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Abstract

Software Defined Network (SDN) has alleviated traditional network limitations but faces a

significant challenge due to the risk of Distributed Denial of Service (DDoS) attacks against

an SDN controller, with current detection methods lacking evaluation on unrealistic SDN

datasets and standard DDoS attacks (i.e., high-rate DDoS attack). Therefore, a realistic

dataset called HLD-DDoSDN is introduced, encompassing prevalent DDoS attacks specifi-

cally aimed at an SDN controller, such as User Internet Control Message Protocol (ICMP),

Transmission Control Protocol (TCP), and User Datagram Protocol (UDP). This SDN

dataset also incorporates diverse levels of traffic fluctuations, representing different traffic

variation rates (i.e., high and low rates) in DDoS attacks. It is qualitatively compared to exist-

ing SDN datasets and quantitatively evaluated across all eight scenarios to ensure its supe-

riority. Furthermore, it fulfils the requirements of a benchmark dataset in terms of size,

variety of attacks and scenarios, with significant features that highly contribute to detecting

realistic SDN attacks. The features of HLD-DDoSDN are evaluated using a Deep Multilayer

Perception (D-MLP) based detection approach. Experimental findings indicate that the

employed features exhibit high performance in the detection accuracy, recall, and precision

of detecting high and low-rate DDoS flooding attacks.

1 Introduction

Over the past decade, there has been significant growth in network devices, leading to

increased complexity in network administration and posing challenges for future internet

innovations. Traditional network architectures’ inflexibility limits adaptability and increases

operational costs, hindering the progress of technologies like big data, IoT, and cloud comput-

ing. In response, SDN technology has emerged as an innovative model, differentiating itself by

separating the logical control plane from the data plane, allowing the centralized control plane

to manage distributed network components. SDN offers advantages such as a comprehensive

network view, centralized control, programmable interfaces, improved switch protocol man-

agement, centralized monitoring, and efficient virtualized networking. These features enable
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SDN to enhance various network types, including wireless networks, data centres and enter-

prise networks, addressing the demands of emerging technologies and feature generation net-

works [1–3].

The SDN network structure is comprised of three key components: The data, control, and

application plans. The data plan primarily includes network forwarding switches, while the

control plan is managed by one or more centralized SDN controllers responsible for control-

ling the data plane and providing network services to the application plane. The application

plane hosts various business applications developed by programmers, such as network moni-

toring and traffic engineering. SDN relies on the critical OpenFlow protocol for communica-

tion between devices in the data plan and controllers [4, 5]. Initially emerging from academic

research, OpenFlow and SDN have gained industry attention, with numerous vendors imple-

menting the OpenFlow API in commercial switches and major enterprises like Google and

Microsoft supporting SDN technology. However, this widespread adoption has exposed the

SDN network to DDoS attacks that target the controller, causing resource depletion and a

decline in network performance [6].

Consequently, the network infrastructure must be equipped with an efficient IDS to

detect DDoS in the SDN network. Despite the existing IDSs, the research challenge of

developing an effective anomaly-based IDS for the SDN environment remains open [3].

One of these challenges is that the publicly available datasets are generated for conventional

networks and do not reflect an SDN network’s characteristics, even though the publicly

available realistic SDN datasets are limited to standard or conventional DDoS attacks (i.e.,

high-rate attacks), which are relatively easy to detect due to the large volume of malicious

traffic. Furthermore, some efforts simulated the SDN network environment to generate

synthetic datasets to evaluate their proposed approaches with high and low-rate DDoS

attacks. However, they are not publicly available and are limited only to UDP DDoS flood-

ing attacks.

Therefore, this research paper tackles these limitations by introducing a synthetic realistic

dataset of DDoS attacks specifically designed for SDN networks. The dataset covers prevalent

DDoS threats on SDN networks, such as UDP, ICMP, and TCP DDoS flooding attacks against

an SDN controller, involving different traffic variation rates (i.e., high and low rates). This

dataset is referred to as HLD-DDoSDN, denoting High and Low-rates dataset-based DDoS

flooding attacks against SDN controller [7]. The contributions of this research paper can be

summarised as follows:

• The HLD-DDoSDN dataset comprises the most prevalent and realistic SDN attacks, such as

ICMP, UDP, and TCP DDoS flooding attacks at various rates, including high and low-rate

DDoS flooding attacks.

• A set of qualified features is proposed for training the dataset using a D-MLP-based detec-

tion approach. These features make a significant contribution to the detection of SDN-spe-

cific attacks. Furthermore, the evaluation of D-MLP to detect the most common DDoS

attacks(i.e., TCP, UDP, and ICMP) on SDN controllers is performed using various scenarios

(i.e., high- and low-rate) to ascertain the significance of the proposed features.

• The HLD-DDoSDN dataset meets all criteria for being considered a benchmark dataset,

including realistic SDN traffic, labelling, sufficient size, qualified representation of traffic fea-

tures, and diversity of attacks and scenarios.

The rest of this research paper is structured as follows: the relevant works are presented in

Section 2. Section 3 outlines the experimental setup and the generation of the HLD-DDoSDN

dataset. Then, Section 4 highlights the experimental findings, analysis, and discussion. Overall,
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Section 5 discusses the conclusions, challenges and limitations of this research paper and sug-

gests future works.

2 Relevant works

This section discusses the relevant works on Deep Learning (DL)-based approaches utilized

for detecting SDN DDoS attacks. Additionally, we present an extensive analysis of publicly

accessible SDN datasets that accurately represent real-world scenarios.

2.1 DL-approaches

The progressive utilization of Anomaly IDS for the detection of DDoS attacks has gained wide-

spread attention. These systems employ advanced detection models that utilize DL algorithms

to detect such attacks dynamically. These techniques have been widely adopted in various IDS

methods, including those targeting DDoS attacks on SDN networks, due to their ability to

learn attack patterns effectively. Consequently, this section examines DL-based approaches for

detecting SDN DDoS attacks, along with their limitations. The following DL approaches are

discussed as follows:

Mansoor et al., [8] introduced a DL approach that utilized Recurrent Neural Networks

(RNN) for the detection of DDoS attacks directed at the controller. They tested their approach

with a realistic dataset and achieved noteworthy performance results. Specifically, the pro-

posed approach attained 94.186%, 92.146%, 8.114%, and 94.276% for average accuracy, preci-

sion, false positive rate, and f1-measure. However, it is important to acknowledge that the

proposed approach is limited to direct standard or traditional DDoS attacks and may not be

effective against emerging attacks (i.e., low-rate attacks) or exhibit a notable number of false

positives.

Hüseyin et al., [9] integrated the SDN technology with SCADA systems to address the man-

ageability and scalability challenges. However, safeguarding against cyber attack threats,

including DDoS attacks, is crucial. They employ two parallel approaches utilizing the RNN

techniques (i.e., Gate Recurrent Unit (GRU) and Long-term Memory (LSTM)) to train a vali-

dation dataset for feature extraction and SVM technique for classification. Additionally, they

used the transfer learning method to enhance performance, resulting in an improvement of

transfer learning of around 5% and an accuracy of 97.62% for DDoS attack detection. How-

ever, the approach is limited to detecting conventional DDoS attacks.

Novaes et al., [10] proposed a detection and defense system against SDN DDoS attacks,

employing the Generative Adversarial Network (GAN) for attack detection. The proposed sys-

tem comprises modules for continuous monitoring of IP flow, enabling the anomaly system to

respond in near real-time. The evaluation of their system involved two distinct scenarios, uti-

lizing a synthetic realistic dataset and the CICDDoS2019 dataset. The proposed system dem-

onstrated high performance in these evaluations. Nevertheless, it is worth that the system is

limited to detecting conventional DDoS attacks.

Alshra et al., [11] presented a method for safeguarding the SDN network against DDoS

attacks by employing DL algorithms. They utilized RNN, GRU, and LSTM to detect such

attacks. The effectiveness of their approach was evaluated using the InSDN dataset, demon-

strating a high accuracy in detecting DDoS attacks. However, the approach performs better

when detecting attacks across the entire dataset, indicating its limitations in detecting high-

rate DDoS attacks.

Tang et al., [12] introduced a DL-based IDS aimed at detecting all types of attacks, with a

specific focus on recent attacks. The system consists of three modules: the in-charge collector,

the anomaly detector employing Deep Neural Network (DNN) and RNN, and the detector
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that scrutinizes all traffic flow entries within a defined time window. The countermeasure

module is responsible for identifying potential traffic attacks. The propsed system was trained

and tested using the NSL-KDD dataset, and three sub-datasets were created with essential fea-

tures tailored for the SDN environment. However, the system achieved a detection accuracy of

80.7% for DNN and 90% for RNN. Furthermore, the system employed an unrealistic dataset

that does not accurately reflect the characteristics of the SDN network environment. Finally,

the evaluation of the approach was limited to high-rate DDoS attacks.

Nugraha et al., [13] utilized Convolutional Neural Network (CNN) and LSTM for detecting

UDP normal traffic flows and HTTP slow DDoS attacks on SDN network. The proposed

approach was trained using a realistic SDN dataset. The hybrid model demonstrated an overall

performance of around 99% across all metrics. However, it is important to note that the pro-

posed approach is limited to detecting slow HTTP attacks and does not consider both high

and low attacks.

Haider et al., [14] utilized a CNN algorithm to detect DDoS attacks at an early stage. Their

approach aimed at classifying DDoS attacks, specifically in SDN networks. The effectiveness of

the model was assessed using the CICID2017 dataset, resulting in a remarkably high detection

accuracy of 99.45%. Nevertheless, it should be noted that the proposed approach has limita-

tions in detecting only the standard DDoS attack. Moreover, the model complexity necessitates

a longer training time. Additionally, it is worth mentioning that the evaluation of the proposed

method was conducted using an unrealistic dataset that does not accurately represent the char-

acteristics of the SDN network environment.

