, and finally, 135 hours of valid audio (WAV) and video files (MP4) were obtained. The

visible video is in RGB mode during the day and converted to grayscale mode at night, which

is used to help experts in data annotation. The image palette mode for the thermal imaging

video was set to "Iron Red".

Leveraging the versatile Librosa tool [29], specific audio segments were meticulously

extracted from the WAV files, applying predefined conditions (volume threshold� 33dB,

length threshold� 2s). The nomenclature of these WAV files was crafted to incorporate the

commencement timestamp, enhancing organizational clarity. Subsequently, the WAV file

dataset underwent a clustering process utilizing the K-means algorithm. This algorithm,

applied to the audio cough data, facilitated the initial identification of clusters associated with

coughing events. To refine and classify these clusters, a 10th-order Butterworth filter with a

cutoff frequency ranging from 100Hz to 16kHz was employed. The resultant one-dimensional

filtered sound data was then transformed into two-dimensional Mel-Frequency Cepstral Coef-

ficients (MFCC) data, enhancing the representation of acoustic features. Further refinement

ensued through the application of the K-means algorithm, selectively isolating clusters relevant

to coughing sounds. A collaborative effort involving subject matter experts, resident

Fig 2. Multimodal data acquisition system based on cloud-edge-end architecture.

https://doi.org/10.1371/journal.pone.0297655.g002
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veterinarians, and aided by visible video cues, led to the manual labeling of each audio file

based on the clustering results. The manual annotation encompassed diverse labels such as

coughs, squeals, grunts, feeding sounds, human voices, door movements, chain sounds, and

other ambient noise types. In the final steps of data preprocessing, video clips were systemati-

cally extracted from corresponding infrared video files, guided by the timestamps of the manu-

ally labeled sound clips. The culmination of these meticulous processes yielded a cohesive

dataset of paired cough sound (WAV) and cough infrared (MP4) files. The standardized nam-

ing format for these files incorporated essential details, including the original audio/video file

name, audio start timestamp, audio duration time, and a sequence number. The data distribu-

tion is shown in Fig 3.

Methods

Methodological overview

Coughing behavior, by its apparent features, produces an acoustic signal. From a physiological

point of view, it will be accompanied by a change in body temperature, which will produce

physiological signals. Therefore, this paper considers the influence of these two factors in rec-

ognizing cough. At the same time, the acoustic signal reflecting the biological characteristics

and the deep features reflecting the physiological characteristics of body temperature are col-

lected, and the alignment is integrated early to improve cough recognition performance. This

study introduces a novel approach that utilizes significantly differentiated heterogeneous fea-

tures to effectively perform automatic porcine cough identification. The flowchart of the pro-

posed method is illustrated in Fig 4. Firstly, acoustic source biometric features are extracted

from the preprocessed audio clips essential characteristics of the cough sounds. Secondly, ther-

mal source deep physiological features, which reflect the distribution of body temperature, are

extracted from thermal images using a lightweight shallow CNN. Thirdly, the extracted acous-

tic and physiological depth features are aligned and concatenated through early fusion to pro-

vide distinguishable multi-source heterogeneous fusion features. Finally, an SVM classifier is

exploited to complete the classification of coughs and non-coughs.

Acoustic source biometric features

Using the audio processing method of the Librosa library, each sample of the cough audio clip

in our constructed dataset was used as input, from which 29 acoustic features were extracted,

and then recursive feature elimination combined with a cross-validation algorithm was used

for feature selection, to select the acoustic source biometric feature to represent the cough

sound signal. Time-domain analysis captures features in terms of time, frequency-domain

analysis reveals features in terms of frequency, and cepstrum-domain analysis provides infor-

mation on acoustic properties. Combining these results enables the extraction and classifica-

tion of cough sounds, facilitating automated detection and recognition. In the time-domain

analysis, the time-domain statistical features such as mean, variance, and energy are calculated

to understand the temporal characteristics of cough sounds. Frequency domain analysis pro-

vides the energy distribution of the cough sound over different frequency components, thus

revealing the frequency characteristics like frequency components and frequency range. Cep-

strum domain analysis is a special frequency domain analysis method for extracting the acous-

tic characteristics from signals. Cepstrum domain analysis can provide the resonance

characteristics of cough sounds, which helps to distinguish different types of cough sounds. By

combining the analyses of the time domain, frequency domain, and cepstrum domain features,

the characteristics of cough sounds can be revealed in a comprehensive way. The combinations

of 29 acoustic source features consisting of the time, frequency, and cepstrum domains were
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extracted from the one-dimensional sound signal. The time domain features include Root

Mean Square (RMS) energy and Zero Crossing Rate (ZCR) [30]. The frequency domain fea-

tures include spectral envelope, constant Q cepstral coefficients (CQCC), spectral centroid,

spectral bandwidth, spectral rolloff, spectral flatness, and spectral flux [31]. Also, we extracted

twenty MFCC cepstrum domains [32].

Fig 3. The data distribution graph.

https://doi.org/10.1371/journal.pone.0297655.g003
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Feature selection assumes paramount importance, especially within the realm of high-

dimensional datasets like those characterizing coughing speech data. Prudent feature curation

bolsters model interpretability, curbs overfitting tendencies, enhances computational effi-

ciency, and ultimately elevates the precision of coughing event classification.

Support Vector Machine Recursive Feature Elimination Cross-Validation (SVM-RFECV)

stands as a cutting-edge feature selection technique specifically tailored for the classification of

coughing events utilizing speech data. This novel methodology synergizes the capabilities of

Support Vector Machines (SVM) and Recursive Feature Elimination Cross-Validation

(RFECV), as outlined by [33]. By iteratively eliminating noise data unrelated and redundant

features through feature selection, we aim to improve the SVM model’s prediction accuracy

and generalization ability [34].

