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Abstract

Sleep stages classification is one of the new topics in studying human life quality because it

plays a crucial role in getting a healthy lifestyle. Abnormal changes or absence of normal

sleep may lead to different diseases such as heart-related diseases, diabetes, and obesity.

In general, sleep staging analysis can be performed using electroencephalography (EEG)

signals. This study proposes a convolutional neural network (CNN) based methodology for

sleep stage classification using EEG signals taken by six channels and transformed into

time-frequency analysis images. The proposed methodology consists of three major steps:

(i) segment the EEG signal into epochs with 30 seconds in length, (ii) convert epochs into

2D representation using time-frequency analysis, and (iii) feed the 2D time-frequency analy-

sis to the 2D CNN. The results showed that the proposed methodology is robust and

achieved a very high accuracy of 99.39% for channel C4-A1. All other channels have accu-

racy values above 98.5%, which indicates that any channel can be used for sleep stage

classification with high accuracy. The proposed methodology outperformed the methods in

the literature in terms of overall accuracy or single channel accuracy. It is expected to pro-

vide a great benefit for physicians, especially neurologists; by providing them with a new

powerful tool to support the clinical diagnosis of sleep-related diseases.

Introduction

Sleep disorders are common among the world population, leading to serious health problems

that affect the quality of life. Insomnia, parasomnias, sleep-related breathing and movement

disorders, hypersomnias, narcolepsy, and circadian rhythm disorders are some of the sleep-

related diseases [1]. In order to detect and classify the sleep stages, several techniques can be

used such as Polysomnogram (PSG) which is a set of multivariate signals recorded from sub-

jects under study and collected during an entire night of sleep. The PSG consists of different

signal recordings such as the electrocardiogram (ECG), electrooculogram (EOG), electroen-

cephalogram (EEG), and electromyogram (EMG) [2].

Using these PSG signals, sleep can be classified into different stages: wake (W), three non-

rapid eye movement (NREM) stages (N1-N3), and rapid eye movement (REM). The process is

usually done manually by sleep experts who classify sleep stages by visually inspecting and
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evaluating the PSG signals for a specific time frame called epochs, then determining the class

based on different criteria. The classification is based on a guideline developed by the Ameri-

can Academy of Sleep Medicine (AASM) [3].

Sleep stages or scores generally consist of two major types, REM sleep and NREM sleep

(Consisting of three different stages). Each stage affects specific brain waves besides neural

activity. During sleep, the person makes several cycles among all stages of NREM and REM

sleep during the night, with increasingly longer, deeper REM periods occurring toward morn-

ing. The following paragraphs describe the sleep stages [4]:

1. The first stage of sleep, which is a part of the NREM sleep stage, is the main changeover

from wakefulness to sleep, and usually lasts for several minutes of relatively light sleep. Dur-

ing this stage, heartbeat decreases, while breathing and eye movements slow down. More-

over, brain waves begin to change and slow their pattern compared to daytime wakefulness

[5].

2. The second sleep stage is a part of NREM sleep as well; it is a period of light sleep that

makes heartbeat and breathing slower and body muscles more relaxed. Besides, brain

waves activity will slow down, and the person spends more time in this stage than he/she

does in other stages [6, 7].

3. The third sleep stage is the final stage of NREM sleep. The heartbeat, breathing, and brain

waves will be at their lowest levels during this stage, and all muscles will be relaxed [6].

4. The final stage is the REM sleep stage in which the brain wave pattern becomes closer to the

pattern in wakefulness, and heart rate becomes higher, while breathing rate becomes faster

and irregular [7, 8].

The EEG signal describes the brain’s electrical activity. The nature of this signal is non-lin-

ear and nonstationary, so it is challenging to deal with it and get information about brain state

directly in the time domain. The EEG signals are recorded from electrodes placed on the scalp

with amplitude of about 10 μV to 100 μV and a frequency in the range of 1 Hz to about 100 Hz

[9]. In this study, the standard ear loop reference electrode (A1 and A2) has been used with the

following midline channels: Central channels (C1 and C2), Occipital channels (O1 and O2),

and Frontal channels (F3 and F4); which are the standard channels used by the AASM to

record sleep-related EEG signals [10].

The visual inspection and manual evaluation of the PSG signals are time-consuming, com-

plex and costly processes requiring expert technicians. On the other hand, EEG is the most

robust signal used for sleep stage classification, yet, it is very hard to visually detect sleep stages

by only inspecting variations because of their random appearance and chaotic nature [11]. In

order to successfully classify the sleep stages using EEG signals and to objectively make the

proper diagnosis and decision, automated detection and classification systems must be devel-

oped to help neurologists and sleep experts in such complex tasks. In addition, advanced signal

processing techniques and artificial intelligence algorithms must be applied to make sleep

stage classification simpler and more robust [4]. The goals of this study are to build and vali-

date a new fast and accurate sleep stage classification methodology by designing a new convo-

lutional neural network (CNN) model; in addition to find the best EEG channel(s) that can be

used to classify sleep stages efficiently.

Literature review

In recent years, researchers have paid attention to sleep stage classification using different sig-

nals, especially EEG signals. Many approaches have been proposed for EEG pre-processing
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including dividing signals into epochs and classification of the epochs. These studies have

developed different methods to classify sleep stages using EEG signals accurately. The follow-

ing literature review is categorized based on the used methodology: machine learning, Long-

Short Term Memory (LSTM), 1D-CNN, and finally 2D-CNN models.