Li et al., [15] presented a defense and detection approach utilizing CNN, RNN, and LSTM,

to identify DDoS attacks within SDN networks. The evaluation of their proposed model

involved the use of the ISCX2012 dataset, as well as a simulated real SDN network dataset for

training and testing purposes. The model achieved verification accuracies of 98% for test data

and 99% for training data in detecting DDoS attacks. However, it should be noted that the pro-

posed approach is limited to the detection of high-rate DDoS attacks.

Niyaz et al., [16] introduced a network application system within the SDN controller with

the aim of identifying DDoS attacks targeting both the control and plane. The proposed system

employed the stacked autoencoder algorithm to effectively detect multi-vector DDoS attacks,

encompassing UDP, TCP, and ICMP attacks. Moreover, their method included the classifica-

tion of network traffic into regular or DDoS-related, achieving an impressive accuracy of

99.82% in the detection of DDoS attacks. However, it is important to note that the proposed

approach is limited to the detection of high-rate DDoS attacks.

Tang et al., [17] implemented network IDS within the SDN controller to monitor the net-

work traffic. Their proposed approach utilized a DNN to identify anomalies based on flow

characteristics in the SDN network, classifying the traffic as either regular or anomalous. The

researchers evaluated their approach using the NSL-KDD dataset, with six relevant features

carefully selected to align with the characteristics of the SDN network. However, the proposed

method yielded a relatively low accuracy of 95.75%. This outcome can be attributed to the eval-

uation and training of the model using an unrealistic dataset that does not accurately represent

the characteristics of the SDN network environment. Table 1 presents the limitations of DL-

based approaches.

To summarize, the paper discusses a thorough investigation into the use of DL approaches

for detecting DDoS attacks in SDN environments. Additionally, the paper provides a summary

of the limitations associated with DL-based approaches, as presented in Table 1. These limita-

tions include: (i) most DL-based approaches in SDN networks primarily focus on detecting

high-rate DDoS attacks, and (ii) the evaluation of these approaches frequently employs unreal-

istic datasets that do not accurately represent the characteristics of SDN network architecture.
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Lastly, (iii) certain approaches, such as those proposed by [8, 12, 17], exhibit inadequate per-

formance when it comes to detecting standard or conventional DDoS flooding attacks.

2.2 SDN datasets concerns

In this context, there are two main types of datasets. The first is unrealistic benchmark datasets

widely used for evaluating ML and DL-based approaches. Although these datasets are publicly

available, they are not designed for SDN networks but for conventional networks, including

CICIDS2018 [18] and ISCX2012 [19]. The second category is realistic datasets. Because they

are specifically designed for DDoS attacks on SDN networks, these realistic datasets reflect the

characteristics of SDN networks. Therefore, this section reviews the generated datasets of

DDoS attacks on SDN networks.

Niyaz et al., [16] proposed a DL-based system to detect DDoS (i.e., TCP, UDP, and ICMP)

against control and data planes. The experimental testbed consists of one SDN controller, an

OpenFlow switch, ten hosts that generate DDoS attacks using the hping3 tool, and five victim

hosts. As a result, the dataset contains normal and abnormal, with 68 features from the cap-

tured traffic: 34 for TCP, 20 for UDP, and 14 for ICMP flows. However, the dataset does not

consider DDoS attack variation (i.e., high and low) rates.

Zerbini et al., [20] used a Mininet emulator to create a virtual network to test and evaluate

their detection system. The experimental testbed is a tree-based topology consisting of a POX

controller. Five switches, one of which is the root switch, are interconnected with the other

Table 1. Illustrates the limitation of DL-based approaches.

Ref. Method Dataset Type DDoS

Attack

Variation

Rates

Limitation(s)

Realistic Unrealistic High Low

Mansoor

et al., [8]

RNN ✓ ✗ ✓ ✗ The performance of the approach was assessed for identifying high-rate DDoS attacks, but

it exhibited poor performance in detecting such attacks.

Hüseyin et al.,

[9]

RNN techniques-

SVM

✓ ✗ ✓ ✗ The performance of the approach was assessed for detecting high-rate DDoS attacks.

Novaes et al.,

[10]

GAN ✓ ✗ ✓ ✗ The performance of the approach was assessed for detecting high-rate DDoS attacks.

Nugraha

et al., [13]

CNN-LSTM ✓ ✗ ✓ ✗ The performance of the approach was assessed for detecting high-rate DDoS attacks.

Alshra et al.,

[11]

RNN, GRU, and

LSTM

✓ ✗ ✓ ✗ The approach underwent evaluation for its ability to identify high-rate DDoS attacks.

Tang et al.,

[12]

GRU and RNN ✗ ✓ ✓ ✗ The DNN achieved a detection accuracy of 80.7%, while the GRU-RNN achieved a

detection accuracy of 90% in the proposed approach. However, it is worth noting that the

evaluation of the method was conducted using an unrealistic dataset that does not

accurately represent the characteristics of the SDN network environment.

Haider et al.,

[14]

CNN ✗ ✓ ✓ ✗ The proposed model has limitations in detecting only high-rate DDoS attacks.

Additionally, the evaluation of the approach was conducted using an unrealistic dataset

that does not accurately represent the characteristics of the SDN network.

Li et al., [15] CNN, RNN and

LSTM

✗ ✓ ✓ ✗ The proposed approach was trained using an unrealistic dataset that does not accurately

capture the characteristics of the SDN network environment when it comes to DDoS

attack detection.

Niyaz et al.,

[16]

Stacked

Autoencoder (SA)

✓ ✓ ✓ ✗ The approach is constrained in its ability to detect only high-rate DDoS attacks.

Tang et al.,

[17]

DNN ✗ ✓ ✓ ✗ The approach yielded a relatively low accuracy of 75.75%. Moreover, it was evaluated and

trained using an unrealistic dataset that does not accurately represent the characteristics of

the SDN network environment.

https://doi.org/10.1371/journal.pone.0297548.t001
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four switches, and every subnet is connected to twenty hosts. They also used Scapy and

Hping3 to generate normal traffic, DDoS attacks, and PortScan attacks. The simulation net-

work runs for two days, and the dataset has six features. However, the dataset is limited to a

few features. Additionally, it only works for traditional DDoS attacks and doesn’t consider

high-rate or low-rate DDoS attacks in the SDN network into account.

Novaes et al., [21] simulated an SDN network topology using a Mininet emulator to gener-

ate a realistic dataset to test and evaluate their anomaly detection and mitigation system. The

experimental testbed consists of a Floodlight SDN controller and a central switch with six con-

nected switches. Every switch contains 20 hosts, whereas the total is 120 hosts. Two types of

attacks (a DDoS attack and a Portscan attack) with different intensities and durations were car-

ried out using the Scapy hacking tool. In addition, the dataset has nine features. However, the

dataset is limited to a few traffic features. Also, it is limited to conventional DDoS attacks and

does not consider high-rate and low-rate DDoS attacks in the SDN network.

Yungaicela et al., [22] proposed a DL-based framework for detecting and preventing DDoS

attacks. Additionally, they contribute the SDN-SlowRate DDoS dataset, which proves to be

more recent and complex than the high-rate DDoS attacks dataset. This is particularly signifi-

cant as the existing dataset focuses on volumetric attacks, such as TCP and UDP flood attacks.

The contributed dataset incorporates application layer protocols, for example, slow HTTP

attack and Slowhttptest used to attack the victim servers. Implemented on a physical network,

the dataset utilizes a testbed configuration with a data centre topology and an ONOS SDN con-

troller to manage the SDN data centre. It is important to note that the contributed dataset is

limited to 13 features.

Elsayed et al., [23] proposed a comprehensive InSDN dataset that includes the benign and

different attack classes (i.e., internal and external attacks) that may occur in the SDN network.

The dataset was conducted using four virtual machines (VMs): one for the ONOS controller; a

second for Kali Linux, which represents the attacker; a third for Mininet and the OSV switch;

and one more for Metasploitable 2 to provide vulnerable services. Besides that, various hacking

tools are used for the generation of malicious traffic (botnet, DDoS, DoS, Probe, password

brute-forcing, web attack, and R2L), and normal traffic covers common application servers

(i.e., HTTP, HTTPS, emails, SSH, FTP, and DNS). The network traffic was captured using

Wireshark, and flow features were extracted using CICFlowmeter for creating network flow

traffic. As a result, the total number of extracted features is 83. However, the proposed dataset

is limited to conventional DDoS attacks and does not consider different traffic variation rates

like high and low rates.

Ahuja et al., [24] proposed a specific SDN dataset from a Mininet emulator for the research

community to evaluate their ML and DL approaches. They create ten topologies that connect

switches and a single RYU controller. The dataset contains benign traffic (i.e., TCP, UDP, and

ICMP traffic) and malicious traffic (i.e., UDP, ICMP, and SYN flood attacks). The dataset has

23 features. Some are extracted from switches, and others have been calculated. However, the

proposed dataset is quite small, limited to conventional DDoS attacks in SDN networks, and

does not consider DDoS attack variation (i.e., high and low) rates.