Within the domain of coughing speech data, the potency of SVM-RFECV derives from the

incorporation of SVM as the foundational classifier. SVMs are renowned for adeptly handling

high-dimensional data and adeptly capturing intricate patterns. By entwining SVM with

RFECV—a recursive feature elimination mechanism—SVM-RFECV systematically sifts and

preserves the most pertinent attributes for classifying coughing events, eliminating irrelevant

noise data (such as sustained high-frequency audio signals).

The ingenuity of SVM-RFECV hinges on its iterative feature pruning procedure, meticu-

lously devised for the nuances of coughing speech data. The RFECV algorithm assesses feature

importance through weight assignment during each iteration. Weight calculations, as delin-

eated by Formula (1), coupled with the computation of importance levels as per Formula (2),

facilitate the ranking of features. Subsequently, features with lower weights, indicative of

diminished relevance, are progressively excised from the feature pool. The SVM model is then

retrained using the winnowed feature ensemble. This iterative sequence perseveres until an

optimum assemblage of features, germane to the classification of coughing events, is achieved

[35].

wi ¼ jai � yij; i 2 ½1;P�; ð1Þ

IðfiÞ ¼ n � ki ð2Þ

Fig 4. The flowchart of the proposed porcine cough recognition.

https://doi.org/10.1371/journal.pone.0297655.g004

PLOS ONE Heterogeneous fusion features for accurate porcine cough recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0297655 February 1, 2024 8 / 28

https://doi.org/10.1371/journal.pone.0297655.g004
https://doi.org/10.1371/journal.pone.0297655


where fi denotes the ith feature in the dataset, wi denotes the weight of the ith feature, P

denotes the number of features (where P is set to 29), yi denotes the classification class of the

ith feature, I(fi) denotes the importance of the ith feature, n denotes the number of samples,

and ki denotes the number of times the ith features are removed in the recursive feature elimi-

nation process. This process removes redundant acoustic features through sound source fea-

ture selection. The highest predicted F1 score achieves the optimal feature combination to

generate a new set of acoustic source biometric features.

Thermal source deep physiological features

The occurrence of coughing behavior in porcine respiratory infections triggers discernible

alterations in the infrared body temperature signal of the pigs. Particularly noteworthy is the

distinctive variance in body temperature between coughing pigs and their healthy counter-

parts. Coughing pigs manifest elevated body temperatures that exhibit unique infrared signal

patterns. This observation underpins the efficacy of a method involving the acquisition of

infrared images from coughing pigs, extraction of infrared deep features using a Convolutional

Neural Network (CNN), and feeding these features into an SVM classification network. The

outcome is a non-contact, automated system capable of detecting pig coughing events.

Physiological deep features, or high-level features beyond epistemic knowledge, are derived

through deep learning techniques applied to raw thermal images of physiological signals.

These features hold immense potential across various applications, including diagnostics and

disease prediction [36]. In our study, we harnessed a lightweight shallow CNN architecture to

extract infrared deep physiological features that faithfully mirror real-time surface tempera-

tures of monitored pigs.

The integration of infrared thermal images within our approach is motivated by two pivotal

factors. Firstly, infrared thermal images aptly capture the distribution of body surface tempera-

tures while encapsulating the physiological nuances of living organisms [37]. Their efficacy in

automated porcine cough event identification has been well-documented [38]. Secondly, the

shallow CNN architecture proves well-matched for feature extraction from thermal images

[39]. The amalgamation of this architecture with SVM classification engenders highly accurate

classification outcomes while significantly boosting execution speed [40].

Our methodology encompasses the gathering of infrared images from coughing pigs, the

extraction of infrared depth features via a CNN network, and their subsequent input into an

SVM classification network. This non-contact approach translates into an automated mecha-

nism for detecting pig coughing, thereby delivering an exhaustive and robust analysis of the

physiological attributes associated with coughing events.

Different shallow convolutional neural networks have their own strengths. LeNet-5 is a clas-

sical convolutional neural network model proposed by Yann LeCun et al. in 1998, which may

not effectively capture higher-level, more abstract feature information for complex image clas-

sification tasks [41]. AlexNet was proposed by Alex Krizhevsky et al. in 2012 and uses the

ReLU activation function to nicely mitigate the gradient disappearance problem and performs

well in large-scale image classification tasks but is prone to overfitting and requires significant

time and resources for training and inference [42]. Compared to other deeper architectures

such as VGG [43] and ResNet [44], where LeNet-5 is a shallow network more suitable for

smaller datasets, AlexNet is a deeper network for extracting higher-level feature information.

Our experiments are on a private and limited dataset where higher-level deep features must be

extracted for evaluation. The deployment requires an optimal solution between recognition

speed, model size, and performance.
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Therefore, we propose a lightweight shallow convolutional neural network architecture,

named ThermographicNet, as a deep physiological feature extractor. ThermographicNet com-

bines the advantageous design elements of the Lenet-5 and Alexnet architecture, as illustrated

in Fig 5.

The proposed ThermographicNet architecture incorporates specific design choices to effec-

tively process thermal images for porcine cough recognition. The network comprises several

key layers and operations, as described below:

1. Input layer: The network takes a 100×100 pixel thermal image as input.

2. Convolutional layers: The first convolutional layer consists of 16 filters with a size of 3×3,

and the second convolutional layer includes 32 filters of the same size. Both convolutional

layers apply Rectified Linear Unit (ReLU) activation functions, which enables faster conver-

gence and avoids gradient vanishing.