A. Machine learning-based methods

Khalighi et al. [2] proposed an automatic methodology for two scenarios of sleep stage classifi-

cation. The first scenario was to classify into sleep or awake, then classify sleep into N1, N2,

N3, and REM. The second scenario was to directly classify EEG into multiclass stages (N1, N2,

N3, REM, and awake). They used a combination of time, frequency, and time-frequency fea-

tures that were extracted using the maximum overlap wavelet transform (MODWT) and shift-

invariant transform. Then the extracted features were fed into two-step features selection to

select the discriminative features, which are classified using support vector machines (SVMs).

The authors reported that the best performance achieved for the first scenario was using 6

channels with an accuracy of 94.58%, while for the second scenario was using 9 channels with

an accuracy of 92.04%. On the other hand, a decision tree using a multiclass SVM for multi-

class sleep stage classification was proposed by Lajnef et al. [7]. The method was based on

obtaining a decision tree using the hierarchical clustering technique, the tree was fed with sev-

eral extracted time domain and frequency domain features. Their proposed classifier has been

evaluated using k-fold cross-validation, which resulted in an overall accuracy of 92%.

Gupta et al. [12] proposed a time-frequency representation (TFR) method depending on

the Fourier-Bessel decomposition method (FBDM) to decompose the non-stationary signal

into a finite number of Fourier-Bessel intrinsic bands functions (FBIBFs). To get a fixed num-

ber of FBIBFs, they have suggested a zero-phase filter-bank-based (FBDM). The created

FBDM was utilized to classify six distinct sleep stages using the CNN classifier to classify TFR

images. Their proposed model achieved an accuracy of 91.90%. Grieger et. al. [13], on the

other hand, proposed a classification system in mice that evaluated the classical sleep stages of

Wake, REM, NREM and pre-REM sleep stages using a simple neural network design. The per-

formance obtained 0.95 F1 score if the network was restricted with an out-of-sample; while in

case of unrestricted networks, they obtained a performance of 0.5 F1 score.

Using a machine learning-based system to classify sleep stages, Satapathy et. al. [14]

extracted 12 statistical features from each signal, then three different combinations of these fea-

tures have been used. The ISRUC-Sleep database features were tested with two categories

(sleep disorder and healthy), and fed to three different classifiers including Decision Tree

(DT), K-Nearest Neighbor (KNN), and Random Forest (RF). The results showed that all classi-

fiers achieved an accuracy higher than 90%, while the RF had the highest accuracy of 96.7%. In

addition, Surantha et. al. [15] reported the use of the Heart Rate Variability (HRV) feature,

which was calculated from ECG signals. They used a combination of extreme learning

machine (ELM) and particle swarm optimization (PSO) for features reduction and selecting

the best-hidden nodes numbers. The results showed accuracies ranging between 62.66% and

82.1% for different number of classes.

B. LSTM-Based methods

Ghimatgar et al. [16] combined deep learning and hidden Markov models (HMM) using mul-

tichannel EEG to improve the accuracy of sleep stage classification for neonates. The features

were extracted from 30-second EEG segments and were reduced using Modified Graph Clus-

tering Ant Colony Optimization (MGCACO) algorithm. They utilized a bi-directional LSTM

(BiLSTM) network as a sleep stage classifier where the number of channels was optimized
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using a sequential forward selection algorithm. The authors used HMM as a post-processing

technique to reduce the number of false positives. The model has been validated using two

methods: the leave-one-out cross-validation technique, resulting in an overall accuracy of

82.4%, and k-fold cross-validation with an overall accuracy of 78.9%. Choi et al. [17] achieved

an accuracy of 73.9% with a PSG-based system for sleep stage classification using Polyvinyli-

dene Fluoride Film Sensor (PVDF). The PVDF sensor was used for long-term, unconstrained,

and stable physiological signal recording and monitoring. Then the LSTM model was used to

classify the recorded signal into four sleep stages; the LSTM consisted of three layers: two

BiLSTM and one fully connected layer. However, when Ziliang et al. [18] used LSTM and a

30-second-time point time-frequency spectrum as input, the accuracy was 87.4%. Moreover,

Michielli et al. [5] proposed another deep learning methodology using a cascaded LSTM recur-

rent neural network (RNN) for sleep stage classification where a single-channel EEG signal

features was used as an input for the cascaded model. Their results showed that the

LSTM-RNN cascade model scored an accuracy of 90.8% and 83.6% for LSTM and RNN,

respectively.

C. 1D CNN-Based methods

Satapathy et al. [19] achieved 97.22% accuracy using deep learning methods to detect multiple

sleep diseases using three different types of signals as inputs. While Zhu et al. [20] achieved

93.7% with an attention-based CNN model that used the PSG signal as input, Loh et al. [21]

proposed a 1D-CNN based on a deep learning model to classify sleep stages. The model was

proposed for cyclic alternating pattern (CAP) detection and homogenous 3-class sleep stage

classification (W, REM, and NREM sleep) using EEG recordings. The result for the 3-class

sleep stage classification of the proposed CNN network achieved an accuracy of 90.46%, how-

ever, it showed a poor accuracy of 73.64% and 52.99% using balanced and unbalanced CAP

datasets, respectively. As well, Yildirim et. al. [22] proposed a 1-D CNN model using EEG and

EOG signals where the accuracy ranged between 91% and 98% depending on the number of

classes.