Overall, Aladaileh et al., [25] used a Mininet emulator to create a virtual network environ-

ment to test and evaluate their detection system based on generalized Rényi joint entropy. The

experimental testbed is a leaner topology consisting of a POX controller and 64 hosts con-

nected to an OpenFlow switch. They also used the Scapy hacking tool to generate normal and

abnormal traffic. The dataset contains a variety of scenarios, including high and low rates of

UDP DDoS attacks that target single or multiple victim nodes. As a result, the dataset has

seven features. However, the dataset is limited to a few traffic features and does not consider
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other DDoS attacks (i.e., ICMP and TCP attacks). Table 2 demonstrates a qualitative compari-

son between the proposed dataset and the existing ones.

In summary, Table 2 shows that most datasets contain several traffic features, even though

some contributed datasets have quite a few features. In addition, most contributed datasets are

limited to conventional DDoS attacks (i.e., high-rate). In this attack, the attackers flood the

network with massive amounts of malicious traffic against the victim nodes, making it easy to

detect, as attackers nowadays employ various DDoS attack variation rates (i.e., high-rate and

low-rate) techniques, except [25] generated a dataset containing high-rate and low-rate DDoS

attacks. However, this dataset is limited to UDP DDoS attacks, has limited traffic features, and

is not publicly available. On the other side [22], dataset is focusing solely on HTTP slow attacks

against victim servers. Therefore, the contributed HLD-DDoSDN dataset considers the pre-

vailing realistic SDN DDoS attack (TCP, UDP, and ICMP) with traffic variation rates (i.e.,

high-rate and low-rate) and contains 71 statistically qualified traffic features.

3 HLD-DDoSDN generation

This section offers an overview of the experimental setup for the proposed dataset. This section

also provides a comprehensive of the proposed dataset scenarios, including preparation, fea-

ture extraction, construction and pre-processing, sample datasets and validation. Fig 1

Table 2. Qualitative comparison of the contributed dataset with the existing one.

Ref. or Dataset

Name

Protocol-Based DDoS

Attacks

DDoS

Attacks

Variation

Rates

Controller

Platform

Total No. of

Features

Dataset

Availability

Limitation(s)

TCP UDP ICMP Other High Low

SDN-SlowRate-

DDoS [22]

✗ ✗ ✗ ✓ ✗ ✓ ONOS 23 ✓ The dataset does not consider both high and

low-rate DDoS flooding attacks.

The generated dataset is specifically for

HTTP slow attacks.

Niyaz et al. [16] ✓ ✓ ✓ ✗ ✓ ✗ POX 68 ✗ The dataset is specified for high-rate DDoS

flooding attacks.

The generated dataset is not publicly

available.

Zerbini et al., [20] ✓ ✓ ✓ ✓ ✓ ✗ POX 6 ✓ The dataset is limited to a few features.

The dataset is specified for high-rate DDoS

flooding attacks.

Novaes et al., [21] ✓ ✓ ✓ ✓ ✓ ✗ Floodlight 9 ✓ The dataset is limited to a few features.

The dataset only includes high-rate DDoS

flooding attacks.

InSDN [23] ✓ ✓ ✓ ✓ ✓ ✗ ONOS 77 ✓ The dataset is specified for high-rate DDoS

flooding attacks.

Ahuja et al., [24] ✓ ✓ ✓ ✗ ✓ ✗ Ryu 23 ✓ The dataset is quite small.

The dataset only includes high-rate DDoS

flooding attacks.

Aladaileh et al., [25] ✗ ✓ ✗ ✗ ✓ ✓ POX 7 ✗ The dataset includes a few traffic features.

The dataset is limited only to UDP DDoS

flooding attacks.

The dataset is not publicly available.

HLD-DDoSDN [7] ✓ ✓ ✓ ✗ ✓ ✓ POX 71 ✓ The dataset is limited to UDP, TCP and

ICMP attacks.

The proposed dataset is a synthetic.

https://doi.org/10.1371/journal.pone.0297548.t002
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presents an overall methodology for the proposed SDN dataset and the D-MLP detection

technique.

3.1 Experiment setup

The testbed is emulated in VMware Workstation 16 Pro (running the Linux Ubuntu 22.04

LTS) on a PC with 16.0 GB of RAM and an Intel Core i5–37570 processor running at 3.40

GHz. This setup is employed to manage the severity of the DDoS attack. Mininet is considered

a network emulator widely used by the researcher’s community to create a realistic virtual

SDN network.

In addition, we follow the same linear topology as the existing topology [25]. The testbed

topology architecture is designed as follows: One POX controller acts as a root node, func-

tioning as the network brain to effectively control the entire SDN network. This controller is

an open-source platform, OpenFlow protocol-compatible controller that can run Python

scripts and is known for its speed and lightweight nature. One OpenFlow vSwitch represents

the SDN network gateway as it directly connects the SDN controller and nodes in the data

link layer.

Furthermore, this testbed consists of 64 nodes from 1 to 64, each assigned a defaulting IP

address documented from 10.0.0.1 to 10.0.0.64, respectively. By default, the allocated link

bandwidth between the hosts is 10 GB. Moreover, each host in the proposed testbed has

Fig 1. Overall methodology of HLD-DDoSDN and D-MLP detection approach.

https://doi.org/10.1371/journal.pone.0297548.g001
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been assigned a specific role. For example, in this testbed, three nodes act as attackers, gen-

erating low and high rates of DDoS attacks against the SDN controller by targeting victim

nodes. On the other hand, the remaining hosts generate normal traffic and act as legitimate

nodes. Fig 2 illustrates the virtual testbed network topology for creating the proposed

dataset.

As seen from Fig 2, nodes one (10.0.0.1), two (10.0.0.2), and three (10.0.0.3) have been ran-

domly chosen to play the roles of the attackers. In contrast, Node ten (10.0.0.10) acts as the vic-

tim node, and Node sixty-four (10.0.0.64) represents the web server, the victim, while the

remaining nodes generate normal traffic starting from Node four (10.0.0.4) to Node sixty-four

(10.0.0.64). Moreover, for generating normal traffic and DDoS attacks, Scapy is being utilized

as it is a powerful interactive hacking tool for packet manipulation and crafting [26]. Also, it

supports various packet types and a wide range of protocols. Additionally, Scapy can be exe-

cuted interactively from a Python script to generate realistic normal traffic (i.e., ICMP, UDP,

and TCP) and malicious network traffic (i.e., TCP, UDP, and ICMP DDoS flooding attacks)

with spoofed IP addresses. Besides that, a Python function called “randrange ()” is used to gen-

erate randomly spoofed source IP addresses within the range of 1–255.

Fig 2. Network topology architecture.

https://doi.org/10.1371/journal.pone.0297548.g002
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3.2 Datasets scenarios

Splitting the data plane from the control plane introduces a new security threat that has not

appeared in a conventional network [27]. When there is no matched traffic flow, OpenFlow

switches forward to the SDN controller using the Packet_In message. The controller processes

this message and returns a response using the Packet_Out message to update the flow table

switches. Attackers can exploit this forwarding process to flood the network with spoofed

packets that exhaust the SDN controller resources and cause degradation of its performance

[3]. Therefore, the HLD-DDoSDN dataset focuses on the most relevant DDoS flooding attacks

in the SDN context. Those attacks are ICMP, UDP, and TCP DDoS flooding attacks against

the SDN controller.

In addition to these severe attacks, the HLD-DDoSDN dataset considers six relevant scenar-

ios: (i) High-rate ICMP DDoS flooding attack; (ii) Low-rate ICMP DDoS flooding attack; (iii)

High-rate UDP DDoS flooding attack; (iv) Low-rate UDP DDoS flooding attack; (v) High-rate

TCP DDoS flooding attack; (vi) Low-rate TCP DDoS flooding attack. The rationale behind

that is to evaluate the effectiveness and consistency of the SDN security mechanisms in detect-

ing three classes of DDoS flooding attacks within different traffic variation rates (i.e., high-rate

and low-rate). The following subsections discuss in detail the scenarios in the contributed

dataset.

3.2.1 High and low rates TCP DDoS attacks. The TCP is a connection-oriented trans-

port protocol for reliable packet transmission. In TCP, the server and client must establish a

connection before sending packets. This process is known as the connection establishment

method of TCP protocol or three-way handshaking. The Server listens for client connection

requests before a connection is established [28]. In an SDN network, for example, the Open-

Flow switch must request the controller forwarding rules for each new connection it receives

from the clients. Attackers take advantage of this by using compromised nodes to launch

TCP-SYN DDoS flooding attacks against the controller, targeting the web server with spoofed

source IP addresses [29].

TCP-SYN DDoS flooding attacks gain strength by deploying various attack scenarios

against the victim. Attackers also send TCP-SYN DDoS flooding attacks with fewer packets,

consuming less bandwidth and simulating normal traffic behaviour by altering traffic rates

(high-rate and low-rate). This is done to avoid the detection approaches and enhance the effec-

tiveness of the attacks. Consequently, due to the spoofed IP addresses of the incoming packets,

OpenFlow switches are unable to find a match for the incoming malicious packets. As a result,

these incoming TCP-SYN DDoS spoofed packets are forwarded to the SDN controller,

exhausting its resources. Consequently, the SDN controller becomes unresponsive to newly

arriving packets. Fig 3 illustrates the TCP DDoS flooding attack on the SDN controller.

Additionally, this attack encompasses two different scenarios, with each scenario having

two different attack rate intensities. As shown in Fig 3, it is assumed that three attackers

(10.0.0.1–10.0.0.3) have initiated high-rate and low-rate TCP DDoS flooding attacks against

the SDN controller, targeting the web server (10.0.0.64). This inclusion of diverse DDoS attack

scenarios (high-rate and low-rate) ensures comprehensive coverage of potential attack scenar-

ios and abnormal behaviours, thereby contributing to the development of a robust SDN detec-

tion system. The remaining nodes represent legitimate nodes that generate normal traffic.