3. Max-pooling layers: Two max-pooling layers with a size of 2×2 follow the convolutional lay-

ers. These layers downsample the spatial dimensions of the feature maps, capturing the

most salient information while reducing computational complexity.

4. Flattening layer: The output of the previous layer is flattened into a one-dimensional vector.

5. Dropout layer: It is designed to randomly deactivate a fraction of neurons with a probability

of 0.5 to alleviate the overfitting problem by enhancing the network’s generalization

capability.

6. Fully Connected (FC) layers: Two FC layers with 50 neurons each are connected to the

Dropout layer.

2D convolution was chosen to convolve the different thermal physiological features simul-

taneously as the thermal distribution of the thermal image is a 3-channel 2D image. ReLU was

chosen because it converges faster and does not suffer from gradient disappearance. The Drop-

out layer was chosen to increase the generalization capability of the network in order to pre-

vent possible overfitting problems for thermal images extracted within a small time slice

(�2.13s) of a persistent cough. Adam was chosen as the optimizer for model training, Sparse_-

Categorical_Crossentropy was chosen as the loss function, and accuracy was used as the model

evaluation metric.

The performance of two fully connected layers of Lenet-5, AlexNet, DenseNet121, Vgg16,

Vgg19, ResNet50, ResNet101, ResNet152, and our proposed ThermographicNet network are

first evaluated separately for deep physiological feature extraction. Then, the two fully

Fig 5. ThermographicNet for extracting thermal source deep physiological features.

https://doi.org/10.1371/journal.pone.0297655.g005
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connected layer feature vectors extracted from the ThermographicNet network were aligned

and concatenated to form the layer fusion deep physiological features for classification evalua-

tion. Finally, the FC1 feature vector extracted from the ThermographicNet network was

selected as the thermal source of deep physiological features.

Feature fusion methods

Extracting acoustic biometric features and deep physiological features from audio and infrared

data, respectively, and fusing them to provide distinguishable multimodal fusion features for

accurate automatic cough recognition to break through the performance bottleneck of cough

sound classification. The fusion method adopts feature-level fusion, also known as early fusion,

which is the most commonly used strategy in multimodal recognition systems. After extrac-

tion, it means immediately connecting features extracted from different modalities into a sin-

gle high-dimensional feature vector. We have provided four different fusion strategies to

evaluate the cough classification task. Specifically, first, obtain the acoustic source biometric

features (facoustic) from the acoustic source, the deep physiological features (fFC1) from the first

fully connected layer of the ThermographicNet network, and the physiological deep feature

(fFC2) from the second fully connected layer. Then, concatenate fFC1 and fFC2 to obtain flayer
fusion, concatenate facoustic and fFC1 to obtain fFC1 heterogeneous fusion, concatenate facoustic and fFC2
to obtain fFC2 heterogeneous fusion, and concatenate facoustic and flayer fusion to obtain flayer heterogeneous
fusion. Finally, input these features into an SVM classifier to obtain the classification results for

the cough task, as shown in Fig 6.

Classification

In the porcine cough recognition classification task, selecting an appropriate classifier is crucial

to handling the extracted features effectively. The early fusion technique is employed to extract

highly representative nonlinear and high-dimensional feature vectors that capture the essential

Fig 6. Flowchart of early feature fusion technique with four different fusion strategies.

https://doi.org/10.1371/journal.pone.0297655.g006
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features of cough from multiple modalities. These feature vectors are then concatenated and

used as input for the classifier. Considering the requirements of handling high-dimensional

feature spaces and nonlinear decision boundaries, the SVM (Support Vector Machine) classi-

fier emerges as an advantageous choice.

The SVM classifier possesses the necessary strengths to handle the complexities of the

cough recognition task. It excels in effectively processing high-dimensional feature spaces and

modeling nonlinear decision boundaries. Leveraging these capabilities, the SVM classifier

accurately classifies cough events even in intricate and overlapping patterns. By utilizing the

SVM classifier, we enhance the performance and reliability of the cough recognition system,

contributing to the advancement of automatic cough identification technology.

Experiments and results

The experimental datasets are constructed in this Section, and each experiment’s model evalu-

ation metrics, implementation method, main execution environments configuration, and

results are given.

Datasets

We will create our dataset using the preprocessed pig cough audio files and thermal imaging

video files obtained from Data acquisition and preprocessing Section. We load the correspond-

ing thermal imaging video files based on the cough audio file names. We extract the thermal

image video clip from each thermal imaging video file. A Python script is used to extract five

frames of image data from each video clip, which serve as candidate thermal source images.

With the assistance of the visible video and the resident veterinarian, the expert selects one

image from the candidate thermal source images as the fusion target image. The selected

fusion target image is then labeled using the LabelMe software [45]. The extracted thermal

image file is named based on the corresponding audio file and marked as a positive sample.

Similarly, the expert follows the same procedure for negative samples to select the target pig

image as the thermal image corresponding to the non-cough audio. We extract 1736 cough

sounds and their corresponding 1736 physiological thermal images, which form the positive

sample set. The negative sample set also consists of 1731 non-cough audio fragments (477

grunts, 565 screams, and 689 ambient noises) and their corresponding 1731 thermal images.

Metrics

The dataset is divided into a 70% training set and a 30% test set with no duplicate samples

between the two sets. To evaluate the performance of our proposed method, a ten-fold cross-

validation method with grid search is utilized on the training set. It explores and determines

the optimal set of hyperparameters for training the SVM algorithm. The initial values of the

hyperparameters are set to set with default values, and the corresponding models are generated

based on the preprocessed training set. The test set is then used to evaluate the performance of

the best pre-trained model obtained from the grid search. This grid search procedure allows us

to systematically explore different combinations of hyperparameters and select the ones that

yield the best performance for our cough recognition task. In the grid search process, for linear

models, C is set to 0.9 and 1. For nonlinear models, the radial basis function (RBF) is used as

the kernel function, and the value of Gamma is computed by Formula (3) [46], with the value

of C set to the same value as the linear models.