D. 2D CNN-Based methods

A joint classification and prediction CNN framework has been proposed by Phan et al. [23] for

sleep stage classification. The framework was based on a simple, efficient, and powerful multi-

task CNN model that was used for automated sleep stage classification using single epoch sig-

nals as input. The framework used ensemble features extracted from three signals (EMG, EEG,

and EOG), then these features were converted to a time-frequency image that was used as

input to the CNN. The framework has been tested using two publicly available datasets; the

first one was sleep-EDF which achieved an accuracy of 82.3%, and the Montreal Archive of

Sleep Studies (MASS) with an accuracy of 83.6%.

Jadhav et al. [6] proposed automated classification of sleep stages using deep learning meth-

ods. They used single-channel EEG to generate a time-frequency spectrum of EEG signals;

they used continuous wavelet transform (CWT) to extract the RBG image, which was fed to

the pre-trained Squeezenet CNN model. The authors achieved an accuracy of 83.34%, 83.61%,

and 83.17% for 30-second epoch for Morse, Bump, and Amor CWT, respectively. Moreover,

Moradi et al. [8] used transferee learning for sleep stage classification using pre-trained CNN

models using the Sleep Heart Health Study (SHHS) PSG dataset. The authors used two signals

as input to Wanger-Ville Distribution (WVD) to convert it into 2D input (image) for the Alex-

Net CNN model. The two signals were ECG and Photoplethysmography (PPG). The proposed

method achieved an accuracy of 95.25% using ECG and 94.63% using PPG.
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Cui et al. [24] proposed CNN using fine-grained signal segments for sleep stage classifica-

tion. The methodology was based on fine segmentation with a length of 30 seconds of 11 sig-

nals that were reshaped as a time series together as input for 8-layer CNN model. The model

has been successfully applied on the ISRUC-Sleep public dataset and can classify 5 classes of

sleep stages with accuracies of 90%, 86%, 93%, 97%, and 90% for stage W, stage N1, stage N2,

stage N3, and stage REM, respectively.

Yuan et al. [25] proposed an end-to-end hybrid deep learning network using a self-attentive

method for multivariate sleep stage classification. This model detected correlation over time

and extracted deep features from heterogeneous biomedical signals fed to it. The authors used

a channel-wise attention-based model to integrate information from multi-views to enhance

the extracted deep features. The method was tested using the UCD PSG dataset, provided by

St. Vincents University Hospital and University College Dublin, and achieved an accuracy of

73.28%.

Eldele et al. [26] proposed automated classification of sleep stages using attention-based

deep learning architecture called AttnSleep. This method used single-channel EEG signals to

extract features by two modules: the first module was based on a multi-resolution convolu-

tional neural network (MRCNN), which extracts low and high-frequency features. The second

model was adaptive feature recalibration model (AFR) to improve the quality of the extracted

features. These modules used a temporal context encoder (TCE). This technique impacts

multi-head attention to ensure the capture of the temporal dependencies among the extracted

features. The results indicated the stability of the method with an accuracy above 84%. Table 1

below shows a summary of the reviewed literature.

Materials and methods

The proposed methodology for sleep stages classification is illustrated in the block diagram

shown in Fig 1.

Participants

The ISRUC-Sleep dataset recorded at the Sleep Medicine Centre of the Hospital of Coimbra

University, Portugal, in the period between 2009 and 2013 has been utilized [10]. This dataset

is one of the largest publicly available datasets such that it can be used to make a comprehen-

sive study about the sleep stage classification using different EEG channels. The data used in

this study contained 100 records of all PSG signals from 100 different subjects (45 female and

55 male) with different conditions, either healthy or patients with sleep disorders. All subject’s

data were recorded using one data acquisition device per session [10]. In this dataset, each sub-

ject’s record was labeled based on visual inspection of two sleep experts based on the AASM

standard [13, 17].

EEG signals preprocessing

Because EEG signals from the ISRUC-SLEEP Dataset were characterized with a low signal-to-

noise ratio (SNR), the preprocessing phase was applied to enhance the quality of the signals;

for example, recorded signals of EEG channels were filtered to remove noise and undesired

background noise and artifacts [10]. In this study, the filtering phase consisted of two main

stages: (1) a notch filter to eliminate the 50 Hz powerline interference; (2) a 2nd order bandpass

Butterworth filter with a lower cutoff frequency of 0.3 Hz and a higher cutoff frequency of 30

Hz [4, 10]. Fig 2 shows the block diagram of the preprocessing techniques.
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Continuous Wavelet Transform (CWT)

The EEG signals are composed of different frequency bands, and it is hard to determine them

only using frequency analysis (Fourier Transform). Usually, in EEG signal classification prob-

lems, the main aim is to localize the time at which each frequency occurs. So, the EEG signals

have been transformed into the time-frequency domain to represent each frequency occur-

rence time [27, 28]. CWT is the most commonly used and powerful time-frequency analysis

tool in which a certain family of wavelet functions used to decompose a signal in the time-fre-

quency domain instead of a sinusoidal signal like Short Time Fourier Transform (STFT) [29,

30]. In contrary to STFT, The CWT doesn’t use a fixed resolution over all windows. The time

resolution and frequency resolution in the high and low frequencies can be altered by

Table 1. Summary of all survived literature.

