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Abstract

Objective

The gastrointestinal microbiome in preterm infants exhibits significant influence on optimal

outcomes–with dysbiosis shown to substantially increase the risk of the life-threatening nec-

rotizing enterocolitis. Iron is a vital nutrient especially during the perinatal window of rapid

hemoglobin production, tissue growth, and foundational neurodevelopment. However,

excess colonic iron exhibits potent oxidation capacity and alters the gut microbiome–poten-

tially facilitating the proliferation of pathological bacterial strains. Breastfed preterm infants

routinely receive iron supplementation starting 14 days after delivery and are highly vulnera-

ble to morbidities associated with gastrointestinal dysbiosis. Therefore, we set out to deter-

mine if routine iron supplementation alters the preterm gut microbiome.

Methods

After IRB approval, we collected stool specimens from 14 infants born <34 weeks gestation

in the first, second, and fourth week of life to assess gut microbiome composition via 16S

rRNA sequencing.

Results

We observed no significant differences in either phyla or key genera relative abundance

between pre- and post-iron timepoints. We observed notable shifts in infant microbiome

composition based on season of delivery.

Conclusion

Though no obvious indication of iron-induced dysbiosis was observed in this unique study in

the setting of prematurity, further investigation in a larger sample is warranted to fully under-

stand iron’s impact on the gastrointestinal milieu.
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Introduction

An overview of the gut microbiome

The gastrointestinal microbiome bears considerable research interest due to its potential role

in colorectal cancer [1–3], cardiovascular disease [4–6], inflammatory bowel conditions

including C. difficile infection [7–9], and devastating diseases in preterm neonates such as nec-

rotizing enterocolitis (NEC) [10–12]. Colonic bacteria are known to ferment carbohydrates to

produce their cellular energy resulting in the production of short-chain fatty acids (acetate,

butyrate, propionate) that are readily taken up by the epithelium to regulate human cellular

activity [13,14] and gut inflammation [15,16]. The initial colonization of the neonatal gut by

commensal microbes occurs during parturition at the latest via the transmission of maternal

bacterial strains through exposure to the vaginal canal, skin, breastfeeding, or during the pro-

cess of cesarean delivery [17,18]. Vaginal deliveries result in a higher load of beneficial strains

such as Lactobacilli sp., while cesarean deliveries result in depleted microbial counts and

increased colonization of pathogenic Proteobacterial strains (i.e. Enterobacteriaceae), in addi-

tion to the delayed appearance and proliferation of commensal strains [19].

The consequences of gut dysbiosis in preterm infants

Gastrointestinal dysbiosis in the preterm neonate during this period of extreme fragility can be

devastating to the fragile tissue in these vulnerable patients’ gut. Perhaps chief among concerns

regarding neonatal gut dysbiosis is NEC–a disease that comprises nearly 10% of all NICU

deaths and bears a 30% mortality rate among infants born under 1500 grams [20]. Numerous

studies implicate dysbiosis of the preterm gut microbiome–and the corresponding prolifera-

tion of pathologic, inflammation-inducing strains–in the etiology of NEC. Enterobacteriaceae
in particular has been consistently shown to increase prior to NEC [21]. Further, the prolifera-

tion of Proteobacterial strains in the preterm neonate necessarily delays the typical dominance

of beneficial strains (Bifidobacteria and Lactobacilli) with gut-protective outputs and anti-

inflammatory action–a double-edged sword which exacerbates the risk of developing both

NEC and subsequent morbidities.

Iron’s clinical importance and impact on the gut microbiome

Iron is a vital nutrient in all living organisms and bears particular importance in humans for

its role in hemoglobin synthesis, oxygen transport and storage, nucleic acid production, the

electron transport chain, cell division, and gene expression [22,23]. Neonates rely heavily on

adequate iron stores for appropriate development. Preterm neonates often miss out on crucial

third-trimester iron loading [24] due to their early delivery and loss of direct connection to

maternal iron stores–exacerbating their risk for poor neurodevelopmental outcomes. As such,

dietary iron supplementation is recommended for preterm infants to avoid both the immedi-

ate and lifelong consequences of iron deficiency during this period–with the American Acad-

emy of Pediatrics encouraging a dose of 2mg/kg per day beginning at one month of age [25].