Gamma ¼
1

n features� X:varðÞ
ð3Þ
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where X represents the training sample, n_features stands for the number of features in the

input sample, and var() means the variance of the training set samples.

After training the model, its classification performance is evaluated using the test set. The

evaluation metrics used for our model include accuracy, recall, precision, and F1-score (see

Formulas (4)–(7). Here, we define cough as a positive sample and non-cough as a negative

sample. True positives (TP) refer to correctly classified cough samples, true negatives (TN)

represent correctly classified non-cough samples, false positives (FP) indicate non-cough sam-

ples misclassified as cough, and false negatives (FN) represent cough samples misclassified as

non-cough. The evaluation metrics are calculated as follows:

Accuracy ¼
TP þ TN

ðTP þ TN þ FP þ FNÞ
ð4Þ

Precision ¼
TP

ðTP þ FPÞ
ð5Þ

Recall ¼
TP

ðTP þ FNÞ
ð6Þ

F1 � Score ¼
2� Precision� Recall
ðPrecisionþ RecallÞ

ð7Þ

Implementation

The primary execution environments and parameters configured for our experiments are

listed in Table 1. The program is implemented based on the Python language, the LibROSA

library, and the Keras deep learning framework.

Table 1. Description of main execution environments and parameter configurations.

Execution Environment Parameter

CPU Intel Xeon Gold 6139M With 2.30GHz

Memory 251GB

GPU NVIDIA Corporation GA102 [GeForce RTX 3090] (rev a1)

GPU Memory 24GB

Cuda 11.2

Anaconda 23.1.0

Python 3.9.7

LibROSA 0.9.2

Scikit-learn 1.1.3

Keras Version 2.5.0

Tensorflow-GPU 2.5.0

Optimizer Adam optimizer

Batch Size 32

Learning_Rate 0.001

MFCC_Dim 20

Dropout_Prob 0.5

Epoch_Max 50

Storage Device Samsung SSD 870 With 4TB

Operating System Linux Ubuntu SMP 18.04.1

https://doi.org/10.1371/journal.pone.0297655.t001
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The automatic framework for pig cough recognition is implemented using the Python pro-

gramming language. The processing and feature extraction of cough audio data is imple-

mented using the Librosa library. The processing and physiological deep feature extraction of

cough infrared image data are implemented using the Keras deep learning library, including

the design, debugging, evaluation, application, and visualization of CNN network models.

Fusion and classification are implemented using the scikit-learn machine learning toolkit.

Grad-CAM (Gradient Weighted Class Activation Mapping) [47] is used to interpret the Ther-

mographicNet model visually.

The cough audio data processing program mainly includes preprocessing, feature extrac-

tion, and feature selection of cough data. Preprocessing and feature extraction primarily utilize

libraries such as Librosa, NumPy, CSV, and OS. The cough audio has a sampling rate of

48000Hz, followed by the extraction of 29 sound features using functions such as zero_crossin-

g_rate, RMS, chroma_stft, chroma_cqt, spectral_centroid, spectral_bandwidth, spectral_con-

trast, spectral_rolloff, spectral_flatness, onset_strength, and MFCC provided by the Librosa

feature class. In the feature selection, libraries such as scikit-learn, pandas, and matplotlib are

mainly used. The data set is split into training and testing sets using the train_test_split method

in the model_selection class of the scikit-learn package, with the testing set accounting for

30%. Recursive feature elimination and 5-fold and 10-fold cross-validation are performed

using the RFECV function in the model_selection class. Finally, the cough sounds are classified

using the SVC function in the SVM class of the scikit-learn library.

Processing cough infrared image data mainly involves network design, debugging, and

evaluation. Using libraries such as Keras, scikit-learn, pandas, NumPy, and OS, the infrared

image data is resized to 100×100 pixels. The data set is split into training and testing sets using

the train_test_split method in the model_selection class of the scikit-learn package, with the

testing set accounting for 30%. Subsequently, network models, including Lenet-5, AlexNet,

DenseNet121, Vgg16, Vgg19, ResNet50, ResNet101, ResNet152, and ThermographicNet, are

designed using the Keras library and trained and evaluated. The optimizer used is Adam, with

a maximum number of epochs (epoch_max) set to 100, a batch size of 32, a learning rate of

0.001, and 20% of the training set used as a validation set for network evaluation. After training

all the network models, the load_model function in the models class of the Keras library is

used to load the models. The deep features of the infrared images are predicted using the mod-

els, and the FC layer physiological deep features data are extracted for subsequent deep feature

fusion.

The scikit-learn, Keras, pandas, and NumPy libraries are primarily used to perform three

fusion experiments in the feature fusion and classification experiments. The fusion function is

implemented using the concat function provided by the pandas library. Classification is per-

formed using the SVC function in the SVM class of the scikit-learn library. The SVM kernel is

set to rbf (radial basis function), with a penalty parameter C of 1.0 and Gamma set to ‘auto’.

After training the SVM model, the cross_val_score function in the model_selection class of the

scikit-learn library is used to perform 10-fold cross-validation to obtain performance evalua-

tion metrics of the classifier, including accuracy, precision, recall, and F1-score. Throughout

all the data processing procedures mentioned above, the StandardScaler function in the pre-

processing class of the scikit-learn library is used to normalize the feature data.