Ref # Methodology Accuracy %

[2] Time, frequency, and time-frequency features with SVM 94.58

92.04

[26] 1D-CNN 97.22

[10] Cascaded LSTM and RNN 86.7

[23] Combined BiLSTM with HMM CV 82.4

K-Fold 78.9

[30] 2D-CNN with time-frequency image with two datasets 82.3

83.6

[27] Attention-based 1D-CNN with two datasets 93.7

82.8

[31] 2D CNN model 91.2

[13] AlexNet model with Wanger-Ville Distribution ECG 95.25

PPG 94.63

[32] Self-attentive hybrid deep learning 73.28

[24] LSTM 73.9

[12] Time-domain and frequency domain features with SVM 92

[11] Squeezenet model with the continuous wavelet transform with 30 seconds Morse 83.34

Bump 83.61

Amor 83.17

[25] LSTM 87.4

CNN 84.4

[33] Multi-resolution convolutional neural network with temporal context encoder >84

[28] 1D-CNN with cyclic alternating pattern 90.46

[19] Time-frequency representation with Fourier-Bessel decomposition 91.90

[20] Simple neural network restricted 0.5F1

unrestricted 0.95F1

[21] Random forest 96.7

[22] Extreme learning machine with particle swarm optimization 6 classes 62.66

4 classes 71.52

3 classes 76.77

2 classes 82.1

[29] 1D-CNN 2 classes 98.06

3 classes 94.64

4 classes 92.36

5 classes 91.22

6 classes 91.00

https://doi.org/10.1371/journal.pone.0297582.t001
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adjusting the scale and translation parameters [31, 32]. Moreover, given a signal x(t), the CWT

can be defined as [31, 32]:

Ca bð Þ ¼
1
ffiffiffi
a
p

Z 1

� 1

xðtÞφð
t � b
a
Þdt ð1Þ

Where a is a scale parameter, b is a translation parameter, and φ(t) is the mother wavelet

function known as the mother wavelet.

The scale can be converted to frequency by [31, 32]:

F ¼
Fc � Fs

a
ð2Þ

Where Fc is the center frequency of the mother wavelet, Fs is the sampling frequency of sig-

nal x(t), and a is a scale parameter.

Fig 1. Block diagram of the proposed methodology.

https://doi.org/10.1371/journal.pone.0297582.g001

Fig 2. Block diagram of the preprocessing techniques.

https://doi.org/10.1371/journal.pone.0297582.g002
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Among all available wavelets, the choice of mother wavelet is critical because it directly

affects the time-frequency analysis. The bump wavelet has been utilized to analyze EEG signals

because it has a narrower frequency variance as the mother wavelet. Fig 3 shows a sample

STFT for EEG signal (F3-A1) during different sleep stages. This Figure shows a significant dif-

ference among different epochs, especially in the high frequency ranges.

Proposed CNN model

A 19-layer CNN architecture was developed (Fig 4) to classify and differentiate input EEG

epochs into 5 classes. Compared to similar pretrained networks commonly used with transfer

learning techniques, the proposed model architecture will reduce the number of layers;

namely, Densnet has 201 layers, ResNet has 101 layers, and GoogleNet has 144 layers. Reduc-

ing the number of slices will decrease the time required for training and finding probabilities

from newly input CWT images and reduce the computing resources required to run the sys-

tem. Table 2 shows the details about layers in the proposed CNN model architecture.

Using Fig 4 and Table 2, it is worth noting that the proposed model has 4 blocks for extract-

ing very deep features from epochs CWT. These blocks form the core of the model to extract

both deep and general features and obtain the most discriminative ones. The uniqueness of the

proposed model lies in the combination of the deep features extracted from the four conse-

quent convolution layers separated by Rectified Linear Unit (ReLU) and the batch normaliza-

tion layer. General features were extracted using the x-box technique which allows using both

general and minor changes in the CWT images. Furthermore, the proposed model will

improve the flow of information and gradients through the network, making the optimization

of very deep networks tractable. Other advantages of the model include strong features

Fig 3. CWT during different sleep stage of C4-A1 EEG channel signal; N1: Sleep Stage 1; N2: Sleep Stage 2; N3:

Sleep Stage 3; R: REM; and W: Wake.

https://doi.org/10.1371/journal.pone.0297582.g003

PLOS ONE Automatic classification of sleep stages using EEG signals and convolutional neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0297582 January 26, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0297582.g003
https://doi.org/10.1371/journal.pone.0297582


propagation, feature reuse and combination, and substantial reduction in the number of

parameters. The network weights and biases were initialized using “glorot” weight initializa-

tion, where a small gaussian value with a zero mean is initially assigned to each weight. Finally,

the network will be trained end-to-end.

The confusion matrix has been used in order to test the effectiveness of the proposed model

by comparing the device output to the reference labels or data [33, 34]. Common metrics of

model performance (i.e. such as accuracy, specificities, sensitivity, and precision as well as

F1-Score can be extracted from the confusion matrix [35–37].

Results

The epochs of all EEG channels from patients were stacked together resulted in a total of

87,001 epochs (Table 3 shows the total number of samples per class), while the labels were

Fig 4. The proposed 19 layers CNN model.

https://doi.org/10.1371/journal.pone.0297582.g004

Table 2. Values for information of the layers in the proposed CNN Architecture.