Iron’s specific impact on the gut microbiome in humans has been posited in the literature,

but definitive human studies remain sparse. The majority of iron-oxidizing bacterial strains

reside in the phylum Proteobacteria–which harbors many pathological and invasive bacterial

strains. Iron-rich environments facilitate the proliferation of bacteria throughout the body,

such that host immune mechanisms restrict iron access during periods of infection [26]. Iron

supplementation trials in both African children [27] and infants/toddlers [28] each indicated

dysbiosis stemming from dietary iron supplementation, with a proliferation of Protebacterial

strains (Enterobacteria etc) and a reduction in Lactobacilli and Bifidobacteria. Of note, there is
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a paucity of research on the potential impact of iron on the gut microbiome in preterm infants.

Given the evidence implicating dysbiosis in neonatal NEC risk, there is concern that routine

iron supplementation may provide competitive advantage to the invasive pathogens–which

our study sets out to clarify.

Materials and methods

Research setting and participant recruitment

An IRB-approved study (IRB #112-15-EP) obtained written parental consent from expectant

and post-partum women presenting at Nebraska Medicine’s hospital Labor and Delivery Unit

(Omaha, NE) to enroll their newborn infants in an analytic observational cohort study. Eligi-

bility criteria included mothers�19 years of age with infants born�34 weeks corrected gesta-

tional age (CGA) and admitted to Nebraska Medicine’s Neonatal Intensive Care Unit (NICU)

who intended to exclusively provide breast milk their infants (either per os or via a nasogastric

tube)–the use of pasteurized donor human milk and parenteral nutrition in infant participants

was acceptable for enrollment, with maternal intent to exclusively breastfeed. There were no

additional exclusion criteria. Patients in this cohort were recruited between October 1st, 2018

and June 30st, 2019. Due to the nature of the patient population in this study, critically-ill

infants were eligible for enrollment; as such, study procedures were terminated immediately in

the event of neonatal death. Enrollment must have occurred no later than the infant’s fifth day

of life, to ensure timely collection of initial biospecimens.

NICU nutrition practices

Enteral nutrition management among enrolled preterm infants were initiated via nasogastric

tube as soon as medically appropriate, preferably within the first day of life targeting 30-35mL/

kg/day. Trophic feeds at this volume continued for 48 hours in infants born <28 weeks gesta-

tional age; those born >28 weeks gestational age did not receive trophic feeds but rather

enteral nutrition volume was increased daily by 30-35mL/kg as tolerated toward a goal of

150mL/kg/day. Upon reaching 50-60mL/kg/day, human milk was fortified to 24kcal/oz using

non-acidified liquid human milk fortifier, followed by liquid protein fortification subsequent

to 24 hours of tolerated caloric fortification. When mothers own milk was unavailable, pas-

teurized donor milk purchased from a donor human milk bank was used as a supplement with

parental consent, with similar fortification strategies to mother’s own milk. Probiotic supple-

ments (0.5 grams/day) containing five bacterial strains (Bifidobacterium breve, Bifidobacter-

ium longum, Bifidobacterium infantis, Bifidobacterium bifidum, and Lactobacillus

rhamnosus) were initiated once enteral feeding volumes reached 48mL/day. Daily enteral iron

fortification beginning at 14 days of life occurred in any infant receiving at least half of their

enteral feeding volume as mother’s own milk or pasteurized donor human milk, via ferrous

sulfate supplementation at 3mg/kg/day (range 2-4mg/kg/day).

Specimen collection and analysis

Infant stool specimens were collected three times during NICU admission–once each during

the first, second, and fourth weeks of life (WOL). This schedule of stool specimen collection

was designated to capture specimens both before and after the initiation of standard-of-care

iron supplementation in our NICU practice beginning at the 14th day of life, while also pro-

viding duplicate measurements during the first two weeks of life to correct for dramatic gas-

trointestinal microbiome changes immediately after birth. Stool specimens were captured

during typical infant cares by clinical staff directly from the infant’s diaper using study team-
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provided PSP Spin Stool DNA Plus collection tube containing DNA stabilizing solution,

which renders DNA specimens stable at room temperature for up to 90 days. Specimens

were stored at -20˚C within 48 hours of bedside collection to maximize the longevity of

DNA stability, and specimens were subsequently processed in bulk adhering to the manufac-

turer’s protocol. Sequencing the resulting DNA took place using an Illumina MiSeq platform

targeting the V4-V1 primers of the 16S rRNA gene, including PCR amplification, two rounds

of PCR clean-up passes, and library quantification and normalization. Sequence generation

was conducted in collaboration with the University of Nebraska Medical Center’s Genomics

Core Facility.