Results

This section primarily encompasses four experiments. The Evaluation of acoustic source bio-

metric features aims to assess the extraction of optimal acoustic source features and evaluate

the cough sound classification performance using single acoustic features by inputting them
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into an SVM classifier. The Evaluation of thermal source deep physiological features involves

selecting the optimal feature extractor for extracting deep physiological features from thermal

sources and evaluating the cough classification capability using single deep physiological fea-

tures from infrared data by inputting them into an SVM classifier. The Evaluation of feature

fusion combines the optimal features extracted from the previous two experiments using dif-

ferent fusion strategies. It evaluates the cough classification performance of the fused features

by inputting them into an SVM classifier. Finally, the Evaluation of recognition speed and

model size compares and evaluates the selected optimal methods’ recognition speed and

model size from the previous three experiments.

Evaluation of acoustic source biometric features

This experiment aims to evaluate the performance of the SVM-RFECV algorithm and select

the optimal feature set as acoustic source biometric features from a pool of 29 cough sound fea-

tures based on the experimental results. These selected features will then be inputted into an

SVM classifier to assess the classification performance of single acoustic features for cough rec-

ognition. When comparing SVM-RFECV with other feature selection methods, we considered

several factors that led to our choice of SVM-RFECV. SVM-RFECV offers an iterative process

that eliminates irrelevant or redundant features, effectively reducing the impact of noise and

enhancing the model’s robustness. Additionally, SVM-RFECV leverages the power of Support

Vector Machines (SVMs), known for their ability to handle high-dimensional data and capture

complex patterns. We achieve accurate feature selection by combining SVM with RFECV

while maintaining computational efficiency. These advantages make SVM-RFECV a suitable

choice for our specific application and contribute to its selection over alternative feature selec-

tion methods.

Regarding feature selection metrics, we employed the F1 score, which considers both preci-

sion and recall, providing a comprehensive assessment of the model’s performance. By evalu-

ating the F1 score, we can effectively measure the trade-off between precision and recall,

ensuring the selected features optimize the classification results.

When employing SVM-RFECV for feature selection, we evaluated the number of features

in the model and their respective performance using cross-validation test scores. Specifically,

Figs 7 and 8 present the evaluation results using five-fold and ten-fold cross-validation, respec-

tively. In Fig 7, we observe that an improved F1 score is achieved when utilizing eight features,

and the F1 scores for both training and validation data tend to stabilize. Subsequently, the

model’s accuracy gradually improves as the number of features increases. The optimal model

evaluation metrics (Accuracy 92.13%, Precision 92.18%, Recall 92.05%, F1-score 92.10%) were

reached when the number of features increased to 22. In Fig 8, the overall trend is consistent

with Fig 7, and the optimal model evaluation metrics (Accuracy 91.84%, Precision 91.83%,

Recall 91.89%, F1-score 91.82%) were reached when the number of features increased to 20. It

can be seen that five-fold cross-validation is better than ten-fold cross-validation, which is con-

sistent with the results of the analysis using the confusion matrix in Fig 9. This consistency

across multiple evaluation facets solidifies the decision to adopt the 22 features corresponding

to five-fold cross-validation as the optimal acoustic source biometric features for subsequent

feature fusion. This judicious selection is underpinned by the superior performance and stabil-

ity exhibited within the five-fold cross-validation framework.

Evaluation of thermal source deep physiological features

This experiment aims to evaluate the capability of different CNN feature extractors in extract-

ing deep physiological features from thermal sources in a given dataset. The optimal deep
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physiological features obtained from thermal sources will be inputted into an SVM classifier to

assess the classification performance of single deep physiological features for cough recogni-

tion. The extraction ability of the fully connected layers of Lenet-5, AlexNet, DenseNet121,

Vgg16, Vgg19, ResNet50, ResNet101, ResNet152, and ThermographicNet networks for deep

physiological features was first evaluated, respectively. An infrared thermal image of the pig

cough is taken as input, the most representative CNN network is selected as the feature extrac-

tor, and SVM is used as the classifier to accomplish the cough recognition task. Lenet-5 and

AlexNet are prominent examples of shallow convolutional neural networks (CNNs), and Ther-

mographicNet is a collection of the most representative CNN networks of Lenet-5 and Alex-

Net. VGG and ResNet are prominent examples of deep convolutional neural networks

Fig 7. Evaluation results of acoustic source biometric features of 5-Fold.

https://doi.org/10.1371/journal.pone.0297655.g007

Fig 8. Evaluation results of acoustic source biometric features of 10-Fold.

https://doi.org/10.1371/journal.pone.0297655.g008
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(CNNs). Shallow layers are characterized by their small size and portability, making them easy

for application deployment. VGG is characterized by emphasizing deep layers with small fil-

ters, while ResNet introduces residual connectivity to address the challenge of vanishing gradi-

ents in deep networks. These models demonstrate the ability of deep CNNs to capture

complex patterns and hierarchical representations. Then, using confusion matrix analysis, the

feature vectors with the best performance are selected from the network’s fully connected lay-

ers with the most robust feature extraction capability as the thermal source deep physiological

features. The performance evaluation metrics, including Accuracy, Precision, Recall, and

F1-score, are used to evaluate the classification performance of SVMs using different CNN net-

works as feature extractors. The experimental results are shown in Table 2, and the corre-

sponding confusion matrix results are shown in Fig 10.

Fig 9. Evaluation results of acoustic source biometric features of confusion matrix results.

https://doi.org/10.1371/journal.pone.0297655.g009

Table 2. Comparative evaluation results of deep physiological features extraction.