# Layer Info Value # Layer Info Value

1 Input Layer Size 64×64×3 10 Conv_3 Filters 32

2 Conv_1 Filters 128 Kernel Size 3×3

Kernel Size 7×7 Activation ReLU

Activation ReLU 11 Batch_Norm_3 Channels 32

3 Batch_Norm_1 Channels 128 12 ReLU_3 - -

4 ReLU_1 - - 13 Maxpol_2 Kernel Size 2×2

5 Maxpol_1 Kernel Size 3×3 Stride 2×2

Stride 2×2 14 Conv_4 Filters 16

6 Conv_2 Filters 64 Kernel Size 3×3

Kernel Size 5×5 Activation ReLU

Activation ReLU 15 Batch_Norm_4 Channels 16

7 Batch_Norm_2 Channels 64 16 ReLU_4 - -

8 ReLU_2 - - 17 FC Layer Size 5

9 Maxpol_2 Kernel Size 3×3 18 Softmax Layer - -

Stride 2×2 19 Classification Layer - -

https://doi.org/10.1371/journal.pone.0297582.t002
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scored based on the PSG technicians’ reports. The CWT images dataset for each EEG channel

epoch was then generated and saved to its corresponding label folder. The bump wavelet has

been used to detect the narrower variance in frequency with sampling frequency (Fs) equal to

200. Each folder of EEG channel epochs CWT images was divided into three sub-datasets,

namely, training, validation, and testing with the following ratios 70%, 15%, and 15%, respec-

tively. The model trained using Adam optimizer with an initial learning rate of 0.001, mini-

batch size of 128, max epochs of 100, validation frequency of 100, and using parallel processing

technique. For each channel, the training and validation accuracy and loss curves were evalu-

ated, in addition to the testing confusion matrix.

All CWT images generated from EEG channels epochs have been fed to the proposed CNN

model architecture. Then, an independent test dataset was used in order to evaluate the perfor-

mance of CNN model architecture in classifying the sleep stages. The testing dataset results

using confusion matrix are shown in Fig 5. Table 4 shows the overall evaluation metrics of test-

ing performance among different EEG channels.

To comprehensively compare all used channels in the results, the performance among all

channels must be calculated and shown for every class. This can be used to determine the best

Table 3. Number of Samples per class.

Stage Number of Samples

W 19,840

N1 11,113

N2 27,427

N3 17,340

REM 11,281

Total 87,001

https://doi.org/10.1371/journal.pone.0297582.t003

Fig 5. Testing Confusion Matrix for Channel Epochs: A) C3-A1, B) C4-A2, C) F3-A1, D) F4-A2, E) O1-A2, F) O2-A1.

https://doi.org/10.1371/journal.pone.0297582.g005
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channel for each class because sometimes the overall accuracy of the channel can be affected

by some of the classes’ low performance and vice versa. Table 5 shows the detailed perfor-

mance metrics for each class among all channels using the proposed methodology.

Finally, to check and evaluate the robustness of the model performance, it has been evalu-

ated using 10-fold cross-validation, where 10-fold cross-validation is more robust than train-

ing-validation-testing methods especially in large datasets. Table 6 shows the 10-fold

performance evaluation metrics among different EEG channels, while Table 7 shows the per-

formance of all classes among each channel.

Strikingly, the results obtained through 10-fold cross-validation closely mirrored those

achieved when testing the model on an independent testing set. This convergence underscores

the reliability and generalizability of our model, as it consistently demonstrated consistent per-

formance across diverse data subsets. The similarity between cross-validation and testing set

results suggests that the model has effectively learned the underlying patterns in the data and

can make accurate predictions on unseen instances. This alignment between the two evalua-

tion approaches instills confidence in the model’s reliability and its potential to perform well

in real-world scenarios beyond the training data.

Discussion

The principal objective of this study was to develop a methodology that can classify pattern

alterations in the EEG signal due to sleep stages in order to detect at which stage the patient is.

This goal has been achieved by creating a deep learning model using CNN that automatically

learns how to extract and use the deep features of EEG signal CWT image and discriminate

between sleep sages accordingly. After making a comparison between channels’ overall perfor-

mance in the used methodology, it has been noticed that the best channel among all used chan-

nels was the C4-A1 channel; the channel scored performance metrics values of 99.39%,

99.34%, 99.84%, 99.38%, 99.36%, and 0.994 for accuracy, sensitivity, specificity, precision,

F1-Score, and Area Under Curve (AUC), respectively. These values can confirm that sleep

stage classification can be done using only one EEG channel. The second channel in order in

terms of performance was the F4-A1 channel; the channel scored performance metrics values

of 99.35%, 99.29%, 99.82%, 99.36%, 99.33%, and 0.996 for accuracy, sensitivity, specificity, pre-

cision, F1-Score, and AUC, respectively.

Comparing these two channels together, it can be found that their performances were com-

parable, and had a small yet significant difference from the third channel in order (C3-A2).

However, all other channels scored more than 98.50% in all metrics, which indicated that they

were robust as well.

Results in Table 4 showed the best channel that produced the highest accuracy and sensitiv-

ity in each class. For class N1, for example, it can be noticed that the best channel for accurately

detecting this stage was the F4-A1 channel, with a value of 99.40% for accuracy and 99.40% for

Table 4. Testing set performance evaluation among all EEG channels.

Channel Accuracy % Sensitivity % Specificity % Precision % F1-Score

%

AUC

C3-A2 99.11 99.04 99.76 99.01 99.07 0.994

C4-A1 99.39 99.34 99.84 99.38 99.36 0.996

F3-A2 98.94 98.91 99.73 98.93 98.92 0.993

F4-A1 99.35 99.29 99.82 99.36 99.33 0.996

O1-A2 98.87 98.83 99.70 98.83 98.83 0.993

O2-A1 98.72 98.67 99.67 98.68 98.67 0.992

https://doi.org/10.1371/journal.pone.0297582.t004
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sensitivity. For the N2 sleep stage, the best channel was the C4-A1 channel with a value of

99.54% for accuracy and 99.54% for sensitivity. For the N3 sleep stage, the best channel was

also the C4-A1 channel with a value of 99.58% for accuracy and 99.58% for sensitivity. For the

R sleep stage, the best channel was the C4-A1 channel with a value of 99.00% for accuracy and

Table 5. Testing set performance metrics for each class among all used EEG channels.