Bioinformatics and statistical considerations

[29–32] Generated sequences were assessed for quality and demultiplexed using Illumina soft-

ware (MiSeq Control Software version 2.6) according to the manufacturer’s guidelines. After

the demultiplexing step, bioinformatics analyses were performed following the Bioconductor

workflow for microbiome data analysis by Callahan et al. [33] using R software [34]. In brief,

for the initial steps, the R package DADA2 [29] (version 1.18.0) was used. These steps include:

denoising, chimera removal, clustering of high-quality sequencing reads to infer amplicon

sequence variants (ASV), and calculation of ASV counts per sample. A naïve Bayes taxonomy

classifier [30] classified each ASV against the SILVA 138.1 reference database [35] to construct

a taxonomy table, while MAFFT [31] (version 7.407) and FASTTREE [32] (version 2.1.11)

programs constructed a phylogenetic tree. Taxa abundances at the phyla and genera level were

normalized with the total sum scaling normalization method dividing each ASV count by the

total library size to yield their relative proportion of counts for each sample. Shannon Alpha

diversity was calculated with the R packages phyloseq [36] (version 1.34.0) and vegan [37] (ver-

sion 2.6.2). Bioinformatics analysis of sequences specimens was conducted by the University

of Nebraska Lincoln’s Bioinformatics Core. Sequence data for this cohort is accessible via Bio-

Project (PRJNA1019326).

Descriptive statistics were generated for both study exposure and outcome measures as well

as demographic characteristics such as infant sex and gestational age at birth; medians, inter-

quartile ranges, minimums, and maximums were generated for continuous variables, and fre-

quencies and percents were utilized for categorical variables. Ratios were utilized to quantify

relative abundances of various bacterial strains as a proportion of total gastrointestinal bacteria

colonization. The average of pre-iron collection timepoints (i.e. WOL 1 and WOL 2) was gen-

erated for continuous variables in order to mitigate dramatic early life differences in gastroin-

testinal composition and was used in direct comparison to post-iron values in certain

statistical analyses (i.e. WOL 4 values)–average was utilized in this fashion as opposed to

median due to the small number of values being aggregated; in some cases, only two. Exposure

and outcome measures were assessed for normality, and the Wilcoxon Signed Rank tests were

used as appropriate to compare averaged pre-iron initiation values to post-iron values. As

Shannon Diversity is normally distributed, paired sample T-tests were used to compare pre-

and post-iron diversity levels. Repeated measures ANOVA (Friedman’s test for non-normally

distributed variables) were also used to assess differences in continuous variables across each

of the three collection timepoints. Independent sample T-tests or the Mann-Whitney U test

were utilized to assess differences in aggregate participant measures based on categorical delin-

eators (i.e. sex, season of specimen collection, etc). Fisher’s exact test associated dichotomous

categorical variables, and Spearman correlations to relate continuous measures. A p-value was

considered statistically significant in all analyses. All statistical analyses were conducted in

IBM SPSS Statistics version 28 [38].
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Results

Participant demographics and baseline characteristics

A total of 13 mothers provided informed consent for their newborns to participate in this

study between November of 2018 and June of 2019, resulting in 14 preterm neonates enrolled

for stool sample collection (12 singleton deliveries and one set of twins). One neonatal partici-

pant passed away resulting from their critical condition during the study period. A total of 39

stool specimens were collected from enrolled infants based on our repeated measures schedule,

with 34 specimens suitable for quantification of microbiome composition. The median gesta-

tional age at birth of the infants was 29.43 weeks (IQR 27.00–30.86), with the most-preterm

infant in this cohort born at 23.57 weeks gestation. Our cohort had an even split of male and

female infants, with seven in each group. Vaginal deliveries accounted for five of the 14 infants

(37.7%), with cesarean deliveries accounting for the remaining 9 infants (64.3%). The racial

and ethnic makeup of infant participants included 6 (42.9%) White infants, 3 (21.4%) Black

infants, 4 (28.6%) Hispanic/Latino infants, and one (7.1%) infant of Other/Unknown race.