CNN Feature Extractor SVM Classifier Evaluation Metrics

Name FC Layer Accuracy Precision Recall F1-score

Lenet-5 FC1 95.41% 95.45% 95.41% 95.41%

FC2 95.41% 95.45% 95.41% 95.41%

AlexNet FC1 96.14% 96.22% 96.14% 96.13%

FC2 95.82% 95.96% 95.82% 95.82%

DenseNet121 FC1 93.25% 93.33% 93.25% 93.25%

Vgg16 FC1 94.58% 94.63% 94.58% 94.58%

FC2 94.58% 94.64% 94.58% 94.58%

Vgg19 FC1 93.16% 93.28% 93.16% 93.16%

FC2 93.40% 93.50% 93.40% 93.39%

ResNet50 FC1 95.99% 96.06% 95.99% 95.99%

ResNet101 FC1 95.13% 95.19% 95.13% 95.12%

ResNet152 FC1 94.0% 94.15% 94.0% 94.0%

ThermographicNet FC1 96.80% 96.84% 96.80% 96.80%

FC2 96.68% 96.73% 96.68% 96.68%

https://doi.org/10.1371/journal.pone.0297655.t002
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The experimental results in Table 2 show notable differences between different feature

extractors for cough classification. The average accuracy and F1-score of shallow CNN net-

work feature extractors (LeNet-5, AlexNet, DenseNet121) are 95.21% and 95.20%, respectively.

In contrast, the average accuracy and F1-score of deep CNN network feature extractors

(Vgg16, Vgg19, ResNet50, ResNet101, ResNet152) are 94.41% and 94.40%, respectively. Our

proposed ThermographicNet network feature extractor achieves an average accuracy and

F1-score of 96.74%.

From the confusion matrix results in Fig 10, it is evident that, except for VGG19, the recog-

nition performance of the fully connected layers in other network architectures is similar. FC1

Fig 10. Confusion matrix results of thermal source deep physiological features.

https://doi.org/10.1371/journal.pone.0297655.g010
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consistently outperforms FC2 in classification performance. Furthermore, the Thermogra-

phicNet network proposed in this study demonstrates the best recognition performance across

all four evaluation metrics. Based on the experimental results, we chose ThermographicNet

network as the deep feature extractor and two fully connected layer features as the thermal

source deep physiological features.

Evaluation of feature fusion

This experiment aimed to evaluate the ability of four different fusion strategies to classify pig

coughing behavior to select the optimal fusion classification strategy. In Evaluation of acoustic

source biometric features Section, the experiment selected the best acoustic set of 22 sound fea-

tures as the acoustic source biometric features. In Evaluation of thermal source deep physio-

logical features Section, the experiment was validated using our proposed ThermographicNet

network as the feature extractor, obtaining the optimal classification performance based on the

feature vectors from the FC1 layer’s output, which served as the thermal source deep physio-

logical features. Following the fusion methods described in Feature fusion methods Section,

the performance of four fusion methods, namely layer fusion, FC1 heterogeneous fusion, FC2

heterogeneous fusion, and layer heterogeneous fusion, were evaluated for cough classification,

as presented in Table 3. The confusion matrix analysis results in Fig 11 demonstrate that differ-

ent fusion strategies yield better results than a single feature. Three heterogeneous fusion

methods outperform the homogeneous fusion method significantly. It is not surprising that

combining biometric features with physiological features proves to be a practical approach,

significantly improving cough recognition performance. The FC1 heterogeneous fusion

method achieves an impressive classification accuracy and F1-score of 98.79%.

The three aforementioned experiments validate the proposed method as the optimal

approach for cough recognition. Initially, the SVM-RFECV algorithm was employed to extract

22 features as acoustic source biometric features, which were then fed into an SVM classifier to

evaluate the performance of using a single acoustic feature for cough recognition. Subse-

quently, the FC1 layer of the ThermographicNet network was utilized as a feature extractor to

extract deep physiological features from thermal sources. These features were then evaluated

using an SVM classifier to assess the performance of using thermal data alone for cough recog-

nition. Finally, an early fusion technique combined the representative and significant features

from both acoustic and thermal sources. The fused features were then inputted into an SVM

classifier to evaluate the ability of heterogeneous fusion features in cough recognition. The

experimental results demonstrate that the fused features outperform any single feature, thereby

confirming the superiority and feasibility of the proposed method.

Table 3. Comparative analysis of pig cough recognition using different fusion strategies.

Features/Fusion features SVM Classifier Evaluation Metrics

Accuracy Precision Recall F1-score

acoustic source biometric features 92.13% 92.18% 92.05% 92.10%

FC1 thermal source deep physiological features 96.80% 96.84% 96.80% 96.80%

FC2 thermal source deep physiological features 96.68% 96.73% 96.68% 96.68%

layer fusion features 96.86% 96.89% 96.86% 96.86%

FC1 heterogeneous fusion features 98.79% 98.80% 98.79% 98.79%

FC2 heterogeneous fusion features 98.67% 98.68% 98.67% 98.67%

Layer heterogeneous fusion features 98.62% 98.62% 98.62% 98.62%

https://doi.org/10.1371/journal.pone.0297655.t003
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Evaluation of recognition speed and model size

To further affirm the practical applicability of our proposed method in enhancing animal wel-

fare, a comprehensive evaluation of the model’s recognition speed and size is imperative. An

effective classification model should not only exhibit superior classification performance but

also excel in recognition speed and model size, both of which are pivotal factors influencing

the real-world deployment of the system. In field situations, computational efficiency and

model size significantly impact deployment conditions, environmental settings, and overall

costs. It is crucial to minimize computation time and achieve runtime acceleration for an effi-

cient recognition process [48]. Therefore, we conducted a comparative assessment, evaluating

ThermographicNet against other CNN feature extractors for deployment applications.