Table 3 presents various parameters for high-rate and low-rate TCP DDoS flooding attacks.

As shown in Table 3, three attackers initiate high-rate and low-rate TCP DDoS floods

against the web server using spoofed packets, aiming to disrupt the services of the SDN con-

troller. The remaining traffic consists of normal traffic generated by other nodes. Scapy tool

generates normal traffic with a 0.1 (s) interval traffic rate per second, meaning that the total
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number of packets sent per second equals ten packets, indicating normal traffic, as mentioned

by [30]. In contrast, the high-rate TCP DDoS floods generated with 0.03(s) interval traffic rate,

resulting in a total of 33.33 packets sent per second. On the other hand, the low-rate TCP

DDoS floods generated with 0.2(s) interval traffic rate, resulting in a total of five packets sent

per second. According to [25], a sending packet rate of 0.2(s) and 0.03(s) indicate high-rate

and low-rate DDoS flooding attacks, respectively.

In addition, there are other setting parameters, such as the destination port number being

set to 80 for both high and low-rate TCP DDoS attacks, as the target victim is a web server.

Moreover, the source port number is randomized for both high and low-rate TCP DDoS

flooding attacks. The spoofed source IP is randomly selected from the range of [1–255] for

both high and low-rate TCP DDoS attacks and from the range of [4–64] for normal traffic.

Fig 3. Visualizing TCP-SYN DDoS flooding attack.

https://doi.org/10.1371/journal.pone.0297548.g003
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Lastly, the sequence and window size are also randomized. At the same time, the Wireshark

traffic analyzer collected high and low-rate DDoS attacks from the SDN controller, while the

normal traffic was collected from the OpenFlow switch. These data are used to create a realistic

synthetic dataset and saved as a pcap file.

3.2.2 High and low-rate UDP DDoS attacks. UDP is one of the core communication

protocols known for its connectionless nature and lower overhead. Unlike TCP, UDP traffic

does not require a three-way handshaking method. Attackers take advantage of this character-

istic and utilize the UDP protocol to launch DDoS flooding attacks against the SDN controller

[31]. Similar to TCP, the OpenFlow switch needs to request the forwarding rules from the con-

troller for each new connection received from clients. Attackers exploit compromised nodes to

initiate UDP DDoS flooding attacks against the controller by targeting the victim node with

malicious UDP traffic that contains a spoofed IP address and random source port number.

Consequently, the victim node must search for applications associated with these ports. In

response to each incoming packet, the victim node sends unreachable destination packets. As

more packets arrive, the delay increases, eventually rendering the victim node unreachable.

The effectiveness of the UDP DDoS flooding attack lies in overwhelming the victim node

by executing various attack scenarios. Attackers execute UDP DDoS flooding attacks with dif-

ferent variation rates (high-rate and low-rate UDP DDoS attacks) that consume less band-

width and simulate normal traffic behaviour (in the case of low-rate UDP DDoS attacks),

aiming to evade detection approaches and enhance the attack’s efficacy. Consequently, these

incoming high-rate and low-rate UDP DDoS spoofed packets are forwarded to the SDN con-

troller, depleting its resources. Eventually, the SDN controller becomes unresponsive to newly

arriving packets. Fig 4 illustrates the UDP DDoS flooding attack on the SDN controller.

Moreover, this type of attack encompasses two different scenarios, with each scenario hav-

ing two different intensities of attack variation rates. The assumption depicted in Fig 4 demon-

strates that three attackers (10.0.0.1–10.0.0.3) have initiated high-rate and low-rate UDP DDoS

flooding attacks against the SDN controller by targeting node 10 (10.0.0.10). The diversity of

UDP DDoS attack scenarios encompassing both high-rate and low-rate ensures comprehen-

sive coverage of potential attack scenarios, leading to a robust SDN detection system. The

remaining nodes represent legitimate traffic generators. Table 4 presents various parameters

for high-rate and low-rate UDP DDoS flooding attacks.

Table 3. Summary of TCP attack scenarios with parameter settings.

No Parameters Normal Traffic TCP DDoS Flooding Attack

High-Rate Low-Rate

1 Hacking Tool Scapy Scapy Scapy

2 Traffic Interval Rate Per-second 0.1(s) 0.3(s) 0.2(s)

3 Packet sends per-second 10 33.33 5

4 Destination Port Number 80 80 80

5 Source Port Number 2 Random Random

6 Sequence Number ✗ Random Random

7 Window Size ✗ Random Random

8 Spoofed source IP [1–255] ✗ Random Random

9 Attackers Nodes IP (10.0.0.1 to 10.0.0.3) ✗ ✓ ✓

10 Normal Nodes IP. (10.0.0.4 to 10.0.0.64) ✓ ✗ ✗
11 Victim Node Webserver (10.0.0.64). ✗ ✓ ✓

12 Packets capturing from Switch Controller Controller

https://doi.org/10.1371/journal.pone.0297548.t003
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Fig 4. Visualizing UDP and ICMP DDoS flooding attack.

https://doi.org/10.1371/journal.pone.0297548.g004

Table 4. Summary of parameter settings in UDP attack scenarios.

No Parameter Normal Traffic UDP DDoS Flooding Attack

High-Rate Low-Rate

1 Hacking Tool Scapy Scapy Scapy

2 Traffic Interval Rate Per-second 0.1(s) 0.3(s) 0.2(s)

3 Packet sends per-second 10 33.33 5

4 Destination Port Number 80 80 80

5 Source Port Number 2 Random Random

6 Spoofed source IP [1–255] ✗ Random Random

7 Attackers Nodes IP (10.0.0.1 to 10.0.0.3) ✗ ✓ ✓

8 Normal Nodes IP. (10.0.0.4 to 10.0.0.64) ✓ ✗ ✗
9 Victim Node 10 (10.0.0.10). ✗ ✓ ✓

10 Packets capturing from Switch Controller Controller

https://doi.org/10.1371/journal.pone.0297548.t004
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As shown in Table 4, three attackers launch high-rate and low-rate UDP DDoS floods

against node 10 using spoofed packets with the aim of rendering the SDN controller services

unavailable. The remaining traffic consists of normal traffic generated by other nodes. The

Scapy tool generates normal traffic with a 0.1(S) interval traffic rate, resulting in a total of ten

packets sent per second. The sending rate of 0.1 (s) indicates normal traffic, as mentioned in

[30]. On the other hand, the high-rate UDP DDoS floods are generated with a 0.03(s) interval

traffic rate, resulting in a total of 3.33 packets sent per second. Meanwhile, the low-rate UDP

DDoS floods are generated with a 0.2(s) interval traffic rate, resulting in a total of five packets

sent per second. As indicated by [25], the sending packet rate of 0.2 (s) and 0.03 (s) correspond

to high-rate and low-rate UDP DDoS flooding attacks, respectively.

Additionally, there are other configuration parameters to consider. The destination port

number is set to 80 for high and low-rate UDP DDoS flooding attacks and normal traffic.

The source port number is randomly assigned for high and low-rate UDP DDoS flooding

attacks, while it is fixed at 2 for normal traffic. Furthermore, the spoofed source IP is ran-

domly selected from the range of 1–255 for high-rate UDP DDoS flooding attacks and from

the range of 4–64 for normal traffic. The Wireshark traffic analyzer collected high and low-

rate DDoS attacks from the SDN controller, while the normal traffic was collected from the

OpenFlow switch. These datasets are served as pcap files for further analysis and use as a syn-

thetic dataset.

3.2.3 High and low-rate ICMP DDoS attacks. The ICMP is a network layer protocol. It

is commonly used as a network utility for troubleshooting purposes, such as testing the con-

nectivity between network devices and measuring network delay or packet loss. This is

achieved by sending an ICMP echo request to a device and receiving an ICMP echo reply in

response. According to RFC, 1122 [32], every host must execute an ICMP echo server process

to handle incoming echo requests and send corresponding echo replies.

Attackers leverage the ICMP protocol to carry out DDoS flooding attacks on the SDN net-

work. In this type of attack, compromised nodes are used to launch ICMP DDoS flooding

attacks against the SDN controller by targeting a victim node with malicious ICMP echo

requests that contain spoofed IP addresses. The targeted node must process and respond to

each incoming packet, leading to resource depletion. Consequently, legitimate nodes are

denied services.

Furthermore, the effectiveness of this DDoS attack lies in executing multiple attack scenar-

ios against the victim. Attackers execute ICMP DDoS flooding attacks with different variation

rates, including high-rate and low-rate attacks. These attacks consume less bandwidth and

mimic normal traffic behaviour, especially in the case of low-rate ICMP DDoS Flooding

attacks. By doing so, the attackers aim to evade detection approaches and enhance the effi-

ciency of their attacks. As a result, the SDN controller resources are exhausted due to the influx

of high-rate and low-rate ICMP spoofed packets, rendering unreachable it unreachable for

subsequent incoming packets. Fig 4 also illustrates the ICMP DDoS flooding attack on the

SDN controller.