Dynamics of the gut microbiome across NICU admission

Predominant phyla quantified in this cohort included Firmicutes, Bacteroidetes, Proteobac-

teria, and Actinobacteria–trace amounts (<0.001%) of Verrucomicrobia, Cyanobacteria, and

Tenericutes were observed in select samples but were excluded from analyses due to their

extremely small absolute and relative abundances. ASVs belonging to the genera Lactobacilli
and Bifidobacteria were appropriately categorized as such and quantified in both absolute

abundance and relative abundance of total microbiome makeup. Median phyla relative abun-

dance was 31.23% Firmicutes, 0.05% Bacteroidetes, 20.72% Proteobacteria, and 29.81% Actino-
bacteria. At the genus level, 13.31% of strains belonged to genus Lactobacilli, and 29.77% of

strains belonged to genus Bifidobacteria.

Comparisons of each phylum and genus’s mean relative abundance based on dichotomous

participant characteristics are presented in Table 1. In short, no significant differences in any

phyla or genera’s mean relative abundance were observed between participant sex (all p-values

>0.40) or delivery mode (Firmicutes, Bacteroidetes, and Proteobacteria p-values >0.30)–

though Actinobacteria and its constituent Bifidobacteria mean relative abundance approached

a significant difference between delivery modes, with a trend toward higher abundance among

vaginally-delivered infants versus cesarean sections (p = 0.07).

Mean phyla relative abundances were also related to infant CGA (Corrected gestational

age) using Spearman correlations. No significant relationships were observed between mean

phyla relative abundances and CGA, though similarly to differences by delivery mode Actino-

bacteria and Bifidobacteria relative abundance approached significant positive correlations

Table 1. Mann-Whitney U test of mean relative abundance across all weeks of life between dichotomous participant characteristics.

Sex Delivery Mode

Female Male p-value Vaginal Cesarean p-value
Firmicutes 30.51% 35.16% 0.95 31.94% 30.51% 0.74

Bacteroidetes 0.05% 0.04% 0.41 0.05% 0.04% 0.46

Proteobacteria 30.04% 11.41% 0.85 5.59% 46.89% 0.32

Actinobacteria 30.24% 29.38% 0.75 51.25% 28.29% 0.07

Lactobacilli 15.63% 11.68% 0.48 15.94% 7.97% 0.21

Bifidobacteria 30.17% 29.37% 0.75 51.18% 28.29 0.07

https://doi.org/10.1371/journal.pone.0297558.t001
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with CGA (R = 0.52, p = 0.06). All Spearman correlations between phyla and genera relative

abundance and CGA are presented in Table 2.

Friedman’s test was utilized to assess any differences in the distribution of each individual

phylum and genus’s relative abundance across the three-sample collection timepoints–no sig-

nificant differences in distribution between WOL1, WOL 2, and WOL 4 were observed for any

of the four major phyla (Firmicutes p-value = 0.42, Bacteroidetes p-value = 0.51, Proteobacteria

p-value = 0.97, Actinobacteria p-value = 0.88) nor either genus of interest (Lactobacilli and

Bifidobacteria p = 0.88). Pre-iron initiation relative abundance measurements were averaged

together and compared with the WOL 4 relative abundance using Wilcoxon Signed Rank tests

to further investigate what effect iron initiation has on the gut microbiome. No significant dif-

ferences in relative abundance distributions were observed between pre- and post-iron mea-

surements (All p-values >0.05). The relative abundance distributions by week are represented

in Fig 1.

Microbial diversity and seasonal shifts in the neonatal gut. The median Shannon diver-

sity over the study period for all subjects was 1.90 (IQR: 1.82–2.13). Shannon diversity did not

differ based on infant sex (p = 0.99) or infant delivery mode (p = 0.88), nor did it significantly

correlate with infant CGA (Spearman’s R = 0.47, p = 0.09). One-way ANOVA of Shannon

diversity measurements at our three time points revealed statistically significant differences in

distribution over time (F = 8.84, p = 0.003), with pairwise comparisons revealing significantly

lower Shannon diversity in WOL 1 versus WOL 2 (1.36 vs 1.78, p = 0.02), and WOL 1 versus

Table 2. Spearman correlations between mean relative abundance across all weeks of life and infant birth CGA.