A set of samples (5 samples) was randomly selected from our test set, each of which was

computed five times on the computing platform without any additional load. The average exe-

cution time per sample and the average execution time per group were counted. The results

are shown in Fig 12, a solid circle is the average time, and a hollow diamond is the individual

time. From the experimental results. Our proposed Heterogeneous fusion method using Ther-

mographicNet as a feature extractor has the fastest processing time, leading to a rapid increase

in recognition speed. On average, the execution time of our proposed method is comparable

to shallow CNNs, faster than all other deep CNNs, 4.7 times faster than the VGG family, and

13.9 times faster than the ResNet family.

Finally, the model sizes are evaluated because they directly affect the deployment scenario

[49], and the results are shown in Fig 13. Compared to the other eight models, the size of our

Fig 11. Confusion matrix results of fusion feature.

https://doi.org/10.1371/journal.pone.0297655.g011
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model is comparable to the size of the shallow series model, our model size is 12.5% of the

average size of the VGG family and less than 2.7% of the ResNet family. Therefore, in terms of

model size cost, our model has a clear deployment advantage. It can be deployed and executed

not only on central servers and edge servers but also on portable devices, enhancing its versa-

tility and accessibility.

Discussion

According to Figs 7 and 8, the acoustic source biometric feature set exhibits satisfactory results

in pig cough recognition, but there still needs to be more potential for performance improve-

ment. The curve indicates a trend of feature elimination, suggesting that incorporating addi-

tional features could enhance classification performance and expand the dimensionality of

acoustic features [50,51]. However, the slope of the curve in Figs 7 and 8 implies that the

Fig 12. Comparison of computational time with different CNN networks using point plots.

https://doi.org/10.1371/journal.pone.0297655.g012

Fig 13. Comparison of model size with different CNN networks using point plots.

https://doi.org/10.1371/journal.pone.0297655.g013
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performance gains from adding homogeneous acoustic features are increasingly challenging.

To address this, we can enhance performance by exploring more diverse extended features

and selecting a smaller, more refined feature set tailored specifically for pig cough recognition.

Future research should explore additional features beyond the three domains of acoustics. Fur-

thermore, extracting deep features from sound can enhance the recognition performance of

individual audio samples [52], thereby determining the optimal set of acoustic features for pig

cough sound recognition. Additionally, it is crucial to consider incorporating signal features

beyond acoustics to overcome the performance bottleneck associated with single-feature anal-

ysis. Existing studies support these findings. For instance, Samson et al. [53] demonstrated

that selecting representative features significantly improves classification accuracy in speech

emotion recognition. Similarly, Saisanthiya et al.[54]and Raheel et al. [55] showcased the per-

formance enhancement achieved by integrating heterogeneous features such as text or physio-

logical signals in sound recognition tasks. Kakuba et al. [56] conducted an extensive

exploration of modal and cross-modal modeling machine fusion methods, focusing on fusion

studies involving sound and lexical semantics across various temporal, spatial, and semantic

dimensions. Drawing inspiration from this work, future investigations into animal behavior

could leverage a similar approach by integrating different modalities, including behavior,

physiology, ecology, and genomics. This holistic perspective promises more practical and

applied research outcomes in the realm of animal behavior studies. In summary, by leveraging

a diverse range of extended features and carefully selecting a refined feature set, we can further

enhance the performance of pig cough recognition. Future research should continue expand-

ing acoustic features while considering incorporating additional signal features.

The experimental results presented in Table 2 clearly demonstrate the significant potential

of thermal image depth features as a valuable tool for identifying pig coughs under field condi-

tions. Infrared images have proven to be remarkably successful in recognizing cough patterns

[57,58], with performance on par with current mainstream research focused on sound-based

cough recognition. Notably, in the shallow CNN feature extractor, AlexNet (FC1) exhibited

impressive performance, achieving an F1 score of 96.13%. Similarly, the deep CNN feature

extractor, ResNet50 (FC1), demonstrated an outstanding performance with an impressive

score of 95.99%. Evidently, shallow CNNs outperformed their deep counterparts in extracting

essential features, while the inclusion of a fully connected layer had a limited impact on

enhancing the classification performance. This outcome can be attributed to the characteristics

of thermal image data, where shallow CNNs already capture a sufficient amount of informa-

tion. This finding is in line with Ji et al. [16], which favours us to improve our model to obtain

better future results. This indirectly validates the rationale behind leveraging the strengths of

Lenet and AlexNet to design ThermographicNet, a deep physiological feature extractor tai-

lored for thermal sources, as proposed in this paper. Additionally, Figs 12 and 13 further vali-

date the superiority of our feature extractor in terms of its ability to extract features, processing

speed, and model size.

The results presented in Table 3 demonstrate that the fusion of acoustic source biometric

features and thermal source physiological deep features in a multi-source framework is an effi-

cient and robust approach for pig cough recognition. However, when it comes to the homoge-

neous fusion of deep physiological features using the Layer fusion method, only a 96.86% F1

score was achieved. This is only slightly better than the 96.8% F1 score obtained with a sin-

glethermal source physiological deep feature. Moreover, adding more homogeneous features

and increasing computation and storage complexity did not significantly improve the classifi-

cation performance. These findings align with previous research on homogeneous fusion in

the field of speech [16,17], indicating that there is a performance bottleneck in homogeneous

fusion.
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On the other hand, three heterogeneous fusion methods, namely FC1 heterogeneous

fusion, FC2 heterogeneous fusion, and layer heterogeneous fusion, demonstrated notable per-

formance improvements and validated the complementary nature of heterogeneous features.