Channel Stage Accuracy % Sensitivity % Specificity % Precision % F1-Score

%

AUC

C3-A2 N1 99.22 99.22 99.86 99.04 99.13 0.995

N2 99.32 99.32 99.59 99.10 99.21 0.995

N3 99.00 99.00 99.8 99.19 99.10 0.994

R 98.46 98.46 99.86 99.05 98.76 0.992

W 99.23 99.23 99.74 99.13 99.18 0.995

C4-A1 N1 99.34 99.34 99.88 99.16 99.25 0.996

N2 99.54 99.54 99.72 99.39 99.47 0.996

N3 99.58 99.58 99.88 99.50 99.54 0.997

R 99.00 99.00 99.93 99.52 99.26 0.995

W 99.26 99.26 99.80 99.33 99.29 0.995

F3-A2 N1 98.74 98.74 99.80 98.62 98.68 0.993

N2 99.12 99.12 99.51 98.93 99.03 0.993

N3 99.15 99.15 99.74 98.96 99.06 0.995

R 98.94 98.94 99.88 99.17 99.05 0.994

W 98.62 98.62 99.70 98.99 98.80 0.992

F4-A1 N1 99.40 99.40 99.89 99.22 99.31 0.996

N2 99.49 99.49 99.68 99.30 99.39 0.996

N3 99.42 99.42 99.84 99.35 99.39 0.996

R 98.82 98.82 99.95 99.64 99.23 0.994

W 99.36 99.36 99.80 99.33 99.34 0.996

O1-A2 N1 98.86 98.86 99.79 98.56 98.71 0.993

N2 99.15 99.15 99.47 98.86 99.00 0.993

N3 98.92 98.92 99.69 98.77 98.85 0.993

R 98.64 98.64 99.81 98.7 98.67 0.992

W 98.59 98.59 99.78 99.26 98.92 0.992

O2-A1 N1 98.44 98.44 99.82 98.74 98.59 0.991

N2 98.91 98.91 99.49 98.88 98.89 0.992

N3 98.89 98.89 99.67 98.7 98.79 0.993

R 98.52 98.52 99.76 98.41 98.46 0.991

W 98.59 98.59 99.61 98.69 98.64 0.991

https://doi.org/10.1371/journal.pone.0297582.t005

Table 6. 10-fold cross-validation performance evaluation among all EEG channels.

Channel Accuracy % Sensitivity % Specificity % Precision % F1-Score

%

AUC

C3-A2 99.05 ± 0.54 98.99 ± 0.58 99.69 ± 0.18 98.95 ± 0.6 99 ± 0.57 0.926 ± 0.04

C4-A1 99.32 ± 0.39 99.28 ± 0.41 99.78 ± 0.13 99.31 ± 0.39 99.29 ± 0.41 0.93 ± 0.04

F3-A2 98.87 ± 0.65 98.85 ± 0.66 99.66 ± 0.19 98.86 ± 0.65 98.87 ± 0.65 0.925 ± 0.04

F4-A1 99.29 ± 0.41 99.24 ± 0.43 99.76 ± 0.14 99.3 ± 0.4 99.27 ± 0.42 0.937 ± 0.04

O1-A2 98.8 ± 0.69 98.78 ± 0.7 99.65 ± 0.2 98.78 ± 0.7 98.77 ± 0.7 0.928 ± 0.04

O2-A1 98.65 ± 0.77 98.62 ± 0.79 99.61 ± 0.22 98.61 ± 0.79 98.6 ± 0.8 0.939 ± 0.03

https://doi.org/10.1371/journal.pone.0297582.t006
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90.00% for sensitivity. Finally, for the W stage, the best channel was the F4-A1 channel with a

value of 99.36% for accuracy and 99.36% for sensitivity.

Using these results, it has been shown that the C4-A1 channel beat the F4-A1 channel in 3

classes out of 5 classes in terms of performance, making it more suitable for the main classifica-

tion channel. As a final statement for all shown and discussed results above, it has been noticed

that the best EEG channel that can be used as a single input for the CNN model was the C4-A1

channel, either using overall performance or using a single class performance.

The proposed methodology has proved its ability to accurately classify the sleep stages using

only one EEG channel by calculating the CWT of each epoch and feeding it to the CNN

model. The proposed CNN model is light (19 layers), reflecting its classification speed. More-

over, the proposed methodology has outperformed the methods in literature including those

used 1D or 2D CNN models. Table 5 compares the proposed approach to the models and

methods that have the highest performance in literature.

For instance, the work proposed by Gupta and Pachori [12] used CWT with Morse, Bump,

and Amor mother wavelets images of epochs with transfer learning of pre-trained CNN model

Table 7. 10-fold cross-validation performance metrics for each class among all used EEG channels.