Moreover, this type of attack encompasses two different scenarios, each with two different

intensities of attack variation rates. The assumption depicted in Fig 4 illustrates that three

attackers (10.0.0.1–10.0.0.3) have initiated high-rate and low-rate ICMP DDoS flooding

attacks against the SDN controller, specifically targeting node ten (10.0.0.10). This diversity of

ICMP DDoS attack scenarios, comprising high-rate and low-rate attacks, ensures comprehen-

sive coverage of potential attack scenarios and contributes to the development of a robust SDN

detection system. The remaining nodes in the network generate legitimate traffic. Table 5 pro-

vides a tabulation of various parameters for high-rate and low-rate ICMP DDoS flooding

attacks.
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As shown in Table 5, three attackers launch high-rate and low-rate ICMP DDoS floods

against node ten with spoofed packets, aiming to render the SDN controller services unavail-

able. The remaining traffic consists of normal traffic generated by other nodes. The Scapy tool

generates normal traffic with a 0.1(s) interval traffic rate per second, resulting in a total num-

ber of ten packets sent per second. This sending rate of 0.1(s) indicates normal traffic, as stated

by [30]. In contrast, the high-rate ICMP DDoS floods generated with 0.03(s) interval traffic

rate, meaning that the total number of packets sent per second equals 33.33 packets.

Whereas, the low-rate ICMP DDoS floods are generated with a 0.2(s) interval traffic rate,

resulting in a total of five packets sent per second. As mentioned in [25], the sending packet

rate of 0.2(s) and 0.03(s) indicate high-rate and low-rate DDoS flooding attacks, respectively.

The spoofed source IP addresses are randomly selected between the range of 1–255 and 4–64

for high-rate and low-rare ICMP DDoS attacks and normal traffic, respectively. The Wire-

shark traffic analyzer collected high and low-rate DDoS attacks from the SDN controller. At

the same time, the normal traffic was collected from the OpenFlow switch.

Overall, the criteria used for determining the attack labels in the HLD-DDoSDN dataset

scenarios are primarily based on attack protocol perspectives associated with each attack cate-

gory. They are justified and categorized into six groups as follows: first is high-rate TCP DDoS

attacks, followed by the second group, which represents low-rate TCP DDoS attacks. In this

type of attack, the attackers overwhelm the web server with excessive volume and a low rate of

TCP-SYN spoofed connection, leading to servers being unavailable. The third group encom-

passes high-rate UDP DDoS attacks, while the fourth group consists of low-rate UDP DDoS

attacks. In this type of attack, the attackers exploit the stateless nature of UDP and send high-

value and low-rate UPD spoofed traffic against the victim node, affecting the controller. The

fifth group focuses on high-rate ICMP DDoS attacks, and the sixth group encompasses low-

rate ICMP DDoS attacks. In this type of attack, the attackers use the ICMP protocol to attempt

DDoS attacks against the controller. All these attacks can disrupt the SDN services, degrade

network performance and potentially lead to service outages. At the same time, Wireshark cap-

tures each group and saves them as pcap files.

3.3 Feature extraction

This stage utilizes the CICFlowMeter feature extractor mechanism to extract realistic SDN net-

work traffic features. It was developed by the Canadian Institute of Cybersecurity group and

programmed in Java. The rationale behind that is that the CICFlowMeter considers the time-

based feature. The dataset can potentially be flow-based or packet-based and produces a suffi-

cient amount of calculated traffic features to enhance the high and low-rate DDoS attack

Table 5. Summary of parameter settings in ICMP attack scenarios.

No Parameters Normal Traffic ICMP DDoS Flooding Attack

High-Rate Low-Rate

1 Hacking Tool Scapy Scapy Scapy

2 Traffic Interval Rate Per-second 0.1(s) 0.3(s) 0.2(s)

3 Packet sends per-second 10 33.33 5

4 Spoofed source IP [1–255] ✗ Random Random

5 Attackers Nodes IP (10.0.0.1 to 10.0.0.3) ✗ ✓ ✓

6 Normal Nodes IP. (10.0.0.4 to 10.0.0.64) ✓ ✗ ✗
8 Victim Node 10 (10.0.0.10). ✗ ✓ ✓

9 Packets capturing from Switch Controller Controller

https://doi.org/10.1371/journal.pone.0297548.t005
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pattern detection in SDN networks, providing a more comprehensive understanding of such

attack behavior. Fig 5 presents the feature engineering extraction process.

As can be seen from Fig 5, the feature extraction process consists of a number of phases.

First, generate and capture packets from the SDN network traffic as raw traffic (i.e., PCAP

files). Then, In the packet parsing phase, all the captured packets are parsed to extract key

information features, including the source and destination IP addresses, source and destina-

tion ports, packet size, protocol type and time. After that, flow creation is recorded by includ-

ing the relevant information extracted from the packet and additional attributes like flow

duration. Additionally, CICFlowMeter extracts various features from flow records, which

include statistical measures like mean and standard deviations of packet sizes, inter-arrival

times and more. Finally, the extracted features are typically stored in comma-separate values

(CSV) files for further preprocessing.

The output of this stage is a set of competent features (fn = 71) that serve various purposes,

including identifying and tracking attackers’ network traffic sources, destinations and proto-

cols; analyzing unauthorized port usage; examining network traffic patterns of normal and

abnormal flows; and understanding the timing of network events. These features also function

as indicators of normal and abnormal traffic patterns, particularly in the context of DDoS

attacks with fluctuating traffic rates, and they are extracted in an informative and well-discrim-

inated manner. The S1 Appendix provides a detailed list of extracted competent features along

with their descriptions.

3.4 Datasets pre-processing

The generated datasets must undergo several preprocessing stages before training the detec-

tion approach to avoid the overfitting problem. The following steps are taken for the prepro-

cessing of HLD-DDoSDN datasets:

• Dataset Labeling: The labeling of the dataset is crucial for detection systems. The proposed

datasets are labelled by assigning a class label (i.e., normal or attack) to each flow record.

Then, every flow row is deterministically labeled based on attack details, considering source

and destination IP address features. It ensures that the packets within each flow are from the

Fig 5. Feature extraction process.

https://doi.org/10.1371/journal.pone.0297548.g005
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same label class, meaning that each packet with identical key features is considered as one

flow record. This study includes both binary and multiclass classifications. In a binary exper-

iment, the normal class is assigned a value of 1, and the malicious traffic is assigned a value

of 0. In the multiclass experiment, every class is given a unique value. For example, 0, 1, 2,

and 3 represent SDN normal traffic, ICMP, TCP, and UDP DDoS flooding attacks,

respectively.

• Dataset Transformation: involves converting data from one format to another to create a

readable dataset. For example, text features are replaced with uniquely identifiable numeric

values. Each value is identified and replaced with a unique number using a label encoding

technique, such as numeric representation. This step transforms the categorical columns

(i.e., Flow-ID, Src-IP, Dst-IP, and Timestamp) and converts or maps to numerical values.

• Dataset Balancing: is an important preprocessing stage to ensure an equal distribution of

label classes (normal and attack). One commonly used balancing technique is the Synthetic

Minority Oversampling Technique (SMOTE) [33]. SMOTE oversamples the minority class

by replicating and adding random instances from the dataset, thereby improving the gener-

alisation of the prediction model. Table 6 illustrates the characteristics of the proposed data-

set after balancing using SMOTE, demonstrating the successful balancing of the dataset

across the two labels.

• Dataset Normalization: Organizing the dataset to maintain scale across all records is

known as “dataset normalization.” The HLD-DDoSDN datasets include various features,

such as Flow-ID, Src-IP, Dst-IP, Timestamp, etc. The range of variations is attributed to the

nature of the different types of attacks and the diversity of network features that reflect net-

work traffic patterns. Thus, normalization aims to bring these features to a standardized

scale, falling within the range of 0 to 1. This normalization technique ensures that all features

have a consistent scale, which can benefit the training model. The min-max normalization

method is employed for standardizing the feature vector, as described by the following Eq 1:

Xi ¼ ðXi � XðMinÞÞ=ðXðMaxÞ � XðMinÞÞ ð1Þ

In this context, Xi denotes the initial value, XMin signifies the minimum value within the

dataset, and XMaz represents the maximum value within the dataset.

3.5 Sample datasets

The quality of the dataset reflects the significant performance of an IDS. However, the avail-

ability of suitable datasets in the field of IDS is a major concern that hinders the advancement

Table 6. The proposed dataset balanced groups.

No Dataset Groups Before Oversampling After Oversampling

Normal Attack Normal Attack

1 High-Rate TCP DDoS Attack 109488 373596 373596 373596

2 Low-Rate TCP DDoS Attack 109488 435322 435322 435322

3 High-Rate UDP DDoS Attack 303448 275183 303448 303448

4 Low-Rate UDP DDoS Attack 303448 265669 303448 303448

5 High-Rate ICMP DDoS Attack 529613 395022 529613 529613

6 Low-Rate ICMP DDoS Attack 529613 368048 529613 529613

https://doi.org/10.1371/journal.pone.0297548.t006
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of anomaly IDS. This is primarily due to the fact that most existing datasets are based on tradi-

tional networks and do not faithfully capture the attributes of SDN networks. The centralized

architecture of SDN makes it more vulnerable to DDoS attacks, which are not prevalent in tra-

ditional networks [34].

Furthermore, the existing SDN datasets are limited to standard DDoS attacks and do not

consider various variations of attack, such as high-rate and low-rate DDoS attacks on the

SDN network environment. To address these limitations, realistic HLD-DDoSDN datasets

have been generated. These datasets encompass the most common types of DDoS flooding

attacks on SDN networks, including TCP, UDP, and ICMP, as well as recent sophisticated

attack techniques employed by attackers to evade detection. Table 7 provides an overview

of the distribution of these sample datasets for both multiclass and binary class

classification.