Spearman’s R p-value

Firmicutes 0.16 0.59

Bacteroidetes -0.08 0.78

Proteobacteria -0.24 0.40

Actinobacteria 0.52 0.06

Lactobacilli -0.02 0.95

Bifidobacteria 0.52 0.06

https://doi.org/10.1371/journal.pone.0297558.t002

Fig 1. Phyla and genera relative abundance by week of life.

https://doi.org/10.1371/journal.pone.0297558.g001
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WOL 4 (1.36 vs 2.02, p = 0.005). Shannon diversity prior to iron initiation was subsequently

averaged and compared to WOL 4 Shannon diversity using a paired sample T-test, which indi-

cated a statistically significant difference in pre- and post-iron Shannon diversity (1.71 vs 2.02,

p = 0.012).

An unintended result of our recruitment schedule was a cohort of patients divided into distinct

seasons of delivery–eight infants (57.1%) were born between November-December (i.e Winter),

and six (42.9%) infants were born between March-May (i.e. Spring), allowing us to conduct a pre-

liminary evaluation of seasonal differences in gastrointestinal colonization. Of note, no difference

in infant CGA was observed between Winter and Spring deliveries (30.2 vs 28.6 weeks, p = 0.48)

and no association existed between delivery mode and season of birth (Fisher’s exact p = 0.58).

Mean phyla-level relative abundance, mean genera-level relative abundance, and mean Shannon

diversity across each collection timepoint were compared between Winter and Spring delivery

groups using the Mann-Whitney U test, with numerous significant differences observed and a

number approaching significance–these findings are displayed in Table 3.

Discussion

The overall phylogenetic breakdown of our cohort’s gut microbiome largely resembles previ-

ous characterizations of the preterm neonatal gut microbiome [39–41], though with lower

abundance of Bacteroidetes. This is likely due to the exclusively human-milk fed recruitment

in our cohort versus previous studies characterizing both human-milk fed and formula fed

infants–the latter of which exhibit lower abundance of Actinobacteria. Further, supplementa-

tion with numerous Bifidobacteria strains (of the phylum Actinobacteria) in the form of probi-

otics likely accentuated the abundance of Actinobacteria in our cohort. We also observed

trends toward significance that align with characteristic influences on infant gut microbiome

composition–namely, the role of both gestational age and delivery mode. In our study, Actino-

bacteria had lower average relative abundance among infants delivered via cesarean section

than their vaginally delivered counterparts (51.25% vs 28.29%, p = 0.07), and Actinobacteria

relative abundance also exhibited a moderated positive correlation with gestational age, though

both only approached statistical significance (R = 0.518, p = 0.06). Korpela et al. similarly dem-

onstrated the effect of gestational age on Actinobacteria abundance, highlighting that one of

the final stages of neonatal gut microbiome development is the rapid proliferation of Bifidobac-
teria at 30 weeks post-menstrual age [42]. Further, many previous studies have demonstrated

differences in Bifidobacteria relative abundance between vaginal and cesarean deliveries [43–

47], with consistently lower abundance in the latter.

Our study observed notable significant differences in bacterial colonization based on infant

season of delivery. Infants born in the Spring had precipitous drops in relative abundance for

Table 3. Mann-Whitney U comparisons of gastrointestinal characteristics between winter and spring deliveries.

Winter Spring p-value

Firmicutes 38.21% 18.67% 0.04*
Bacteroidetes 0.05% 0.04% 0.52

Proteobacteria 5.26% 59.52% 0.07

Actinobacteria 41.68% 16.94% 0.05*
Lactobacilli 15.29% 2.68% 0.09

Bifidobacteria 41.54% 16.94% 0.05*
Shannon Diversity 1.90 1.93 0.19

* Indicates p-value <0.05.

https://doi.org/10.1371/journal.pone.0297558.t003
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Firmicutes and Actinobacteria (corresponding to drops in Lactobacilli and Bifidobacteria rela-

tive abundance), with concomitant and sizable increase in Proteobacteria relative abundance–

up from 5% in Winter deliveries to 59% in Spring deliveries (though only approaching signifi-

cance). It is challenging to precisely identify the cause of these seasonal differences in gut

microbiome composition, but one explanation is variation in maternal diet patterns resulting

in subtle changes in vertical transfer of bacterial strains from mother to infant. Davenport

et al. have demonstrated significant differences in both Firmicutes and Actinobacteria across

seasons in adults, with higher abundance in summer versus winter timepoints–mirroring the

results observed in our cohort [48]. Another intriguing possibility is variation in the environ-

mental microbiome of our NICU setting–work by Brooks et al. have indicated notable overlap

between admitted neonate’s gut microbiome and the surrounding room’s bacterial coloniza-

tion across admission, with some instances of room colonization shifts appearing prior to

patient microbiome changes [49,50]. Further, Rozé et al. have demonstrated the impact of

NICU care practices on gut microbiome composition [51], reinforcing the possibility of envi-

ronmental influences that change across seasons carrying over into neonatal gut microbiome

changes. Although we did not observe any difference in CGA between seasonal groups, nor

was season associated with delivery mode or infant sex, we cannot definitively rule out the pos-

sibility of clinical differences between Winter and Spring infants in our relatively small sample.