Particularly, the FC1 heterogeneous fusion method achieved an astonishing 98.79% classifica-

tion performance, which currently stands as the best result in cough recognition through fea-

ture fusion. This can be attributed to the fact that the shallow abstraction depth features

derived from infrared data already effectively represent the physiological depth features of

cough. Further, adding fully connected layers and fusing more homogeneous feature data con-

tributed little to the classification. Conversely, fusing heterogeneous sound and infrared fea-

ture data, which represent biological and physiological signals, respectively, proved to be

mutually beneficial and complementary. This insight suggests that future research on animal

behavior recognition should consider a multimodal perception approach, incorporating tac-

tile, auditory, and visual modalities.

In addition to achieving successful classification performance, the Heterogeneous fusion

method proposed in this study demonstrated clear advantages in model size and recognition

speed, as evidenced by the experimental results in Figs 12 and 13. This makes it suitable for

deployment in real farm production environments, thereby improving animal welfare and

enhancing early clinical diagnostic applications, especially for monitoring respiratory health in

pigs.

Lastly, a recent analysis of the latest research on porcine cough recognition revealed that

Yin et al. [14] achieved a high score of 99.2% by incorporating late fusion, specifically classifier

fusion, in addition to feature fusion. This suggests that, in certain scenarios where time and

space complexity requirements are not stringent, other fusion techniques beyond feature

fusion can be considered to enhance cough recognition performance. It presents a potential

research direction to explore.

One of the main challenges in training deep learning networks is the requirement for large

amounts of labeled data, and a potential future solution could be adopting a weakly supervised

learning paradigm [59]. Another challenge lies in the interpretability of the model, where the

focus on the right features becomes more crucial than the overall accuracy. To delve into the

interpretability of analyzing infrared physiological features, we employed the Thermographic-

Net model constructed in this study for an interpretability analysis using the Gradient

Weighted Class Activation Mapping (Grad-CAM) technique. Eight infrared images of cough-

ing pigs were randomly selected from the test set, and the resulting Grad-CAM maps are pre-

sented in Fig 14. As evident from Fig 14, the depth feature sites extracted by the

Fig 14. Gradient weighted class activation mapping of ThermographicNet.

https://doi.org/10.1371/journal.pone.0297655.g014
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ThermographicNet model predominantly include the mouth, nose, ear, and groin of the pig.

These key sites are entirely interpretable from the standpoint of animal physiology and pathol-

ogy. Coughing induced by upper respiratory infections is primarily characterized by elevated

temperatures in the ear canal, mouth, nose, and groin. This is reflected in the infrared data,

where the infrared features of these specific parts are more prominent, and our feature extrac-

tor adeptly captures these features. Therefore, not only is it feasible to conduct research on

automatic respiratory health detection using depth features, but it also holds physiological

interpretability for pigs. This stands as one of the principal contributions of this paper. Fur-

thermore, extracting physiological deep features from thermal infrared images may necessitate

additional equipment, technical support, and a more complex data acquisition environment.

This could involve procuring thermal infrared imaging equipment and implementing intricate

image processing and analysis techniques, thereby increasing the research difficulty and cost

and limiting its applicability and generalizability. Therefore, in the actual deployment, full con-

sideration should be given to the integrated application of the existing monitoring and other

systems in the farm.

The merits of our methods are primarily geared towards intensive farms, aiming for non-

contact and stress-free automatic detection of the respiratory health status of pigs. The objec-

tive is to achieve early detection and treatment, significantly reducing the workload on farm

staff, improving work efficiency, cutting farming costs, boosting profitability, and ultimately

enhancing animal welfare. The experimental results substantiate the advantages and viability

of our approach. However, our method is susceptible to interference from anomalies such as

persistent high-frequency noise in the environment, unexpected intrusion of heat generators,

and equipment shielding, among others. Consequently, we must employ additional measures

and techniques in data preprocessing and deployment implementation, leading to a certain

increase in costs and performance fluctuations. To address the impact of spatial distribution

on data quality [60], we have employed a data acquisition system with a cloud-side-end archi-

tecture for data acquisition. Relevant equipment is strategically deployed in designated loca-

tions, following a standardized production deployment approach. This ensures continuous

24-hour data collection, covering a spectrum of acoustic variations throughout the entire pro-

duction process. Moreover, it helps mitigate the impact of thermal attenuation resulting from

distance and ambient space, effectively dealing with the challenges posed by spatial differences.

While various factors may influence method performance, the disparity between experimental

results and actual deployment applications is negligible. Recent advancements in biological

and physiological sensing technologies have proven beneficial for improving livestock health.

In the future, we intend to enhance swine respiratory health monitoring conditions by devel-

oping an all-in-one machine that can enhance the quality of audio and thermal images col-

lected within the barn.

Conclusions

In this study, we propose a multimodal feature fusion approach that fuses acoustic source bio-

metric features and thermal source physiological deep features in a multi-source classification

framework to improve the recognition performance of cough in pigs. We enriched acoustic

source biometric features by extracting thermal source deep physiological features from a shal-

low convolutional neural network. We utilized the complementary nature of different biologi-

cal and physiological features to enhance cough recognition. Our study concludes that cough

recognition using infrared images is effective in a swine barn environment, and the heteroge-

neous fusion method is more suitable for recognizing coughing behavior than the traditional

acoustic homogeneous fusion. In the future, we can extend this study by applying other
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bioacoustic and physiological infrared samples for cough classification in field situations,

which is essential for improving animal welfare and realizing smart animal husbandry.
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