3.6 HLD-DDoSDN dataset validation

This is a crucial phase directly associated with the research contribution of creating an authen-

tic dataset. During this stage, the datasets undergo validation before being made accessible to

the research community. This stage aims to ensure the generated datasets are applicable and

fulfil all the necessary requirements to serve as a benchmark dataset. This is primarily due to

the strict criteria that any potential dataset must meet these requirements to be considered as a

benchmark dataset, as [35] outlined. These requirements are listed as follows:

• Realistic SDN traffic: for this research, it is essential to create the dataset within a genuine

network environment, such as an SDN network.

Table 7. HLD-DDoSDN dataset samples distribution.

No Datasets Groups Labels Samples Total Samples Number of Features (72) Classsificaion Type

Binaryclass Multiclass

1 High-Rate TCP Attack Normal 373596 747,192 ✓ ✓ ✗
Attack 373596

2 Low-Rate TCP Attack Normal 435322 870,644 ✓ ✓ ✗
Attack 435322

3 High-Rate UDP Attack Normal 303448 606,896 ✓ ✓ ✗
Attack 303448

4 Low-Rate UDP Attack Normal 303448 606,896 ✓ ✓ ✗
Attack 303448

5 High-Rate ICMP Attack Normal 529613 1,059,226 ✓ ✓ ✗
Attack 529613

6 Low-Rate ICMP Attack Normal 529613 1,059,226 ✓ ✓ ✗
Attack 529613

7 High-Rate (All Attacks) Normal 250,000 1,000,000 ✓ ✗ ✓

ICMP 250,000

TCP 250,000

UDP 250,000

8 Low-Rate (All Attacks) Normal 250,000 1,000,000 ✓ ✗ ✓

ICMP 250,000

TCP 250,000

UDP 250,000

https://doi.org/10.1371/journal.pone.0297548.t007
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• Diversity of attacks and scenarios: The dataset has different attack types and various sce-

narios. Therefore, the dataset has to be considered more robust and reliable for the proposed

detection approach.

• Sufficient traffic size: The normal and abnormal traffic sizes of the proposed dataset should

not be limited to any dataset class (i.e., attack or normal classes).

• Qualified traffic feature representation: A set of qualified traffic features that represent the

dataset should be highly contributed for detecting SDN-specific attacks (i.e., TCP, UDP, and

ICMP DDoS flooding attacks) with different traffic variation rates (high and low).

• Dataset labeling: Labeling the traffic as normal and abnormal should be done correctly and

completely for the proposed datasets.

• Detection accuracy verification: The proposed dataset should be applied to the proposed

detection approach to evaluate its reliability and trustworthiness, aiming to achieve satisfac-

tory detection accuracies.

In summary, the aim of this stage is to validate the HLD-DDoSDN datasets in terms of the

requirements of a benchmark dataset. As can be seen, the proposed datasets include realistic

SDN traffic, a diversity of DDoS attack scenarios, dataset completeness, labeling, sufficient

traffic size, balancing traffic classes, and representative features. Therefore, the HLD-DDoSDN

datasets meet all the requirements of a benchmark dataset, and the one condition related to

detection accuracy is verified in the subsequent section 4. After fulfilling all the requirements,

the HLD-DDoSDN datasets are considered as a reference for SDN DDoS attacks with various

traffic variation rates, and the dataset is made publicly available [7].

3.7 D-MLP detection technique

This section focuses on adapting an MLP to detect high-rate and low-rate DDoS. The MLP is a

deep neural network with a feed-forward structure that serves as an efficient anomaly IDS for

detecting such attacks. The proposed D-MLP model consists of six layers, including an input

layer to process dataset features, four hidden layers with weighted inputs, activation functions,

and an output layer for classification. The D-MLP model is further utilized to evaluate the

effectiveness of proposed features in detecting DDoS attacks in the SDN network using the

HLD-DDoSDN dataset. Various hyperparameters, such as the number of hidden layers

(H = 4), Neurons (N = 100), Batch size (B = 100), epochs (E = 50), momentum (M = 5) optimi-

zation, and learning rate (0.001), are essential in improving the model’s performance. Multiple

experiments are conducted to determine the optimal values for these hyperparameters during

implementation.

The D-MLP detection technique setup involved using the Adam optimizer and sparse cate-

gorical cross-entropy function, with a critical focus on finding an optimal learning rate of

0.001 to maximize the detection rate. Overfitting was mitigated with early stopping

(Monitor = val_accuracy and patience = 3), ensuring convergence in fewer than 50 iterations.

The detection technique incorporated ReLU activation functions in D-MLP layers, utilized

softmax classification in the output layer, and classified input traffic features as normal or

attacked, addressing ICMP, UDP, and TCP DDoS flooding attacks. The number of D-MLP

layers and their characteristics were adapted based on input features, including a flattened

layer to enhance data handling and performance. L2 regularization of 0.001 further improved

model performance when combined with hyperparameters established through a series of

experiments.
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Additionally, the D-MLP approach is applied to the HLD-DDoSDN datasets with all

extracted features. The evaluation metrics of applying the D-MLP approach on the datasets

using two testing techniques are employed to evaluate the D-MLP performance, which is a

valuable technique for assessing D-MLP generalizations. First, the split test technique divides

the dataset into a sufficiently large portion of the dataset, allocating 80% for the training set to

enable the model to learn diverse patterns and features. Meanwhile, the 20% reserved for the

testing set serves as a representative sample for evaluating the model performance on unseen

data for reliable assessment. Second, the cross-validation technique that divides the dataset

into (k = 5) subsets. This technique is critical for mode evaluation, as it involves training and

testing on different subsets of data. Overall, considering both techniques results in a more

robust approach performance and assessment compared to solely relying on a split testing

technique.

4 Experimental results and discussion

The experiment was implemented and designed by utilizing the Python programming lan-

guage. The TensorFlow, Keras, and Scikit-Learn libraries are used for the proposed D-MLP

detection approach. Table 8 provides details about the experimental configuration environ-

ment. Moreover, this section discusses the evaluation performance metrics. The results

obtained from binary and multi-class classifications are thoroughly analyzed. Lastly, this sec-

tion provides a qualitative comparative analysis of the SDN datasets.

4.1 Metrics of evaluation

This section explains the common evaluation metrics used to assess the contributed

HLD-DDoSDN dataset and the proposed D-MLP detection approach in terms of the following

confusion matrix attributes, which are explained below:

• True Positive (tp): Demonstrates that the classifier correctly attempts to classify the attack

traffic as an attack.

• False Positive (fp): Demonstrates that the classifier incorrectly attempts to classify the normal

traffic as an attack.

• True Negative (tn): Demonstrates that the classifier correctly attempts to classify normal traf-

fic as normal.

• False Negative (fn): Demonstrates that the classifier incorrectly classifies the attack as normal

traffic.

In addition, several other evaluation metrics have been considered, including Classification

Error (CE) calculated using Eq 2, detection accuracy calculated using Eq 3, Recall (r) calculated

using Eq 4, Precision (p) calculated using Eq 5, F1 score calculated using Eq 6, Specificity cal-

culated using Eq 7, False Positive Rare (FPR) calculated using Eq 8, and False Negative Rate

(FNR) calculated using Eq 9. The following equations are used for the aforementioned

Table 8. Environment of experiment.

Operating System (OS) Windows 10 Enterprise 64-bit Python 3.10.5

CPU Intel(R) core i5–3570, CPU = 3.40 GHz TensorFlow 2.11.0

Installed Memory 16 GB (RAM) Keras 2.11.0

Visual Studio Code 1.74.3 Scikit-learn 1.2.0

https://doi.org/10.1371/journal.pone.0297548.t008
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evaluation metrics.

CE ¼ ð fp þ fnÞ=ðtp þ tn þ fp þ fnÞ ð2Þ

Accuracy ¼ ðtp þ tnÞ=ðtp þ tn þ fp þ fnÞ ð3Þ

RecallðrÞ ¼ ðtp=ðtp þ fnÞ ð4Þ

PrecisionðpÞ ¼ ðtpÞ=ðtp þ fpÞ ð5Þ

F1 � Score ¼ ð2� p� rÞ=ðP þ rÞ ð6Þ

Specificity ¼ ðtnÞ=ðtn þ fpÞ ð7Þ

FPR ¼ ð fpÞ=ð fp þ tnÞ ð8Þ

FNR ¼ ð fnÞ=ð fn þ tpÞ ð9Þ

4.2 Results of binary classifications

This subsection discusses the classification results for binary-class classification. The D-MLP is

evaluated with two different techniques: split test and cross-validation. As presented in Tables

9 and 10, they showcase the performance of detecting various types of attacks and scenarios

including high-rate TCP, UDP, and ICMP attacks, as well as low-rate TCP, UDP, and ICMP

attacks. The evaluation matrices include metrics such as detection accuracy, precision,

F1-score, and recall for both normal and attack. Table 9 presents the evaluation metrics for

binary classification concerning the split test and cross-validation test.

As seen in Table 9, the first technique is the split test. For normal traffic, the detection accu-

racy ranges from 100% to 97.85%, while for attacks, it ranges from 98.15% to 86.89%. Looking

at precision, the proposed approach archives consistently high values, ranging from 98.97% to

88.44% for normal traffic and 100% to 97.17 for attack traffic. Meanwhile, the F1 score ranged

from 93.86% to 97.63% for normal traffic and 97.66% to 92.99% for attack traffic. Lastly, the

recall ranged from 100% to 97.13% and 98.15% to 86.89% for normal and attack traffic, respec-

tively. The second technique is a cross-validation test, for normal traffic, the detection accuracy

ranges from 100% to 98.74%, while for attacks, it ranges from 100% to 98.53%. The precision

is consistently high, ranging from 100% to 98.52% for normal traffic and 98.69% to 92.69 for

attack traffic. Simultaneously, the F1 score ranged from 98.95% to 96.20% for normal traffic

and 98.97% to 95.89% for attack traffic. Finally, the recall ranged from 100% to 95.55% and

100% to 92.10% for normal and attack traffic, respectively. These results indicate that the

D-MLP is capable of accurately detecting both normal and attack traffic across different DDoS

attack types.