This study was conceptualized in part due to findings from two interventional trials of iron

supplementation in sub-Saharan African infants and children from Tang et al. [52] and Zim-

merman et al. [27]–each of which demonstrated gastrointestinal dysbiosis in those supple-

mented with enteral iron. Importantly, these studies evaluated the effect of iron

supplementation on infants at least six months of age (i.e. well past the initial post-birth stage

of gastrointestinal microbiome development) and children between 6- and 12-years old, and

each in a resource-poor rural African population. A handful of other studies–primarily in ane-

mic African infants and toddlers–exist evaluating iron’s role in gut dysbiosis [28,53]; however,

to our knowledge only one other study has evaluated iron’s role on the preterm infant gut

microbiome, which was published after the completion of our cohort’s recruitment. In their

study, Ho et al. recruited 80 very low birth weight infants and collected stool samples over the

first two months of life, subsequently assessing the makeup of their gut microbiome based on

iron dosage–which ranged from 3mg/kg/day-6mg/kg/day [54]. They observed significantly

higher abundance of Proteobacteria only in the highest iron dosage group (i.e.�6mg/kg/day)

with a corresponding drop in Shannon diversity. Ho et al. were able to recruit to sufficiently

power their study and generate findings that potentially indicate a role for iron in the neonatal

gut microbiome–namely, increased Proteobacteria abundance and reduced diversity. How-

ever, the differences they observed were almost exclusive to the�6mg/kg/day group of infants,

which also skewed younger (average of 26.2 CGA), had a high prevalence of mixed feeding

participants (46%), and were almost exclusively cesarean deliveries (85%). Further,�6mg/kg/

day iron dosing is roughly twice that of our NICU clinical practice, making direct comparison

to our cohort challenging. It is possible that at this high per-weight dosage excess iron is suffi-

ciently disruptive to the gut microbiome, but at lower doses no issues arise. With that said, Ho

et al.’s study is an important work further clarifying the impact of iron supplementation on the

preterm infant gut microbiome, perhaps identifying a dosage level that elicits dysbiosis which

we were not able to identify in our patient population due to more restrained dosing practices.

Conclusions

The primary limitation of this study is low sample size. Despite our repeated measures sam-

pling strategy, only 14 preterm infants were enrolled in this study with a total of 39 stool
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specimens available for analysis. Low sample size limited our ability to account for numerous

confounding variables in multivariate analyses–including the considerable confounding effect

of antibiotic use in these patients and the evaluation of proportion of mother’s own milk vs

alternative substrates (i.e. donor milk). Our findings must be considered in the context of our

low N and lack of adjustment for relevant confounders, but present additional data regarding

the state of preterm infant gut microbiome constituents over the course of NICU admission.

Further, use of the Mann-Whitney U test in low-N relative abundance assessment bears the

risk of poor power in small N studies [55]–which may have resulted in unobserved differences.

That said, the dearth of evidence regarding iron’s effect on the preterm infant gut micro-

biome–particularly among very preterm infants–results in this small study still contributing

valuable information to the wider body of data available on this potential effector of gastroin-

testinal risk. Additional limitations include the lack of fecal iron concentration measurement

as a means of assessing direct correlations between microbial abundance and excess iron avail-

able in the colon. Finally, our sampling schedule was one of convenience to ensure equal col-

lection among participants with highly varied admission durations.

Our study evaluated what impact initiation of routine enteral iron supplementation in pre-

term infants had on gastrointestinal dysbiosis and observed no significant shift in gut micro-

biome composition in pre- and post-iron specimens. We observed changes in gastrointestinal

colonization based upon infant season of delivery, with a shift toward pathogenic strains in

infants born in Spring vs Winter. Further study is warranted to fully understand the role iron

may play in the competitive balance of the gastrointestinal microbiome, especially in the highly

vulnerable population of preterm infants.
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