Channel Stage Accuracy % Sensitivity % Specificity % Precision % F1-Score

%

AUC

C3-A2 N1 99.17 ± 0.56 99.17 ± 0.57 99.8 ± 0.13 98.98 ± 0.69 99.06 ± 0.64 0.93 ± 0.05

N2 99.25 ± 0.51 99.27 ± 0.5 99.54 ± 0.31 99.05 ± 0.65 99.15 ± 0.57 0.93 ± 0.05

N3 98.94 ± 0.72 98.94 ± 0.72 99.74 ± 0.18 99.12 ± 0.59 99.04 ± 0.65 0.94 ± 0.04

R 98.4 ± 1.09 98.39 ± 1.09 99.8 ± 0.14 99 ± 0.68 98.7 ± 0.88 0.92 ± 0.05

W 99.16 ± 0.57 99.17 ± 0.56 99.69 ± 0.21 99.07 ± 0.63 99.13 ± 0.59 0.92 ± 0.05

C4-A1 N1 99.27 ± 0.5 99.27 ± 0.5 99.82 ± 0.12 99.1 ± 0.61 99.2 ± 0.54 0.93 ± 0.05

N2 99.48 ± 0.35 99.47 ± 0.36 99.65 ± 0.24 99.33 ± 0.46 99.41 ± 0.4 0.93 ± 0.05

N3 99.52 ± 0.32 99.51 ± 0.33 99.81 ± 0.13 99.43 ± 0.39 99.48 ± 0.35 0.93 ± 0.05

R 98.93 ± 0.72 98.95 ± 0.71 99.86 ± 0.09 99.46 ± 0.37 99.21 ± 0.54 0.92 ± 0.05

W 99.2 ± 0.54 99.21 ± 0.54 99.73 ± 0.18 99.26 ± 0.5 99.22 ± 0.53 0.93 ± 0.05

F3-A2 N1 98.68 ± 0.89 98.68 ± 0.89 99.74 ± 0.17 98.57 ± 0.97 98.62 ± 0.94 0.93 ± 0.05

N2 99.06 ± 0.64 99.06 ± 0.64 99.44 ± 0.38 98.86 ± 0.77 98.97 ± 0.7 0.92 ± 0.05

N3 99.08 ± 0.62 99.08 ± 0.63 99.67 ± 0.23 98.9 ± 0.75 98.99 ± 0.69 0.93 ± 0.05

R 98.89 ± 0.75 98.87 ± 0.76 99.81 ± 0.13 99.1 ± 0.61 99 ± 0.68 0.94 ± 0.04

W 98.57 ± 0.97 98.56 ± 0.97 99.64 ± 0.24 98.94 ± 0.72 98.74 ± 0.85 0.93 ± 0.04

F4-A1 N1 99.35 ± 0.44 99.34 ± 0.45 99.82 ± 0.12 99.16 ± 0.57 99.24 ± 0.52 0.94 ± 0.04

N2 99.42 ± 0.39 99.42 ± 0.4 99.62 ± 0.26 99.23 ± 0.52 99.34 ± 0.45 0.93 ± 0.05

N3 99.36 ± 0.44 99.36 ± 0.44 99.78 ± 0.15 99.28 ± 0.49 99.33 ± 0.46 0.92 ± 0.05

R 98.77 ± 0.84 98.77 ± 0.83 99.88 ± 0.08 99.58 ± 0.28 99.17 ± 0.56 0.94 ± 0.04

W 99.31 ± 0.47 99.31 ± 0.47 99.74 ± 0.18 99.26 ± 0.5 99.28 ± 0.49 0.93 ± 0.05

O1-A2 N1 98.81 ± 0.81 98.8 ± 0.82 99.72 ± 0.19 98.49 ± 1.03 98.65 ± 0.92 0.93 ± 0.05

N2 99.08 ± 0.63 99.08 ± 0.62 99.42 ± 0.4 98.79 ± 0.82 98.93 ± 0.73 0.92 ± 0.05

N3 98.85 ± 0.78 98.86 ± 0.77 99.63 ± 0.25 98.71 ± 0.88 98.78 ± 0.83 0.93 ± 0.05

R 98.58 ± 0.96 98.59 ± 0.96 99.74 ± 0.18 98.65 ± 0.92 98.6 ± 0.95 0.94 ± 0.04

W 98.52 ± 1 98.53 ± 1 99.73 ± 0.18 99.2 ± 0.54 98.85 ± 0.78 0.93 ± 0.05

O2-A1 N1 98.37 ± 1.1 98.38 ± 1.1 99.76 ± 0.17 98.68 ± 0.9 98.53 ± 1 0.93 ± 0.04

N2 98.85 ± 0.78 98.84 ± 0.79 99.43 ± 0.39 98.81 ± 0.81 98.83 ± 0.79 0.94 ± 0.04

N3 98.82 ± 0.8 98.84 ± 0.79 99.6 ± 0.27 98.65 ± 0.92 98.73 ± 0.86 0.94 ± 0.04

R 98.45 ± 1.05 98.47 ± 1.04 99.7 ± 0.21 98.34 ± 1.13 98.39 ± 1.09 0.93 ± 0.05

W 98.52 ± 1.01 98.53 ± 0.99 99.55 ± 0.31 98.64 ± 0.92 98.59 ± 0.96 0.92 0.05±

https://doi.org/10.1371/journal.pone.0297582.t007

PLOS ONE Automatic classification of sleep stages using EEG signals and convolutional neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0297582 January 26, 2024 13 / 18

https://doi.org/10.1371/journal.pone.0297582.t007
https://doi.org/10.1371/journal.pone.0297582


called SqueezeNet. So, the authors did not propose any new model to classify CWT images.

Moreover, they used a small dataset (42 subjects and 61 PSG) compared to the number used in

the current study. Finally, their best overall accuracy was 83.61% using 30-second epochs with

Bump mother wavelet and ignoring the results of 150-second epochs because AASM standards

recommend using the epoch’s length of only 30 seconds for sleep stage classification.