Furthermore, Table 10 exhibits the average evaluation metrics for binary classification

regarding the split test and cross-validation test. The D-MLP is evaluated based on average

accuracy, precision, F1-score, recall, FPR, FNR, specificity, and classification. The evaluation is

performed using both a split test and a cross-validation test. For high-rate DDoS attacks in the

split test, the detection accuracy ranges from 97.64% to 95.29%, while for low-rate DDoS

attacks, it ranges from 96.33% to 93.45%. The precision ranged from 97.65% to 95.70% for
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high-rate DDoS attacks and 96.37% to 94.22% for low-rate DDoS attacks. The F1 score ranged

from 97.64% to 95.28% for high-rate DDoS attacks and 97.66% to 92.99% for low-rate DDoS

attacks. The recall ranged from 97.64% to 95.28% and 96.35% to 93.44% for high and low-rats

DDoS attacks, respectively. The FPR is 8.59% to 1.87% for high-rate DDoS attacks and 11.56%

Table 9. Evaluation metrics for binary classifications.

Dataset Groups Evaluation Matrices (%) Split test (%) Cross-validation test (%)

Normal Attack Normal Attack

High-Rate TCP Attacks Detection Accuracy 100 94.91 97.92 100

Precision 95.18 100 100 97.97

F1-Score 97.53 97.39 98.95 98.97

Recall 100 94.91 97.92 100

Low-Rate TCP Attacks Detection Accuracy 100 91.44 100 92.10

Precision 92.11 100 100 92.69

F1-Score 95.89 95.53 96.20 95.89

Recall 100 91.44 100 92.10

High-Rate UDP Attack Detection Accuracy 100 90.57 97.55 97.48

Precision 91.41 100 97.50 97.54

F1-Score 95.51 95.05 97.52 97.51

Recall 100 90.57 97.55 97.48

Low-Rate UDP Attacks Detection Accuracy 100 86.89 95.55 97.99

Precision 88.44 100 97.96 95.63

F1-Score 93.86 92.99 96.74 96.80

Recall 100 86.89 95.55 97.99

High-Rate ICMP Attacks Detection Accuracy 97.13 98.15 98.11 98.53

Precision 98.97 97.17 98.52 98.11

F1-Score 97.63 97.66 98.31 98.32

Recall 97.13 98.15 98.11 98.52

Low-Rate ICMP Attacks Detection Accuracy 97.85 94.81 98.74 95.03

Precision 94.95 97.79 95.20 98.69

F1-Score 96.38 96.28 96.94 96.83

Recall 97.85 94.81 98.74 95.03

https://doi.org/10.1371/journal.pone.0297548.t009

Table 10. Average evaluation matrices for binary classifications.

Evaluation

Matrices

Split test (%) Cross-validation test (%)

High-Rate

TCP

Attacks

Low-Rate

TCP

Attacks

High-Rate

UDP

Attacks

Low-Rate

UDP

Attacks

High-Rate

ICMP

Attacks

Low-Rate

ICMP

Attacks

High-Rate

TCP

Attacks

Low-Rate

TCP

Attacks

High-Rate

UDP

Attacks

Low-Rate

UDP

Attacks

High-Rate

ICMP

Attacks

Low-Rate

ICMP

Attacks

Accuracy

(%)

97.46 95.72 95.29 93.45 97.64 96.33 98.96 96.05 97.52 96.77 98.32 96.88

Precision

(%)

97.59 96.05 95.70 94.22 97.65 96.37 98.98 96.34 97.52 96.79 98.32 96.95

F1-Score (%) 97.46 95.71 95.28 93.42 97.64 96.33 98.96 96.04 97.52 96.77 98.32 96.88

Recall (%) 97.45 95.72 95.28 93.44 97.64 96.33 98.96 96.05 97.52 96.77 98.32 96.88

FPR (%) 4.82 7.88 8.59 11.56 1.87 5.04 0 7.31 2.50 2.04 1.47 4.80

FNR (%) 0 0 0 0 2.83 2.21 2.02 0 2.46 4.37 1.88 1.30

Specificity

(%)

100 100 100 100 97.14 97.85 97.93 100 97.55 95.56 98.11 98.75

CE (%) 2.54 4.28 4.70 6.54 2.35 3.67 1.03 3.94 2.48 3.23 1.68 3.11

https://doi.org/10.1371/journal.pone.0297548.t010
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to 5.04% for low-rats DDoS attacks. The FNR is 2.83% to 0% for high-rate DDoS attacks and

2.21% to 0% for low-rats DDoS attacks. The specificity is 100% to 97.14% for high-rate DDoS

attacks and 100% to 97.85% for low-rats DDoS attacks. Lastly, the CE is 4.70% to 2.35% for

high-rate DDoS attacks and 4.28% to 3.67% for low-rats DDoS attacks.

Additionally, as represented in Table 10 the D-MLP is evaluated based on a cross-validation

test. For high-rate DDoS attacks, the detection accuracy ranges from 98.96% to 97.52%, while

for low-rate DDoS attacks, it ranges from 96.88% to 96.05%. The precision ranged from

98.98% to 97.52% for high-rate DDoS attacks and 96.95% to 96.34% for low-rate DDoS attacks.

The F1 score ranged from 98.32% to 97.52% for high-rate DDoS attacks and 96.88% to 96.04%

for low-rate DDoS attacks. The recall ranged from 98.96% to 97.52% and 96.88% to 96.05% for

high and low-rats DDoS attacks, respectively. The FPR is 2.50% to 0% for high-rate DDoS

attacks and 7.31% to 2.04% for low-rats DDoS attacks. The FNR is 2.46% to 1.88% for high-

rate DDoS attacks and 4.37% to 0% for low-rats DDoS attacks. The specificity is 98.11% to

97.55% for high-rate DDoS attacks and 100% to 95.56% for low-rats DDoS attacks. Finally, the

CE is 2.48% to 1.03% for high-rate DDoS attacks and 3.94% to 3.23% for low-rats DDoS

attacks. In the final analysis, these evaluation matrices provide insights into the proposed

approach’s performance in detecting different types of attacks across various scenarios. They

indicate high accuracy and precision in most cases, with varying levels of recall and FPR and

the Specificity remains high.

4.3 Results of multi-class classifications

This subsection discusses the classification results for multi-class classification. Tables 11 and

12 present the performance of the D-MLP approach in detecting different types of attacks.

Table 11 presents the evaluation metrics for multi-classification concerning the split test and

cross-validation test. The D-MLP approach exhibits impressive performance across various

attack types. This is evident in the results of the split test and cross-validation test techniques,

as detailed in Table 11. In the realm of high-rate attacks for both techniques, the approach

achieves remarkable results. The D-MLP consistently demonstrates high accuracy, precision,

f1-score, and recall, showcasing its efficacy in detecting these attacks. Even when faced with

low-rate attacks in both techniques, the D-MLP maintains its robust performance. The

approach showcases similar effectiveness in detention ICMP, TCP, and UDP attacks during

low-rate scenarios, emphasizing its versatility and reliability in providing comprehensive secu-

rity measures in SDN networks.

Furthermore, the average performance for multi-classification is reassessed, as presented in

Table 12. First, the approach is assessed with a Split test. In the scenarios of high-rate all

attacks, the detection accuracy is 97.55%, with a precision of 97.58% and an F1-score of

97.55%. The recall is 97.55, indicating effective attack detection. The FPR is 0, and the FNR is

1.66%. The specificity remains at 98.30%, while the classification error is 0.85%. For low-rate

Table 11. Evaluation metrics for multiclass classifications.

Evaluation Matrices Split test (%) Cross-validation test (%)

High-Rate Low-Rate High-Rate Low-Rate

Normal ICMP TCP UDP Normal ICMP TCP UDP Normal ICMP TCP UDP Normal ICMP TCP UDP

Accuracy (%) 100 98.30 95.44 96.46 98.53 97.83 93.02 100 100 97.71 96.24 100 98.76 97.49 95.54 100

Precision (%) 98.33 95.54 96.44 100 100 98.51 97.73 93.51 99.94 100 97.74 96.39 100 98.74 97.44 95.74

F1-Score (%) 99.16 96.90 95.94 98.20 99.26 98.17 95.32 96.64 99.97 98.84 96.98 98.16 99.37 98.11 96.48 97.82

Recall (%) 100 98.30 95.44 96.46 98.53 97.83 93.02 100 100 97.71 96.24 100 98.76 97.49 95.54 100

https://doi.org/10.1371/journal.pone.0297548.t011
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attack types, the detection accuracy is 97.35%, with a precision of 97.44% and an F1-score of

97.35%. The recall is 97.34, indicating effective attack detection. The FPR is 1.49%, and the

FNR is 0%. The specificity is 100%, while the classification error is 0.74%.

Additionally, the D-MLP is assessed with cross-validation. In the scenarios of high-rate all

attacks, the detection accuracy is 98.49%, with a precision of 98.51% and an F1-score of

98.49%. The recall is 98.48, indicating effective attack detection. The FPR is 0, and the FNR is

0.06%. The specificity remains at 99.94%, while the classification error is 0.03%. For low-rate

all attack types, the detection accuracy is 97.95%, with a precision of 97.98% and an F1-score

of 97.95%. The recall is 97.95, indicating effective attack detection. The FPR is 1.26%, and the

FNR is 0%. The specificity is 100%, while the classification error is 0.63%. In summary, these

evaluation results highlight the effectiveness of the D-MLP approach in accurately detecting

both attack types, showcasing its strong performance in both techniques.

4.4 SDN datasets comparison

There are several datasets that the DDoS attacks research community has generated. These

datasets have successfully fulfiled the specific objectives of the researchers utilizing them. How-

ever, they did not meet the objectives of this research. Some of these datasets (i.e., CICIDS2018

[18] and ISCX2012 [19]) are generated for conventional networks and do not reflect the SDN

network architecture, which is entirely different from traditional networks [3].

Despite the availability of SDN datasets, such as [23, 24], specifically generated for SDN

DDoS attacks and publicly accessible, these realistic datasets are limited to standard or conven-

tional DDoS attacks (i.e., high-rate attacks). In this type of attack, the attackers send a super-

massive amount of spoofed traffic. Due to its high rate, such attacks are easy to detect with

high detection accuracy. Moreover [25], generated a realistic dataset to evaluate their proposed

approaches with high and low-rate DDoS attacks. However, those datasets are not publicly

available and are limited to only UDP DDoS attacks, limiting the diversity of DDoS attack sce-

narios. Conversely [22], introduced a dataset focusing on HTTP slow attacks against victim

servers.

Therefore, this research aims to generate a realistic dataset that fulfils the requirements to

be a benchmark dataset integrating the most prevalent and specific SDN attacks, including

ICMP, UDP, and TCP DDoS flooding attacks, with varying rates of high and low rates. This

section aims to provide a qualitative comparison between the proposed HLD-DDoSDN data-

set and existing SDN datasets. After thoroughly investigating various detection approaches

and survey studies, this research has formulated the following set of criteria, as listed below:

Table 12. Average evaluation matrices for multiclass classifications.

Evaluation Matrices Split test (%) Cross-validation test (%)

High-Rate (All Attacks) Low-Rate (All Attacks) High-Rate (All Attacks) Low-Rate (All Attacks)

Accuracy (%) 97.55 97.35 98.49 97.95

Precision (%) 97.58 97.44 98.51 97.98

F1-Score (%) 97.55 97.35 98.49 97.95

Recall (%) 97.55 97.34 98.48 97.95

FPR (%) 0 1.49 0 1.26

FNR (%) 1.66 0 0.06 0

Specificity (%) 98.30 100 99.94 100

CE (%) 0.85 0.74 0.03 0.63

https://doi.org/10.1371/journal.pone.0297548.t012
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• SDN Dataset: The candidate datasets must be designed and generated for SDN DDoS

attacks.

• Total Number of Instances (Up to Millions): The DL algorithms require large amounts of

labeled data for better generalization and performance. For that reason, the total number of

instances for the candidate datasets must contain millions of instances, allowing the pro-

posed approaches to be trained using sufficient instances to accommodate emerging tech-

nologies, such as cloud computing and IoT systems. These emerging technologies have

adopted SDN technology, producing enormous amounts of data.

• Variety of Attacks and Scenarios: The dataset encompasses a wide range of attack types and

scenarios (i.e., high and low-rate DDoS attacks), making it a highly robust and dependable

resource for training, testing, and validating the proposed detection approach.

• Completeness of the Dataset: The candidate’s dataset must be comprehensive, meaning

that the dataset should be completed (i.e., certain columns in the dataset lack

information).

• Sufficient Number of Features: Certain relationships between features might not be evident

in the case of a limited set of features, and introducing further features improves the detec-

tion of hidden patterns in such attacks. Therefore, the candidate’s dataset must contain more

features (f> 10) to give the researchers wide space to understand the hidden patterns of

such attacks.

• Verification of Detection Accuracy: Before making the dataset available, it must be verified,

at least in terms of detection accuracy, to assess its reliability and trustworthiness, with the

ultimate goal of achieving satisfactory detection accuracy.

• Dataset Availability: By making the dataset publicly available, researchers will be able to

evaluate their proposed approach and compare it against other existing approaches that use

the same dataset. Table 13 qualitatively compares the proposed HLD-DDoSDN dataset and

the existing SDN datasets.

Table 13. Qualitative comparison between HLD-DDoSDN and existing datasets.

Ref. or Dataset

Name

SDN

Dataset

Total Number of

Instances (Up to

Millions)

Variety of Attacks and

Scenarios

Completeness of the

Dataset (i.e., columns

missing information)

Sufficient

Number of

Features (f> 10)

Verification of

Detection

Accuracy

Dataset

Availability

Variety of

Attacks

Both High-

Rate and

Low-Rate

SDN-SlowRate-

DDoS [22]

✓ - ✓ ✗ ✓ ✓ ✓ ✓

Niyaz et al., [16] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗
Zerbini et al., [20] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓

Novaes et al., [21] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓

InSDN [23] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Ahuja et al., [24] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Aladaileh et al.,

[25]

✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗

HLD-DDoSDN

[7]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(✓) Considered, (✗) Not considered (-) not clear.

https://doi.org/10.1371/journal.pone.0297548.t013
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As illustrated in Table 13, the majority of the existing datasets lack millions of total

instances. Additionally, when comparing the proposed dataset with existing ones in terms of

the variety of attacks and scenarios, most of them do not include both high and low-rate

attacks. However, the [22] dataset concentrates on HTTP slow DDoS attacks targeting victim

servers. In contrast, our proposed dataset specifically focuses on DDoS attacks against SDN

controllers with varying traffic rates. The only exception is [25], which contains both; however,

it is restricted to UDP attacks and does not consider a wider variety of attack types. Further-

more, certain existing datasets, such as [20, 24], are incomplete (some columns missing infor-

mation), and others [20, 21, 25] lack a sufficient number of features essential for researchers to

comprehend attack patterns. In addition, all the existing datasets have been verified in terms of

detection accuracy, and most of them are publicly available except for [16, 25].

In summary, to tackle these limitations, the HLD-DDoSDN dataset [7] has been intro-

duced. This dataset takes into account the prevalent, realistic SDN DDoS attacks, including

TCP, UDP, and ICMP DDoS attacks specifically targeting an SDN controller. It encompasses

both high and low-rate attacks, meets all requirements to serve as a benchmark deadset, and

includes a sufficient number of features. As a result, the proposed dataset underwent qualita-

tive comparison with existing SDN datasets and quantitative evaluation across all scenarios

(for more details, refer to Subsections 4.2 and 4.3) to highlight its superiority. The proposed

dataset is publicly available to enable researchers to evaluate and compare their approaches

with existing ones using the same dataset. Overall, as a part of the recommendation these

benchmark datasets [7, 22–24] complement each other, as each one has its own advantages

and purpose.

5 Conclusion, challenges, limitations and future work

This research underscores the transformative potential of SDN in enhancing organizational

network infrastructures at a minimal cost, fostering rapid market growth owing to its adapt-

able and dynamic design. Despite these benefits, the susceptibilities of SDN networks to secu-

rity vulnerabilities, particularly DDoS flooding attacks, necessitates the development of

advanced detection approaches for robust protection management. Recognizing the pivotal

role of training datasets in the efficacy of detection approaches, this paper introduces the

HLD-DDoSDN dataset. Specifically designed to tackle key challenges in SDN datasets, this

dataset simulates prevalent DDoS flooding attacks with varying traffic rates. By meeting

benchmark criteria for size, attack diversity and feature quality.

Moreover, the paper proposes anomaly detection based on DL for training and evaluating

this comprehensive dataset. The overall methodology comprises multiple stages. Initially,

HLD-DDoSDN was generated, and traffic generation and captured. Subsequently, preparation

and feature extraction is conducted to obtain statistically qualified features. The third stage

involved construction and preprocessing, and the fourth stage focused on validating the pro-

posed dataset. During the fifth stage, the D-MLP approach is employed for binary and multi-

ple-class detection conspiring spilt test and cross-validation test techniques. The experimental

results demonstrated that the D-MLP approach exhibited high performance in detecting such

attacks.

Creating the HLD-DDoSDN dataset presented various challenges and limitations, encom-

passing concerns about dataset quality, as well as privacy and security issues related to sensitive

network information. Additional challenges included those related to sampling, labelling, and

managing imbalanced classes. It’s important to note that the proposed datasets were inten-

tionally generated within a virtual SDN environment, addressing privacy concerns and

enabling control over the severity of DDoS attacks. However, this virtual setting may not fully
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capture the intricacies of real-world networks, such as varying traffic patterns, network sizes,

and application types. The dataset scope is specifically tailored to TCP, UDP, and ICMP DDoS

flooding attacks against the SDN controller, accommodating fluctuation in traffic rates.

From a practical perspective, the proposed dataset serves as a controlled testing ground

environment for the new SDN detection approach. This approach allows for the identification

of strengths and weaknesses before implementation in real-world networks. By accurately rep-

resenting diverse DDoS attacks and scenarios, the dataset contributes to building more resil-

ient SDN systems capable of effectively handling the complexities of deployment. Insights

gained from the dataset can directly inform strategies for improving the reliability and effi-

ciency of detection approaches. Therefore, the proposed dataset stands as a valuable resource

for researchers and practitioners in the field of SDN DDoS attacks. In Future endeavors, our

focus will be on enhancing the detection approach through the implementation of an efficient

ensemble feature selection technique. This approach aims to reduce the input attribute

dimensionality, ultimately boosting the performance and generalization of D-MLP detection

while mitigating the risk of potential overfitting.

Supporting information

S1 Appendix. Contains a comprehensive list of all features included in the HLD-DDoSDN
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