When comparing the proposed methodology with the closest 2D CNN model performance

proposed by Cui et al. [24], their model performance was low because it combined signals to

generate 2D images. Such technique was not efficient because time-frequency analysis or

representation was used to enhance the difference among different epochs of different sleep

stages. The proposed model outperformed that model since the CWT multiresolution time-

frequency analysis has been used to make the CNN model capable of extracting very deep fea-

tures. While the work by Satapathy et al. [14] focused on using pretrained models which are

usually not very efficient in EEG sleep stage classification, they also used Wanger-Ville Distri-

bution, which is time-consuming compared to CWT.

On the other hand, Zhu et al. [20] proposed a 1D CNN model composed of 34 layers com-

pared to 19 layers in the current study. Their model used a combination of two EEG channels

as input instead of one as in the proposed model. Finally, they used a very small dataset size

from only 10 subjects with a total of 12,000 epochs for each channel, which is very small com-

pared to the dataset used in this work that consisted of 100 subjects with a total of 87,001

epochs per channel. Based on that, their model’s performance could vary if they trained it

using a larger heterogeneous dataset.

Based on the aforementioned discussion, the model has many merits including: (i) Compu-

tational Efficiency, where the 19-layer CNN architecture is designed to be more computation-

ally efficient compared to similar pretrained networks like Densnet (201 layers), ResNet (101

layers), and GoogleNet (144 layers). (ii) Training Speed, with fewer layers, the model will con-

verge faster during the training process. (iii) Resource Efficiency, where the reduced model

complexity translates to lower memory requirements during both training and inference, mak-

ing it more resource-efficient, especially in environments with limited computing resources.

(iv) Simpler Architecture, where the 19-layer architecture simplifies the model structure,

potentially making it easier to interpret and understand. This simplicity can be advantageous

for model debugging, optimization, and maintenance. (v) Reduced Overfitting Risk, because a

simpler model is less prone to overfitting, especially when dealing with limited amounts of

data. This can contribute to better generalization performance on unseen data.

On the other hand, the proposed model suffers from some limitations such as it may have a

limited capacity to capture intricate patterns and representations in complex datasets, its com-

plex architecture may limit the model’s ability to automatically learn hierarchical and abstract

features from raw input data, especially when dealing with datasets that have nuanced patterns,

in addition, it may have challenges with transfer learning, because the use of pretrained net-

works for transfer learning might be less straightforward with a significantly different architec-

ture. However, it is very important to note that the mentioned advantages and disadvantages

are context-dependent, and the suitability of the 19-layer CNN architecture depends on the

specific requirements and constraints of the EEG classification task at hand.

Moving forward, efforts to enhance the interpretability of the deep learning model and

address uncertainties in single-channel classification could focus on key areas. Incorporating

interpretable deep learning techniques, such as layer-wise relevance propagation and attention

mechanisms will offer insights into influential features within the EEG signal [38–40]. Devel-

oping specific metrics for model explainability and employing visualizations such as heatmaps

can provide tangible representations of the model’s decision-making process, aiding clinician

understanding and trust. Additionally, uncertainty estimation techniques, ensemble models,
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and robustness analysis can be explored to quantify confidence, improve reliability, and assess

the model’s generalization to variations [41].

In parallel, tailored methods for explaining decisions with single-channel inputs, interactive

interfaces for clinician collaboration, and feedback mechanisms for continuous improvement

can further refine the diagnostic process. Integration with existing sleep studies or comple-

mentary modalities, such as polysomnography, presents an avenue for a more comprehensive

understanding of sleep patterns [39, 41]. These future directions collectively aim to advance

the explainability and reliability of the deep learning model in the context of EEG-based sleep

stage classification [38, 40].

Finally, as a summary of comparing the proposed methodology with surveyed literature,

the proposed methodology has outperformed most previous works either in terms of dataset

size or in terms of the performance of the classifier. Moreover, the proposed CNN model is

lighter than all models in literature so that it is feasible to be used as a time sleep stages classi-

fier. Table 8 shows a comparison in terms of accuracy between literature and proposed

method.

Conclusions

In conclusion, a new methodology for sleep stage classification using EEG channels has been

proposed focusing on high accuracy. The proposed system developed a new algorithm for

detecting and classifying sleep stages by providing a new light CNN model for classification

purposes. The proposed methodology can produce a precise and accurate sleep stage classifica-

tion by converting each 30-second epoch into images using CWT. In addition, the effective-

ness of the proposed system was evaluated using different performance evaluation metrics,

which showed that the proposed methodology was robust and highly accurate. Finally, the best

Table 8. Comparing the accuracy of the proposed methodology to literature.

Reference Methodology Accuracy %

[2] Time, frequency, and time-frequency features with SVM 94.58

92.04

[26] 1D-CNN 97.22

[27] Attention-based 1D-CNN with two datasets 93.7

82.8

[31] 2D CNN model 91.2

[11] Squeezenet model with the continuous wavelet transform with 30 seconds Morse 83.34

Bump 83.61

Amor 83.17

[12] Time domain and frequency domain features with SVM 92

[29] 1D-CNN 2 Classes 98.06

3 classes 94.64

4 classes 92.36

5 classes 91.22

6 classes 91.00

Proposed 2D-CNN with CWT C3-A2 99.11

C4-A1 99.39

F3-A2 98.94

F4-A1 98.35

O1-A2 98.87

O2-A1 98.71

https://doi.org/10.1371/journal.pone.0297582.t008
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channel that can be used as input to the methodology was C4-A1 followed by F4-A1. The pro-

posed system may be used with patients suffering from stroke. Other applications may include

the study of sleep quality or monitoring brain signals during sleeping time.
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